
Sample Final Exam 
CSE 680: Introduction to Algorithms and Data Structures 
1. Solve the following recurrences by giving tight Θ-notation bounds using the Master Method. If I thought you 

would need the actual value of a logarithm, I have given it to you. 
(a) T (n)=9T (n/3)+n 

see book 
 

(b) T (n)=T (2n/3)+1 
see book 
 

(c) T (n)=3T (n/4)+nlgn 

see book 
 

2. Give the Inorder, Postorder and Preorder traversals of the following binary tree. 
                               A   Note: Traversal orders only make sense with Depth-first traversal. 

                      Inorder:   DBHEIAFCG 

                               B              C  Preorder:  ABDEHICFG 

      Postorder: DHIEBFGCA 

                        D                  E     F       G 

 

                                H       I 

3. The picture below represents a binary search tree.   The numbers shown are arbitrary node labels, not numbers 
representing the contents of the nodes.  The contents are not shown.   If node 1 is deleted, using binary search 
tree deletion, what will be the new root node?    

The successor to node 1, which is node 6. Node 9 moves to where node 6 is. 

 



4. Answer True or False. Justify your answer. Each answer is for 3 points. 
a. The topological sort of an arbitrary directed graph G(V;E) can be computed in linear time. 

 
True. We can use Depth First Traversal to compute the finish times and then return the nodes in order of 
decreasing finishing times. We can also easily check for cycles as we do this and report no sort is possible if a 
cycle exists. 
 
 
 

b. Kruskal's algorithm for minimum weight spanning trees is an example of a divide and conquer  programming 
algorithm. 
 
False. Kruskal’s algorithm is a greedy algorithm. Divide and conquer would imply splitting the problem into 
fractional parts. Kruskal’s reduces its problem size by one each time. 
 
 

c. The shortest path between two vertices is unique if all edge weights are distinct. 
 
False. The sum of several weights may be the same. For example (3+2+10 = 7+8 = 15). 
 

d. An arbitrary graph with G(V;E), with | E|  =  | V | edges is a tree. 
 
False. A tree has only |V|-1 edges. 
 

e. A directed graph is strongly connected if and only if a DFS started from any vertex will visit every vertex in 
the graph without needing to be restarted. 
 
True. A DFS will provide the nodes reachable from a vertex u. Since the statement indicates it can be any 
vertex, then this will hold for all vertices, which means every vertex is reachable from every other vertex. 

  



5. Given an adjacency matrix representation of a graph how long does it take to compute the out-degree of all 
vertices? How long does it take to compute in-degree of all vertices? How long does it take to compute in-
degree and out-degree of a single vertex? 

outdegree: Each vertex needs to scan a row, so O(n) for each vertex and O(n2) overall. 

indegree: Same, but need to scan a column, O(n2). 

In and out or a single vertex: Look at the row and the column, so 2n or O(n). 

 

6. Consider the graph in Figure 2. Unless otherwise indicated, always visit adjacent nodes in alphabetical order.  
 

 

 

Figure 1 Weighted Graph 

(a) Provide the DFS tree 
starting at node A. 

 



(b) Provide the BFS tree 
starting at node A. 

 
(c) Provide the DFS tree 

starting at node H. 

 
(d) Provide the BFS tree 

starting at node H. 

 



(e) Use Kruskal’s algorithm 
to derive the MST. 
Hint: Sort the edges 
and then work through 
them. 

 
(f) Use Prim’s algorithm to 

derive the MST starting 
at node A. 

Same as Kruskal’s in this case. 

 
(g) Using Dijkstra’s 

algorithm, determine 
the shortest path from 
node A to I. Show the 
steps, your tables and 
the resulting path.  

The path is A->B->D->G->I 
for a cost of 16. This is the 
last vertex finalized. 

 

 
  



7. Given the structure of a heap as sketched below, where the second-smallest value in the set is marked 
with a 2.  Mark a 4 for each node that can possibly contain the fourth-smallest value in the set.  
Assume that there are no duplicate node values.  

 

 

 

 

 

 

The shaded nodes are the answer. Any of the nodes shown below the 2 could be the 4th smallest 
element. If the left child of the root is the 3rd smallest element, then either of its children, but not its 
grandchildren, could be the 4th smallest. If the 3rd smallest is under the 2, then the left child of the root 
could also be the 4th smallest. 
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