Other things to do with scene graphs

- Names/paths
 - Unique name to access any node in the graph
 - e.g. "WORLD/table1Trans/table1Rot/top1Trans/lampTrans"
- Compute Model-to-world transform
 - Walk from node through parents to root, multiplying local transforms
- Bounding box or sphere
 - Quick summary of extent of object
 - Useful for culling
 - Compute hierarchically:
 - Bounding box is smallest box that encloses all children's boxes
- Collision/contact calculation
- Picking
 - Click with cursor on screen, determine which node was selected
- Edit: build interactive modeling systems

Basic shapes

- Geometry objects for primitive shape types
- Various exist.
- We'll focus first on fundamental: Collection of triangles
 - AKA Triangle Set
 - AKA Triangle Soup
- How to store triangle set?
 - …simply as collection of triangles?

Polygon Meshes

- **Mesh Representations**
 - Independent faces
 - Vertex and face tables
 - Adjacency lists
 - Winged-Edge

Cube - raw triangles

- 12 triangles:
 - (-1,-1,1) (1,-1,1) (1,1,1)
 - (-1,1,1) (1,1,1) (-1,1,1)
 - (1,-1,1) (1,1,-1) (1,1,-1)
 - (1,-1,1) (1,1,-1) (1,1,1)
 - (-1,-1,-1) (-1,-1,1) (-1,1,1)
 - (-1,-1,-1) (-1,1,1) (-1,1,-1)
 - (-1,1,1) (1,1,1) (1,1,-1)
 - (-1,1,1) (1,1,-1) (1,1,-1)
 - (-1,1,1) (1,1,1) (1,1,-1)
 - (-1,1,1) (1,1,-1) (1,1,-1)
 - (-1,1,1) (1,1,1) (1,1,-1)
 - (-1,1,1) (1,1,-1) (1,1,-1)

- 12*3=36 vertices
Independent Faces

- Each Face Lists Vertex Coordinates
 - Redundant vertices
 - No topology information
 - Face Table
 \[
 \begin{array}{c|ccc}
 F_1 & (x_1, y_1, z_1) & (x_2, y_2, z_2) & (x_3, y_3, z_3) \\
 F_2 & (x_2, y_2, z_2) & (x_4, y_4, z_4) & (x_3, y_3, z_3) \\
 F_3 & (x_2, y_2, z_2) & (x_5, y_5, z_5) & (x_4, y_4, z_4) \\
 \end{array}
 \]

But….

- A cube only has 8 vertices!
- 36 vertices with x,y,z = 36*3 floats = 108 floats.
 - Would waste memory to store all 36 vertices
 - Would be slow to send all 36 vertices to GPU
 - (Especially when there is additional data per-vertex)
- Usually each vertex is used by at least 3 triangles--often 4 to 6 or more
 - Would use 4 to 6 times as much memory as needed, or more
- Instead: Specify vertex data once, then reuse it
 - Assign a number to each vertex
 - Specify triangles using vertex numbers

Cube - indexed triangles

- 8 vertices:
 - P0: (1, -1, 1)
 - P1: (1, -1, -1)
 - P2: (1, 1, -1)
 - P3: (1, 1, 1)
 - P4: (-1, -1, 1)
 - P5: (-1, -1, -1)
 - P6: (-1, 1, -1)
 - P7: (-1, 1, 1)
 - 8 vertices*3 floats = 24 floats
 - 12 triangles: P4 P0 P3
 - 12 triangles: P4 P3 P7
- No topology information

Indexed Triangle set

- Array of vertex locations, array of Triangle objects:
  ```java
  Point3 vertices[] = {
    (1.0, -1.0, 1.0),
    (1.0, -1.0, -1.0),
    (1.0, 1.0, -1.0),
    (1.0, 1.0, 1.0),
    (-1.0, -1.0, 1.0),
    (-1.0, -1.0, -1.0),
    (-1.0, 1.0, -1.0),
    (-1.0, 1.0, 1.0)
  };
  class Triangle {short p1, p2, p3) triangles[] = {
    (4, 0, 3),
    (4, 3, 7),
    (0, 1, 2),
    (0, 2, 3),
    (1, 5, 6),
    (1, 6, 2),
    (5, 4, 7),
    (5, 7, 6),
    (7, 3, 2),
    (7, 2, 6),
    (0, 5, 1),
    (0, 4, 5));
  }
  ```
 - Triangles refer to each vertex by its index in the vertex array
Vertex & Face Tables

- **Each Face Lists Vertex References**
 - Shared vertices
 - Still no topology information

<table>
<thead>
<tr>
<th>Vertex Table</th>
<th>Face Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₁</td>
<td>x₁ y₁ z₁</td>
</tr>
<tr>
<td>V₂</td>
<td>x₂ y₂ z₂</td>
</tr>
<tr>
<td>V₃</td>
<td>x₃ y₃ z₃</td>
</tr>
<tr>
<td>V₄</td>
<td>x₄ y₄ z₄</td>
</tr>
<tr>
<td>V₅</td>
<td>x₅ y₅ z₅</td>
</tr>
</tbody>
</table>

Benefits of indexing

- Saves memory
- Saves data transmission time
- Save rendering time: lighting calculation can be done just one for each vertex
- Easy model deformation
 - Change vertex position data
 - Triangles automatically follow
- **Topology** (point connectivity) separate from shape (point locations)

Normals

- Normal = perpendicular to surface
- The normal is essential to lighting
 - Shading determined by relation of normal to eye & light
- Collection of triangles with their normals: **Facet Normals**
 - Store & transmit one normal per triangle
 - Normal constant on each triangle—but discontinuous at triangle edges
 - Renders as facets
 - Good for faceted surfaces, such as cube
- For curved surface that is approximated by triangles: **Vertex Normals**
 - Want normal to the surface, not to the triangle approximation
 - Don’t want discontinuity: share normal between triangles
 - Store & transmit one normal per vertex
 - Each triangle has different normals at its vertices
 - Lighting will interpolate (a few weeks)
 - Gives illusion of curved surface
Color

- Color analogous to normal
 - One color per triangle: faceted
 - One color per vertex: smooth colors

Indexed Triangle Set with Normals & Colors

- Arrays:
 - Point3 vertexes[];
 - Vector3 normals[];
 - Color colors[];
 - Triangle triangles[];
 - int numVertexes, numNormals, numColors, numTriangles;

- Single base class to handle both:
 - Facets
 - one normal & color per triangle
 - numNormals = numColors = numTriangles
 - Smooth
 - one normal & color per vertex
 - numNormals = numColors = numVertexes

Geometry objects base class

- Base class may support an indexed triangle set
 - class Geometry {
 - Point3 vertices[];
 - Vector3 normals[];
 - Color colors[];
 - Triangle triangles[];
 - int numVertexes, numNormals, numColors, numTriangles;
 - };
 - class Triangle {
 - int vertexIndices[3];
 - int normalIndices[3];
 - int colorIndices[3];
 - };

- Triangle indices:
 - For facet normals, set all three normalIndices of each triangle to same value
 - For vertex normals, normalIndices will be same as vertexIndices
 - Likewise for color

Cube class

```java
class Cube(Geometry) {
    Cube() {
        numVertices = 8;
        numNormals = numColors = 12;
        vertices = {
            ( 1,-1, 1),  ( 1,-1,-1), ( 1, 1,-1), ( 1, 1, 1),
            (-1,-1, 1),  (-1,-1,-1), (-1, 1,-1), (-1, 1, 1) );
        triangles = {
            (4, 0, 3), (4, 3, 6), (0, 1, 2), (0, 2, 3),
            (1, 5, 6), (1, 6, 2), (5, 4, 7), (5, 7, 6),
            (7, 3, 2), (7, 2, 6), (0, 5, 1), (0, 4, 5) );
        normals = {
            ( 0, 0, 1), ( 0, 1, 0), ( 1, 0, 0),
            ( 0, 0,-1), ( 0, 1, 0), ( 1, 0, 0),
            (-1, 0, 0), (-1, 0, 0),
            ( 0, 1, 0), ( 0, 1, 0),
            ( 0,-1, 0), ( 0,-1, 0) };
    }
}
```
Smooth surfaces

- **Tessellation**: approximating a smooth surface with a triangle mesh
 - Strictly speaking, “tessellation” refers to regular tiling patterns
 - In computer graphics, often used to mean any triangulation
- E.g. Sphere class fills in triangle set (will get to this shortly…)

```cpp
class Sphere(Geom) {
private:
  float radius;
  void tesselate() {
    vertices = …
    triangles = …
    normals = …
  }
public:
  Sphere(float r) { radius = r; }
  void setRadius(float r) { radius = r; }
}
```

- Other smooth surface types
 - Bezier patch (next week)
 - NURBS
 - Subdivision surface
 - Implicit surface

Drawing the indexed triangle set

- OpenGL supports “vertex arrays”
 - This and “vertex buffers” are covered in CSE 781.
- So for Lab 3 and on-ward:
 - Use indexed triangle set for base storage
 - Draw by sending all vertex locations for each triangle:
    ```cpp
    for (i=0; i<numTriangles; i++) {
      glVertex3fv(vertexes[triangles[i].p1]);
      glVertex3fv(vertexes[triangles[i].p2]);
      glVertex3fv(vertexes[triangles[i].p3]);
    }
    ```
- So we get memory savings in Geometry class
- We don’t get speed savings when drawing.

Triangles, Strips, Fans

- Basic indexed triangle set is unstructured: “triangle soup”
- GPUs & APIs usually support slightly more elaborate structures
- Most common: triangle strips, triangle fans

```
0 1 2 3 4 5 6 7
  0 1 2
  3 4 5
  6 7
```

- Store & transmit ordered array of vertex indexes.
 - Each vertex index only sent once, rather than 3 or 4-6 or more
 - Even better: store vertexes in proper order in array
 - Can draw entire strip or fan by just saying which array and how many vertexes
 - No need to send indexes at all.
- Can define triangle meshes using adjacent strips
 - Share vertexes between strips
 - But must use indexes

Model I/O

- Usually have the ability to load data from some sort of file
- There are a variety of 3D model formats, but no universally accepted standards
- More formats for mostly geometry (e.g. indexed triangle sets) than for complete complex scene graphs
 - File structure unsurprising: List of vertex data, list(s) of triangles referring to the vertex data by name or number
Modeling Operations

- Surface of Revolution
- Sweep/Extrude
- Mesh operations
 - Stitching
 - Simplification -- deleting rows or vertices
 - Inserting new rows or vertices
- Filleting
- Boolean combinations
- Digitize
- Procedural modeling, scripts...

Adjacency Lists

- Store all Vertex, Edge, and Face Adjacencies
 - Efficient topology traversal
 - Extra storage

Winged Edge

- Adjacency Encoded in Edges
 - All adjacencies in $O(1)$ time
 - Little extra storage (fixed records)
 - Arbitrary polygons

Winged Edge

- Example

<table>
<thead>
<tr>
<th>Vertex Table</th>
<th>Edge Table</th>
<th>Face Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1 x, y, z</td>
<td>E_1 V V</td>
<td>F_1 f_1</td>
</tr>
<tr>
<td>V_2 x, y, z</td>
<td>E_2 V V</td>
<td>F_2 f_2</td>
</tr>
<tr>
<td>V_3 x, y, z</td>
<td>E_3 V V</td>
<td>F_3 f_3</td>
</tr>
<tr>
<td>V_4 x, y, z</td>
<td>E_4 V V</td>
<td>F_1 f_1</td>
</tr>
<tr>
<td>V_5 x, y, z</td>
<td>E_5 V V</td>
<td>F_2 f_2</td>
</tr>
<tr>
<td>V_6 x, y, z</td>
<td>E_6 V V</td>
<td>F_3 f_3</td>
</tr>
<tr>
<td>V_7 x, y, z</td>
<td>E_7 V V</td>
<td>F_1 f_1</td>
</tr>
</tbody>
</table>
Modeling Geometry

- Surface representation
 - Large class of surfaces
 - Traditional splines
 - Implicit surfaces
 - Variational surfaces
 - Subdivision surfaces
 - Interactive manipulation
 - Numerical modeling

Complex Shapes

- Example: Building a hand
 - Woody’s hand from Pixar’s Toy Story
 - Very, very difficult to avoid seams

No More Seams

- Subdivision solves the “stitching” problem
 - A single smooth surface is defined
 - Example:
 - Geri’s hand
 (Geri’s Game; Pixar)

What is Subdivision?

- Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements
Why Subdivision?

- Many attractive features
 - Arbitrary topology
 - Scalability, LOD
 - Multiresolution
 - Simple code
 - Small number of rules
 - Efficient code
 - New vertex is computed with a small number of floating point operations

Subdivision Surfaces

- Approach Limit Curve Surface through an Iterative Refinement Process.

Subdivision in 3D

- Same approach works in 3D
More examples

Subdivision Schemes

• Basic idea: Start with something coarse, and refine it into smaller pieces, typically smoothing along the way
• Examples:
 - Subdivision for tessellating a sphere - procedural
 - Subdivision for fractal surfaces – procedural
 - Subdivision with continuity - algebraic

Tessellating a sphere

• Various ways to do it
• A straightforward one:
 - North & South poles
 - Latitude circles
 - Triangle strips between latitudes
 - Fans at the poles

Latitude circles

Given:

\[M = \# \text{latitude circles} \]
\[R = \text{radius of sphere} \]

For \(i \)th circle: \(i \) from 1 to \(M \)

\[r_i = R \sin \left(\frac{i \pi}{M + 1} \right) \]
\[z_i = -R \cos \left(\frac{i \pi}{M + 1} \right) \]
Points on each latitude circle

Given ith circle:
- $N = \#$ points in each circle
- $r_i = \text{radius of } i\text{th circle}$
- $z_i = \text{height of } i\text{th circle}$

For jth point: j from 0 to $N-1$

$$P_j = (r_i \cos(\pi j / N), r_i \sin(\pi j / N), z_i)$$

Normals

- For a sphere, normal per vertex is easy!
 - Radius vector from origin to vertex is perpendicular to surface
 - I.e., use the vertex coordinates as a vector, normalize it

Algorithm Summary

- Fill vertex array and normal array:
 - South pole = (0,0,-R);
 - For each latitude i, for each point j in the circle at that latitude
 - Compute coords, put in vertexes
 - Put points in vertexes[0].vertices[M*N+1]
 - North pole = (0,0,R)
 - Normals coords are same as point coords, normalized

- Fill triangle array:
 - N triangles between south pole and Lat 1
 - 2N triangles between Lat 1 & Lat 2, etc.
 - N triangles between Lat M and north pole.

Subdivision Method

- Begin with a course approximation to the sphere, that uses only triangles
 - Two good candidates are platonic solids with triangular faces: Octahedron, Isosahedron
 - They have uniformly sized faces and uniform vertex degree

- Repeat the following process:
 - Insert a new vertex in the middle of each edge
 - Push the vertices out to the surface of the sphere
 - Break each triangular face into 4 triangles using the new vertices
The First Stage

Each face gets split into 4:
Each new vertex is degree 6, original vertices are degree 4

Sphere Subdivision Advantages

- All the triangles at any given level are the same size
 - Relies on the initial mesh having equal sized faces, and properties of the sphere
- The new vertices all have the same degree
 - Mesh is uniform in newly generated areas
- The location and degree of existing vertices does not change
 - The only extraordinary points lie on the initial mesh
 - Extraordinary points are those with degree different to the uniform areas

Example: Catmull-Clark subdivision

Types of Subdivision

- Interpolating Schemes
 - Limit Surfaces/Curve will pass through original set of data points.
- Approximating Schemes
 - Limit Surface will not necessarily pass through the original set of data points.
Subdivision in 1D

- The simplest example
 - Piecewise linear subdivision

\[x_n = \frac{1}{2}(x_l + x_r) \quad y_n = \frac{1}{2}(y_l + y_r) \]

Subdivision in 1D

- A more interesting example
 - The 4pt scheme

\[p_{2i+1}^{j+1} = \frac{1}{16}(-p_{i-1}^j + 9p_i^j + 9p_{i+1}^j - p_{i+2}^j) \]

Iterated Smoothing

Apply Iterated Function System

Limit Curve Surface

Subdivision in 2D

- Quadrilateral
 - Interpolating: Kobbelt scheme

\[Q_0 = \frac{1}{4} P_0 + \frac{3}{4} P_1 \]
\[Q_1 = \frac{3}{4} P_0 + \frac{1}{4} P_i \]
\[Q_2 = \frac{1}{4} P_1 + \frac{3}{4} P_2 \]
\[Q_3 = \frac{3}{4} P_1 + \frac{1}{4} P_2 \]
\[Q_4 = \frac{1}{4} P_2 + \frac{3}{4} P_3 \]
\[Q_5 = \frac{3}{4} P_2 + \frac{1}{4} P_3 \]
Subdivision in 2D

- Triangular
 - Approximating: Loop scheme

Terminology

- Control point/polygon/surface
 - The initial vertex/polygon/surface
- Odd vertices:
 - new vertices
- Even vertices:
 - old vertices

The Basic Setup (1/3)

- All subdivision schemes have 2 steps:
 - Splitting step (topological rule)
 - Which introduces midpoints and modifies connectivity
 - Averaging step (geometric rule)
 - Which computes the weighted averages indicated by the equation

The Basic Setup (2/3)

- Splitting step (topological rule)
 - Introduce midpoint and modify connectivity
The Basic Setup (3/3)

- Averaging step (geometric rule)
 - Compute geometry positions
 - Local linear combinations of points

Approximation vs. interpolation

- Interpolating scheme
 - A new vertex, once computed, is never changed by successive subdivision
 - The control points are also points of the limit surface
- Approximating scheme
 - New vertices are changed by successive subdivision

Some Conditions (1/5)

- Subdivision rules should
 - be floating point efficient
 - New vertex should be computed with a small number of floating operation
 - have compact support
 - Influence of control point is finite

Some Conditions (2/5)

- Subdivision rules should
 - have local definition
 - Stencil weights only depend on the structure of a small neighborhood
Some Conditions (3/5)

- Subdivision rules should
 - be affinely invariant
 - rotation, translation, scaling, shearing

Some Conditions (4/5)

- Subdivision rules should
 - be simple
 - only a small set of different stencils

Some Conditions (5/5)

- Subdivision rules should
 - Achieve some order of smoothness
 - C^1 easy, C^2 mush harder

The Differencing Mask

- Linear subdivision isolates the addition of new vertices
- Differencing repositions vertices
- Rule is uniform
Extension to Surfaces

- Linear subdivision → Bilinear subdivision
- Differencing → Two-dimensional differencing
- Use tensor product

Surface Example

- Linear subdivision + Differencing
- Subdivision method for curve networks

Example: Circular Torus

- Tensions set to zero to produce a circle

Cylinder Example

- Open boundary converges to a circle as well
Surface of Revolution

- Construct profile curve to define surfaces of revolution

Optional smoothing

HLSL Shader

```hlsl
[maxvertexcount(10)]
void bezier_GS(lineadjfloat4 v[4], inoutLineStream<float4> stream, uniform int segments = 10)
{
    float4x4 bezierBasis = {
        { 1, -3, 3, -1 },
        { 0, 3, -6, 3 },
        { 0, 0, 3, -3 },
        { 0, 0, 0, 1 };
    }
    for(int i = 0; i < segments; i++) {
        float t = i / (float) (segments - 1);
        float4 tvec = float4(1, t, t*t, t*t*t);
        float4 b = mul(bezierBasis, tvec);
        float4 p = v[0]*b.x + v[1]*b.y + v[2]*b.z + v[3]*b.w;
        stream.Append(p: SV_POSITION);
    }
    CubeMapStream.RestartStrip();
}
```

4 control points input, 10 line vertices out. In other words, each line segment is replaced with 9 line segments.

From Simon Green’s slides at nVidia

Terrain Map

- Height Map

 \[
 z = f(x, y)
 \]

 \(x\) and \(y\) are sampled on a 2D integer grid

- Real data: Satellite, Elevation maps
- Synthetic: Texture map, Noise functions

Terrain Map

- Connect samples into a mesh

\[
\begin{array}{c}
\end{array}
\]
Procedural Modeling With Fractals

- Procedural Modeling
 - Compute geometry “on-the-fly”

- Fractals
 - Model Natural Phenomena - Self Similarity
 - Mountains, fire, clouds, etc.
 - Scales to infinity
 - Add or “make up” natural looking details with mathematical tools

Fractals

“Repetition of form over a variety of scales”

- Mandelbrot set, Julia set

Two Fractal Properties

- Self-similarity

Two Fractal Properties

- Fractal Dimension
 - Euclidean dimensions : 1, 2, 3, 4, ...
 - Fractal : 1.2342, 2.7656
 - Measure of detail or roughness of a fractal

\[D = \frac{\ln N}{\ln 1/s} \]
Midpoint Subdivision

- Midpoint (recursive) subdivision

Brownian Motion

- Describes random movement of particles in a gas or fluid

Fractional Brownian Motion

- Brownian Motion + Fractal Dimension
- A useful model for natural phenomena

Fractional Brownian Motion

- Fractional Brownian Motion
 - Equations are compute intensive
 - Approximate with “A family of 1D Gaussians”
 - Zero mean
 - Standard Deviation : $S = k2^{-iH}$
 - $H = \text{fractal dimension (roughness)}$

- Fractal dimension = roughness, i.e. H
Fractal Mountains

- Recursively subdivide geometry by random number d: $-\frac{d\text{Height}}{2} < d < \frac{d\text{Height}}{2}$
- At each recursion:
 - $d\text{Height} = 2^{-r}$
 - $r=1$: self-similar
 - $r>1$: large features early
 - $r<1$: large features late

Triangle Subdivision

- Subdivide a triangle into 4 triangles at edge midpoint

Terrain Modeling Criteria

- Input
 - Initial coarse mesh + stochastic parameters
- Two criteria
 - Internal Consistency
 - Reproducibility: Model is independent of position and orientation
 - Associate “random numbers” to point index
 - External Consistency
 - Continuity between adjacent primitives

Quadrilateral Subdivision

- Subdivide a quad into 4 quads at edge midpoints and a new center point.
Diamond-Square Subdivision

- Alternate subdivision

Fractal Terrain

- Addresses “creasing problem” (slope discontinuities)
- Subdivide parametric patches

Mesh Subdivision

- Square-square Subdivision
 - Addresses “creasing problem” (slope discontinuities)
- Displacement is scaled by the recursion level.
 - $|b-a|^{-r}$
- When do you stop the recursion?
 - Pixel resolution
 - Displace upward, or towards the normal to the surface?
Mesh Subdivision

- External Consistency
 - Avoid tears between neighboring polygons
 - How do we compute the normals?
 - Average polygon normals at each vertex.
 - Propagate normals down the recursion
 - Cheaper: use the original mesh normals only

Ridged Fractal Terrains

- To create sharp peaks, add an absolute value and flip the surface upside down.
- Or, reflect about a maximum value.
- Provides a volcano-like effect.

Caldera

![Diagram of Caldera](image)