Solving Linear Systems

- Transform $Ax = b$ into an equivalent but simpler system.
- Multiply on the left by a nonsingular matrix: $M Ax =Mb$:
 \[x = (MA)^{-1} Mb = A^{-1} M^{-1} Mb = A^{-1} b \]
- Mathematically equivalent, but may change rounding errors

Gaussian Elimination

- Finding inverses of matrices is *expensive*
- Inverses are *not necessary* to solve a linear system.
- Some system are much easier to solve:
 - Diagonal matrices
 - Triangular matrices
- Gaussian Elimination transforms the problem into a *triangular* system

Gaussian Elimination

- Consists of 2 steps
 1. Forward Elimination of Unknowns.
 \[
 \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \end{bmatrix} \\
 \begin{bmatrix} 144 & 12 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0.7 \end{bmatrix}
 \]
 2. Back Substitution
Gaussian Elimination

- Systematically **eliminate** unknowns from the equations until only a equation with only one unknown is left.
- This is accomplished using three operations applied to the linear system of equations:
 - A given equation can be multiplied by a non-zero constant and the result substituted for the original equation,
 - A given equation can be added to a second equation, and the result substituted for the original equation,
 - Two equations can be transposed in order.

Uses these elementary row operations

- Adding a multiple of one row to another
- Doesn’t change the *equality* of the equation
 - Hence the solution does not change.
- The sub-diagonal elements are zeroed-out through elementary row operations
 - In a specific order (next slide)

Order of Elimination

\[
\begin{array}{cccccc}
3 & 5 & 6 & ? & ? \\
\end{array}
\]

Gaussian Elimination in 3D

\[
\begin{align*}
2x & + 4y - 2z = 2 \\
4x & + 9y - 3z = 8 \\
-2x & - 3y + 7z = 10 \\
\end{align*}
\]

- Using the first equation to eliminate \(x\) from the next two equations
Gaussian Elimination in 3D

\[\begin{align*}
2x + 4y - 2z &= 2 \\
y + z &= 4 \\
y + 5z &= 12
\end{align*}\]

- Using the second equation to eliminate \(y\) from the third equation

Gaussian Elimination in 3D

\[\begin{align*}
2x + 4y - 2z &= 2 \\
y + z &= 4 \\
4z &= 8
\end{align*}\]

- Using the second equation to eliminate \(y\) from the third equation

Solving Triangular Systems

- We now have a triangular system which is easily solved using a technique called Backward-Substitution.

\[\begin{align*}
2x + 4y - 2z &= 2 \\
y + z &= 4 \\
4z &= 8
\end{align*}\]

Solving Triangular Systems

- If \(A\) is upper triangular, we can solve \(Ax = b\) by:

\[x_n = b_n / A_{nn}\]

\[x_i = \left(b_i - \sum_{j=i+1}^{n} A_{ij} x_j \right) / A_{ii}, \quad i = n-1, \ldots, 1\]
From the previous work, we have
\[2x + 4y - 2z = 2 \]
\[y + z = 4 \]
\[z = 2 \]

And substitute \(z \) in the first two equations

We can solve \(y \)

\[2x + 4y - 4 = 2 \]
\[y + 2 = 4 \]
\[z = 2 \]

Substitute to the first equation

We can solve the first equation
Backward Substitution

\[
\begin{align*}
x &= -1 \\
y &= 2 \\
z &= 2
\end{align*}
\]

Robustness of Solution

- We can measure the **precision** or **accuracy** of our solution by calculating the **residual**:
 - Calling our computed solution \(\mathbf{x}^* \)…
 - Calculate the **distance** \(\mathbf{Ax}^* \) is from \(\mathbf{b} \)
 - \(|\mathbf{Ax}^* - \mathbf{b}|\)
- Some matrices are **ill-conditioned**
 - A tiny change in the input (the coefficients in \(\mathbf{A} \)) drastically changes the output (\(\mathbf{x}^* \))

C# Implementation

```csharp
// convert to upper triangular form
for (int k=0; k<n-1; k++) {
    try {
        for (int i=k+1; i<n; i++) {
            float s = a[i,k] / a[k,k];
            for(int j=k+1; j<n; j++)
                a[i,j] -= a[k,j] * s;
            b[i] = b[i] - b[k] * s;
        }
    } catch (DivideByZeroException e) {
        Console.WriteLine(e.Message);
    }
}
```

// back substitution
b[n-1] = b[n-1] / a[n-1,n-1];
for (int i=n-2; i>=0; i--) {
 float s = a[i,i] / a[i,i];
 for(int j=i+1; j<n; j++)
 b[i] -= a[i,j] * x[j];
 x[i] = b[i] / a[i,i];
}

Computational Complexity

- **Forward Elimination**
 - For \(i = 1 \) to \(n-1 \) \{ // for each equation
 For \(j = i+1 \) to \(n \) \{ // for each target equation below the current
 \[
 M_{ji} = \frac{A_{ji}}{A_{ii}}, A_{ji} = 0
 \]
 \[
 \sum_{i=1}^{n} (n-i) = \frac{n^2}{2}
 \]
 divisions
 For \(k = i+1 \) to \(n \) \{ // for each element beyond pivot column
 \[
 A_{jk} \leftarrow A_{jk} - M_{ji} A_{ik}
 \]
 \[
 \sum_{i=1}^{n-1} (n-i)^2 \approx \frac{2}{3} n^3
 \]
 multiply-add's
 }\}
 }\}
 \[
 O(n^3)
 \]
Backward Substitution

For $i = n-1$ to 1 {
 // for each equation
 For $j = n$ to $i+1$ {
 // for each known variable
 sum = sum – $A_{ij} \cdot x_j$
 }
}

$\sum_{i=1}^{n-1} (n-i) = \frac{n^2}{2}$ multiply-add’s

$O(n^2)$