Visibility Determination
» AKA, hidden surface elimination

Visibility Algorithms

Roger Crawfis
CIS 781

This set of slides reference slides used at Ohio State for
instruction by Prof. Machiraju and Prof. Han-Wei Shen.

Hidden Lines Hidden Lines Removed

Hidden Line Removal
Wireframe

Hidden Surfaces Removed Topics

=Backface Culling
Hidden Surface Rerovel *Hidden Object Removal: Painters Algorithm

=Z-buffer
=Spanning Scanline
=Warnock
=Atherton-Weiler
sList Priority, NNA

=BSP Tree
=Taxonomy
Where Are We ? Back-face Culling
=Canonical view volume (3D image space)
=Clipping done
=division by w
z>0
*Problems ?

=Conservative algorithm

far

imngd plan? =Real job of visibility never solved

Back-face Culling

 If a surface’s normal is pointing in the same general
direction as our eye, then this is a back face

» The test is quite simple: if N * V > 0 then we reject the
surface _——

Back-face Culling

* Only handles faces oriented
away from the viewer:
— Closed objects

N — Near clipping plane does not
N . .
v eye intersect the objects
« Iftestis in eye- ~ * Gives complete solution for a single convex
space, then if polyhedron.
N; > 0 reject « Still need to sort, but we have reduced the number
of primitives to sort.
Painters Algorithm

=Sort objects in depth order
=Draw all from Back-to-Front (far-to-near)

=Simply overwrite the existing pixels.

=Is it so simple?

! &NHNNQ! mﬁNH_mu. atz=10,

Point sorting vs Polygon Sorting

 What does it mean to sort two line
segments?
— 7Zmin?

— Zmax?

— Slope?
— Length?

3D Cycles

=How do we deal with cycles?

Form of the Input

Object types: what kind of objects does it handle?
=*How do we deal with intersections?

=How do we sort objects that overlap in Z? " CONVEX VS. hon-convex

= polygons vs. everything else - smooth curves, non-
continuous surfaces, volumetric data

7/

" N
Form of the output . .
image-space object-space O_U,_ @OH m_mumhﬂ >_m0ﬁuﬂwgm
= Volume testing — Weiler-Atherton, etc.
Precision. image/object space?
*input: convex polygons + infinite eye pt
discrete continuous/exact

. =output: visible portions of wireframe edges
-O_u._mnﬂ Space *Image Space P P g

=Geometry in, geometry out o
=Geometry in, image out
=Independent of image

resolution =Visibility only at

=Followed by scan pixel centers

conversion

Image-space algorithms Conservative Visibility Algorithms

=Traditional Scan Conversion and Z-buffering -Viewport clipping

= Hierarchical Scan Conversion and Z-buffering -Back-face culling

=input: any plane-sweepable/plane-boundable

objects =*Warnock's screen-space subdivision

=preprocessing: none

=output: a discrete image of the exact visible set

Z-buffer Z-buffer: Scanline

=Z-buffer is a 2D array that stores a depth value for each pixel. L. for each polygon do

for each pixel (x,y) in the polygon’s projection do

= InitScreen: z = -(D+A*x+B*y)/C;
fori:=0to N do DrawZpixel(x, y, z, polygon’s color);
for j H H. to N do o II. for each scan-line y do
Screen|[i][j] := BACKGROUND COLOR; Zbuffer[i][j] := ; for each “in range” polygon projection do
for each pair (x,, X,) of X-intersections do
*DrawZpixel (X, y, z, color) for x :=x, to x, do
if (z <= Zbuffer[x][y]) then z := -(D+A*x+B*y)/C;

Screen[x][y] = color; Zbuffer[x][y] = z; DrawZpixel(x, y, z, polygon’s color);

If we know z, . at (x,y) then: z z,,-A/IC

x+1,y =

Incremental Scanline

Ax+By+Cz+D=0
|A>x+m<+bv.0ﬂo

Incremental Scanline (contd.)

= All that was about increment for pixels on each scanline.

Z= C = How about across scanlines for a given pixel ?
On a scan line Y = j a constant = Assumption: next scanline is within polygon
Thus depth of pixel at (x,=x+4x,))
N_|Nn|A>x_+@.+bv+|$x+m\.+bv , 5y ~(Ax+By,+D) (Ax+By+D)
C C ! C C
7 — 7= AX=X) L, A=y
C ! C
A . B .
z = N|Amv>x , Since Ax =1, z = AmvE\ , since Ay =1,
A
4=2-4 z = N|M
Z-buffer - Example
ZOHHIHUHNHH@H. wOMVNmosm 00| 00|00 |00 |00 |00 |00 |00
Tw 00|00 |00 |00 |00 |00 |00 |00
A v 00 |00 |00 |00 |00 | 00|00 |00 Z-buffer
NmHN_.TAN»INv 00 |00 |00 | 00|00 |00|o0]| 0
A v 00 |00 |00 | 00|00 |00 |00 |00
v, -y.)
A v 00|00 |00 |00 |00 |00 |00 |00
Ps P, (x, —
z,=2,+(2,-2,),—"
Ys Z Z, (X, -

Py

Bilinear Interpolation of Depth Values

Screen

s15|5(5|5]5]5 196,71 o
5(5(5(5(5]5 7
5055|155 6|7
505|515 50617
51515 4151617
515 314(5(61|7
5 21314567
[0,1.5] [0,1.2] 15.1,7]
5(5(5(5|5(5]5|= ST515 155151515
5(5(5(5|5]5]|0|x sTs(5150505 oo
S5(5[5|5|5|0|o0]|o 515050505 c0]o0|oo
515|5[5]|oo|oo|o]|oo 51515 5/00]oo]e]|oo
5|15 (5 |o|ow|oo|o]|0 41515 7|o|oo|oo]|oo
5|5 |w|oo|oo|oo|w |0 3145|167 |w|0]|x
S5 90]0]90]0]%0]%©|® 2(3]4[5]6]7]w]|xo
O|O|P|RO|P|P|D|P 00 |00 |oo|oo|oo ||| _ _____
Non Trivial Example ?
4 Example

(@) (b)

Figure 4-57 P ing triangle. (a) Three-dimensional view; (b) two-dimensi i Depth Test
projection.

Rectangle: P1(10,5,10), P2(10,25,10), P3(25,25,10),
P4(25,5,10)

Triangle: P5(15,15,15), P6(25,25,5), P7(30,10,5)

Frame Buffer: Background 0, Rectangle 1, Triangle 2

Z-buffer: 32x32x4 bit planes

Z-Buffer Advantages

= Simple and easy to implement
= Amenable to scan-line algorithms
= Can easily resolve visibility cycles

=Handles intersecting polygons

Z-Buffer Disadvantages
= Does not do transparency easily

= Aliasing occurs! Since not all depth questions can be
resolved

= Anti-aliasing solutions non-trivial
= Shadows are not easy

= Higher order illumination is hard in general

Spanning Scan-Line
Can we do better than scan-line Z-buffer ?

= Scan-line z-buffer does not exploit
=Scan-line coherency across multiple scan-lines
=Or span-coherence !

*Depth coherency

*How do you deal with this — scan-conversion algorithm and a little

more data structure

Spanning Scan Line Algorithm

Use no z-buffer
Each scan line is subdivided into a

several "spans" - V\
Determine which polygon the

current span belongs to

Shade the span using the current
polygon’s color
Exploit "span coherence" :

For each span, only one visibility "spans"
test needs to be done
— Assuming no intersecting polygons.

Spanning Scan Line Algorithm

A scan line is subdivided into a sequence of spans
Each span can be "inside" or "outside" polygon
areas

— "outside®: no pixels need to be drawn (background color)
— "inside": can be inside one or multiple polygons

If a span is inside one polygon, the pixels in the
span will be drawn with the color of that polygon

If a span is inside more than one polygon, then we
need to compare the z values of those polygons at
the scan line edge intersection point to determine
the color of the pixel

Spanning Scan Line Algorithm

inside span (2 polygon)

&\ outside span
)

inside span (1 polygone

Determine a span is inside or
outside (single polygon)

* When a scan line intersects an edge of a
polygon

— for a 1sttime, the span becomes "inside" of the
polygon from that intersection point on

— for a 2nd time, the span becomes "outside” of the
polygon from that point on

» Use a "in/out" flag for each polygon to keep
track of the current state

« Initially, the in/out flag is set to be "outside"
(value = 0 for example). Invert the tag for
“inside”.

When there are multiple
polygons

» Each polygon will have its own in/out flag

* There can be more than one polygon having
the in/out flags to be "in" at a given instance

* We want to keep track of how many polygons
the scan line is currently in

* If there is more than one polygon "in", we
need to perform z value comparison to
determine the color of the scan line span

Z value comparison

* When the scan line intersects an edge, leaving the
top-most polygon, we use the color of the remaining
polygon if there is now only 1 polygon "in".

+ |If there is still more than one polygon with an "in" flag,

we need to perform z comparison, but only when the
scan line leaves a non-obscured polygon.

use C's color
om now on

no z comparison needed, as
we are leaving an obscured
polygon (polygon A)

ET

PT

Many Polygons !

Ymax

AX poly-ID

poly-ID |A,B,C,D| color |in/outflag

.\
.\

= Use a PT entry for each polygon

= When polygon is considered, Flag is true

* Multiple polygons can have their flags set to true

= Use IPL as active In-Polygon List !

Example

Think of ScanPlanes to understand !

Spanning Scan-Line: Example

Y AET IPL

I Xor DA, bc, Xy BG, BG+S, BG

I Xo ba , bc, 32,13, xy BG, BG+S, BG, BG+T, BG

T X, ba ,32, ca 13 x, BG, BG+S, BG+5+T, BG+T, BG
v Xo, ba

,ac, 12, 13, xy
b

BG, BG+S, BG, BG+T, BG
1

Some Facts !

= Scan Line I: Polygon S is in and flag of S=true

= ScanLine II: Both S and T are in and flags are
disjointly true

= Scan Line III: Both S and T are in simultaneously

= Scan Line IV: Same as Scan Line II

Spanning Scan-Line

build ET, PT -- all polys+BG poly
AET :=1PL :=Nil;
fory =y, i, t0 y,..x dO
el = first_item (AET);IPL := BG;
while (el.x <> MaxX) do
e2 :=next_item (AET);
poly := closest poly in IPL at [(el.x+e2.x)/2, y]
draw_line(el.x, e2.x, poly-color);
update I[PL (flags); el :=e2;

end-while;
IPL := NIL; update AET;
end-for;
Penetrating Polygons
Depth Coherence
Y AET IPL

e Depth relationships may not change
between polygons from one scan-line to
the next scan-line.

e These can be kept track using the
(active edge table) AET and the (polgon
table) PT.

e How about penetrating polygons?

I Xo, ba , 23, ad, 13, xy BG, BG+S, S+T, BG+T,BG

I Xor ba , 23, ec, ad, 13, xy BG, BG+S, BG+S+T,
BG+S+T, _wm+w_.‘ BG

BG

False edges and new polygons! &8

Area Subdivision 1
(Warnock’s Algorithm)

Divide and conquer: the relationship of a display area
and a polygon after projection is one of the four basic

>
il

surround intersect contained disjoint

Warnock : One Polygon

if it surrounds then
draw_rectangle(poly-color);

else begin

if it jntersects then

poly := Sﬂmqmmnﬂmnop_w\\ rectangle);
draw_rectangle(BACKGROUND);
draw_poly(poly

4

end else;

What about contained and disjoint ?

Warnock’s Algorithm

 Starting with the entire display, we check the following
four cases. If none hold, we subdivide the area and
repeat, otherwise, we stop and perform the action
associated with the case
1. All polygons are disjoint wrt the area -> draw the background color
2. Only 1 intersecting or contained polygon -> draw background, and
then draw the contained portion of the polygon
3. There is a single surrounding polygon -> draw the entire area in
the polygon’s color
4. There are more than one intersecting, contained, or surrounding
polygons, but there is a front surrounding polygon -> draw the
entire area in the polygon’s color

* The recursion stops at the pixel level

At A Single Pixel Level

* When the recursion stops and none of the
four cases hold, we need to perform a depth
sort and draw the polygon with the closest Z
value

* The algorithm is done at the object space
level, except scan conversion and clipping
are done at the image space level

Warnock : Zero/One Polygons

warnockO1(rectangle, poly)
new-poly := clip(rectangle, poly);
if new-poly = NULL then
draw_rectangle(BACKGROUND);
else

draw_rectangle(BACKGROUND);
draw_poly(néw-poly); return;

- AY

v
. N 1\\\~
1 \ L R
1 t.
! 7
! 1
1 ’
L)

s . . e
surrotind intersect contained disjoint

-

Warnock(rectangle, poly-list)

new-list := clip(rectangle, poly-list);
if length(new-list) = 0 then
draw_rectangle(BACKGROUND); return;

if length(new-list) = 1 then
draw_rectangle(BACKGROUND);
draw_poly(poly); return;

if rectangle size = pixel size then
poly := closest polygon at rectangle center
draw_rectangle(poly color); return;

warnock(top-left quadrant, new-list);
warnock(top-right quadrant, new-list);
warnock(bottom-left quadrant, new-list);
warnock(bottom-right quadrant, new-list);

Area Subdivision 2

Weiler -Atherton Algorithm

= Object space
= Like Warnock

= Output — polygons of arbitrary accuracy

Weiler-Atherton Clipping

 General polygon clipping algorithm

» Allows one to clip a concave polygon
against another concave polygon.

Weiler-Atherton Clipping

* First, find all of the intersection points
between edges of the two polygons.

S: ABCDE
T: ab,c,d,e

Weiler-Atherton Clipping

* Now, rebuild the polygon

b

s such that they

include the intersection points in their

clock-wise ordering.

S: A1,4B2,6CD,53E
T: a420.6c5de3,1

Weiler-Atherton Clipping

* Find an intersecting vertex of the polygon to be
clipped that starts outside and goes inside the
clipping region.

 Traverse the polygon until gnother intersection
point is R

S: A14B2,6CD53E
found.

T: a42b.6c54de3,1

Clip: 6,c,5,...

Weiler-Atherton Clipping

» Switch from walking around the polygon 1, to
walking around polygon 2, when an intersection is
detected.

+ Stop when we reached the initial point.

S: A14B2,6CDS53E
T: a4206c5de3.1

Clip: 6,¢,5,3,1,4.2,6

Weiler -Atherton Algorithm

Subdivide along polygon boundaries (unlike Warnock’s

rectangular boundaries in image space);

Algorithm:

1. Sort the polygons based on their minimum z distance

2. Choose the first polygon P in the sorted list

3. Clip all polygons left against P, create two lists:
— Inside list: polygon fragments inside P (including P)
— Outside list: polygon fragments outside P

4. All polygon fragments on the inside list that are behind P
are discarded. If there are polygons on the inside list that are
in front of P, go back to step 3), use the ’offending’
polygons as P

5. Display P and go back to step (2)

Weiler -Atherton Algorithm

WA _display(polys : ListOfPolygons)
sort_by minZ(polys);
while (polys <> NULL) do
WA _subdiv(polys->first, polys)
end;
WA_subdiv(first: Polygon; polys: ListOfPolygons)
inP, outP : ListOfPolygons := NULL,;
for each P in polys do Clip(P, first->ancestor, inP, outP),
for each P in inP do if P is behind (min z)first then discard P;

for each P in inP do)
if P is not part of first then WA _subdiv(P, inP);

for each P in inP do display a poly(P);
polys == outP;

List Priority Algorithms

* Find a valid order for rendering.

* Only consider cases where the sort matters.

x/y A

List Priority Algorithms

=*If objects do not overlap in X or in Y there is no need
for hidden object removal process.

\

=[f they do not overlap in the Z dimension they can be
sorted by Z and rendered in back (highest priority)-to- X/y A
front (lowest priority) order (Painter’s Algorithm). 1

=]t is easy then to implement transparency. /\ X
))

*How do we sort ? — different algorithms differ

Y

Newell, Newell, Sancha Algorithm

1. Sort by [min,..max,] of each polygon

2. For each group of unsorted polygons G
resolve_ambiguities(G);

3. Render polygons in a back-to-front order.

resolve ambiguities is basically a sorting algorithm that relies on
the procedure rearrange(P, Q):

resolve ambiguities(G)
not-yet-done := TRUE;
while (not-yet-done) do
not-yet-done := FALSE;
for each pair of polygons P, Q in G do --- bubble sort
L := rearrange(P, Q, not-yet-done),
insert L into G instead of P,Q

Newell, Newell, Sancha Algorithm

rearrange(P, Q, flag)

if (P and Q do not have overlapping x-extents, return P, Q
if (P and Q do not have overlapping y-extents, return P, Q
if all Q is on the opposite side of P from the eye return P, Q

if all P is on the same side of Q from the eye return P, Q

if not overlap-projection(P, Q) return P, Q
flag := TRUE; // more work is needed

if all Q is on the same side of P from the eye return Q, P

if all P is on the opposite side of Q from the eye return Q, P
split(P, Q, p1, p2); -- split P by O
return (pl, p2, Q);

Newell-Newell-Sancha Sorting

* Q is on the opposite side of P.
* Means, all of Q’s vertices are behind the

half-plane defined by P.
’ Q
True False

Newell-Newell-Sancha Sorting

* P is on the same side of Q.

* Means, all of P’s vertices are in front of the

half-plane defined by Q.

&/ /1

False True

Taxonomy

A characterization of 10 Hidden Surface Algorithm: mmumzumﬁ mﬂ_ugm/\mmmmvs
Sutherland, Sproull, Schumaker (1974)

Uniform grid
Octrees
K-d Trees

BSP-trees

oint Non-overlapping polyhedra

— Axis-Aligned Bounding Boxes (AABB’s)
— Oriented Bounding Boxes (OBB’s)

— Useful for non-static scenes

Image Space

Object spa

List priority

A’prioni Dyhamic

Roberts ‘Newell Warnock

Apel, Weiler-Atherton Span-line Algorithms

Back-to-front Traversals Sorting for Uniform Grid
« For the first four, you can develop either a * Parallel Projection
front-to-back or back-to-front traversal — Can always proceed along the x-axis, then y-
order explicitly. axis then z-axis or any combination.

— Simply need to decide whether to go forward or

* Thereby, solving the visibility sort backward on each axis.

oﬁmowosxﬂ%. * Look at the z-value of the transformed x-axis, ...
e For the polyhedra, use a Newell-Newell- * Positive, go forward for back-to-front sort.
Sancha sort — Better ordering would choose the axis most

parallel to the viewing direction to traverse last.

Sorting for Uniform Grid K-d Trees
e Alternate splits in each direction
 Perspective projection f
— May need to proceed forward for part of the
grid and backwards for the other. < ——
1 [J Split X axis
A @ SplitYaxis
>€ oo} "
= = OO X
K-d Trees K-d Trees
» Extend to any dimension d A subset of BSP-trees.
 In 3D, the splits are done with axis-aligned Sorting is the same.
planes. » More efficient storage representation.
— Test is simple, is x-value (for nodes splitting
the x-axis) greater than the node value?

Binary Space-Partitioning Tree

=Given a polygon p
=Two lists of polygons:
»those that are behind(p) :B
»those that are in-front(p) :F
= [f eye is in-front(p), right display order is B, p, F

=Otherwise it is F, p, B

back ront

B F

Display a BSP Tree

struct bspnode {
p: Polygon; back, front : *bspnode;

} BSPTree;

BSP_display (bspt)
BSPTree *bspt;
{ if ('bspt) return;
if (EyelnfrontPoly(bspt->p)) {
BSP_display(bspt->back);Poly display(bspt->p);
BSP_display(bspt->front);
} else {
BSP_display(bspt->front); Poly display(bspt->p);
BSP_display(bspt->back);

Generating a BSP Tree

if (polys is empty) then return NULL;
rootp := first polygon in polys;
for each polygon p in the rest of polys do
if p 1s infront of rootp then
add p to the front list
else if p 1s in the back of rootp then
add p to the back list
else
split p into a back poly pb and front poly pf
add pf'to the front list
add pb to the back list
end for;
bspt->back := BSP_gentree(back list);
bspt->front := BSP_gentree(front list);
bspt->p = rootp;return bspt;

1,2, 5a 4, 5b

3

2
4, 5b
1 Sa
3
2 4
Y (4

