

This set of slides reference slides used at Ohio State for
instruction by Prof. Machiraju and Prof. Han-Wei Shen.
suчఛ!!os [V K7!!!q!s! Λ
AKA, hidden surface elimination
ио!̣еи!шиәәд Кч!!!!!s! Λ

Hidden Surfaces Removed

Nmouoxe」•
әə」 dSg•
$\forall N N$ "

yวouseM-
-Spanning Scanline
-Z-buffer
-Hidden Object Removal: Painters Algorithm
-Backface Culling

-Followed by scan
conversion
-Independent of image
resolution
-Followed by scan
-Geometry in, geometry out
-Independent of image
Form of the output
Precision: image/object space?
-Object Space

-How do we deal with intersections?
-How do we deal with cycles?
3D Cycles

Z－buffer： $32 \times 32 \times 4$ bit planes

8	u	u	u	u	u	u	u
8	8	u	u	u	u	u	u
8	8	8	u	u	u	u	0
8	8	8	8	u	u	u	u
8	8	8	8	8	u	u	u
8	8	8	8	8	8	u	u
8	8	8	8	8	8	8	u
8	8	8	8	8	8	8	8

әјошехя

8	N	ω	＋	u	u	u	u
8	ω	\pm	u	u	u	u	u
8	＋	u	u	u	u	u	u
8	u	の	\checkmark	u	u	u	u
8	の	\checkmark	8	8	u	u	u
8	\checkmark	8	8	8	8	u	ur
8	8	8	8	8	8	8	u
8	8	8	8	8	8	8	8

						－	
				，			

N	ω	＋	u	の	\checkmark
ω	＋	u	の	\checkmark	
＋	u	の	\checkmark		
ur	の	\checkmark			
の	\checkmark				
\checkmark					

more data structure
-How do you deal with this - scan-conversion algorithm and a little
Can we do better than scan-line Z-buffer ? əu!T-ubsS su!uurds -Handles intersecting polygons

ұиəسəןdu! of Кseə pue əןdw!S •

- Assuming no intersecting polygons. For each span, only one visibility
test needs to be done Exploit "span coherence" :
For each span, only one visibility Shade the span using the current
polygon's color ol sbuojəq ueds ұuәans

 イsеә ұоu әле smopeчS •
 рәлןоsə» - Aliasing occurs! Since not all depth questions can be

Initially, the in/out flag is set to be "outside"
Use a "in/out" flag for each polygon to keep
track of the current state polygon from that point on
- for a $2^{\text {nd }}$ time, the span becomes "outside" of the polygon
"inside".

 the color of the pixel If a span is inside more than one polygon, then we
 ә૫ł u! sןəx!d ә૫ł ‘uoßイןod əuo әp!su! s! ueds e I - "inside": can be inside one or multiple polygons - "outside": no pixels need to be drawn (background color) seəдe
 A scan line is subdivided into a sequence of spans Spanning Scan Line Algorithm

The recursion stops at the pixel level entire area in the polygon's color

There is a single surrounding polygon $->$ draw the entire area in
the polygon's color
 2. Only 1 intersecting or contained polygon -> draw background, and
 associated with the case repeat, otherwise, we stop and perform the action four cases. If none hold, we subdivide the area and

Warnock's Algorithm

cases:
and a polygon after projection is one of the four basic
Divide and conquer: the relationship of a display area
(шч
uoIs!s!̣pqns eə.IV

$$
\begin{aligned}
& \text { Weiler-Atherton Clipping } \\
& \text { - Now, rebuild the polyon's such that they } \\
& \text { includ the intersection points in their } \\
& \text { clock-wise ordering. }
\end{aligned}
$$

Weiler-Atherton Clipping

-How do we sort? - different algorithms differ

 - Positive, go forward for back-to-front sort.
 backward on each axis.

 - Parallel Projection

p!ıŋ யuof!u@ IOJ ôu!ıIOS

 รәว.」 p -у

$$
\begin{aligned}
& \qquad \mathrm{K}-\mathrm{d} \text { Trees } \\
& \text { Extend to any dimension } d \\
& \text { In 3D, the splits are done with axis-aligned } \\
& \text { planes. } \\
& \text { - Test is simple, is } \mathrm{x} \text {-value (for nodes splitting } \\
& \text { the } \mathrm{x} \text {-axis) greater than the node value? }
\end{aligned}
$$

