
CIS 781
Shadows What is a Shadow?

From Webster’s dictionary:
• Shad-ow (noun): partial darkness or 

obscurity within a part of space from 
which rays from a source of light are 
cut off by an interposed opaque body

Simplest Example :
Projection to a Plane

Cue to object-object relationship, 
the bird isn’t floating

Importance of Shadows

• Provides additional positional or depth cue.



Issues To Address

• Two main problems to solve

– Determine if a visible point is in shadow
• Shadows are view-independent

– How to illuminate the point?
• Consider only local illumination
• A decrease in diffuse light

Issues To Address

• Light Sources
– Point or Directional (“Hard Shadows”)

– Area (“Soft Shadows”, umbra, penumbra), 
more difficult problem

areapoint directional

Issues To Address

• Number of light sources
• Size of the scene
• Static vs. Dynamic scene
• Self-shadowing
• Opaque vs. Transparent objects

Simple Approach: Raytracing

• Cast ray to light 
(shadow feeler)

• Surface point in shadow 
if shadow feeler hits an 
occluder object.

• Raytracing is slow, can 
we use OpenGL???



Two Common Shadow
Approaches

• Shadow Volumes
• Shadow Map (Shadow Z-Buffer)

– Projective Textures

Shadow Volumes

• A volume of space formed by an occluder
• Bounded by the edges of the occluder

point light

occluding 
triangle

3D shadow volume

• Notice that the 
“far” end of the 
volume goes to 
infinity
– Need to cap it

Shadow Volumes

• Compute shadow volume for 
all visible polygons from the 
light source

• Add the shadow volume 
polygons to your scene 
database
– Tag them as shadow polygons
– Assign its associated light 

source

2D Cutaway of a Shadow Volume

Shadowing
object

Partially
shadowed 
object

Light
source 

Eye position
(note that 
shadows are 
independent of 
the eye position) 

Surface inside
shadow volume
(shadowed)

Surface outside
shadow volume
(illuminated) 

Shadow
volume
(infinite extent) 



Shadow Volume Advantages
• Omni-directional approach

– Not just spotlight frustums as with shadow maps
• Automatic self-shadowing

– Everything can shadow everything, including self
– Without shadow acne artifacts as with shadow maps

• Window-space shadow determination
– Shadows accurate to a pixel (Object method)
– Or sub-pixel if multisampling is available

• Required stencil buffer broadly supported today
– OpenGL support since version 1.0 (1991)
– Direct3D support since DX6 (1998)

Shadow Volume Disadvantages
• Ideal light sources only

– Limited to local point and directional lights
– No area light sources for soft shadows

• Requires polygonal models with connectivity
– Models must be closed (2-manifold)
– Models must be free of non-planar polygons

• Silhouette computations are required
– Can burden CPU
– Particularly for dynamic scenes

• Inherently multi-pass algorithm
• Consumes lots of GPU fill rate

Visualizing Shadow Volumes in 
3D

Light
source

Scene with shadows from 
an NVIDIA logo casting a 

shadow volume

Visualization of the 
shadow volume

Occluders and light source cast out a shadow 
volume

Objects within the volume should be shadowed

Visualizing the Stencil Buffer 
Counts

red = stencil value of 1
green  = stencil value of 0

Shadowed scene Stencil buffer contents

GLUT shadowvol example credit: Tom McReynolds

Stencil counts 
beyond 1 are 
possible for 
multiple or 
complex 
occluders.



Shadow Volumes

• Use a parity test similar to a 
“ray inside-outside” test

• Initially set parity to 0 and 
shoot ray from eye to P
– Invert parity when ray crosses 

shadow volume boundary
– parity = 0, not in shadow, 

parity = 1, in shadow

point light

eye

occluder

parity=0 parity=1 parity=0

0
0

0

1

1

0

When is a surface point inside shadow?

Problems With Parity Test

0 0

0

1

Eye inside of 
shadow volume

Self-shadowing of 
visible occluders

Multiple overlapping 
shadow volumes

0

0 1 10 0

Better Solution : Counter

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Shadowed
object

Shadow Volume Count = 0

Better Solution : Counter

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Shadowed
object

+ -+ +

Shadow Volume Count = +1+1+1-1 = 2



Better Solution : Counter

Shadowing objectLight
source 

Eye
position 

zero

zero

+1

+1
+2 +2

+3

Unshadowed
object

+ ---+ +

Shadow Volume Count = +1+1+1-1-1-1 = 0

Graphics Hardware Approach 
Using The Stencil Buffer

• Zpass approach
– Render visible scene to depth buffer
– Turn off depth and color, turn on stencil
– Init. stencil buffer given viewpoint 
– Draw shadow volume twice using face culling

• 1st pass: render front faces and increment when 
depth test passes

• 2nd pass: render back faces and decrement when 
depth test passes

• stencil pixels != 0 in shadow, = 0 are lit

Zpass Problem

zero

zero

+1+1
+2

+2
+3

Near clip
plane 

Far clip
plane 

Missed shadow 
volume intersection 
due to near clip plane 
clipping; leads to 
mistaken count

Object in shadow :-(

Zfail Approach

– Render visible scene to depth buffer
– Turn off depth and color, turn on stencil
– Init. stencil buffer given viewpoint
– Draw shadow volume twice using face culling

• 1st pass: render back faces and increment when 
depth test fails

• 2nd pass: render front faces and decrement when 
depth test fails

– stencil pixels != 0 in shadow, = 0 are lit



Clipping Plane Problem

• Zpass : Near clipping plane
– Move near clipping plane closer to eye?

• Lose depth precision in perspective

• Zfail : Far clipping plane
– Move far clipping plane closer to eye?

• Set far clipping plane to infinity.
• See “Practical & Robust Stenciled Shadow 

Volumes for Hardware-Accelerated Rendering” by 
Cass Everitt & Mark J. Kilgard, Nvidia

Zfail versus Zpass Comparison 
(1)

When stencil increment/decrements occur
Zpass: on depth test pass
Zfail: on depth test fail

Increment on
Zpass: front faces
Zfail: back faces

Decrement on
Zpass: front faces
Zfail: back faces

Zfail versus Zpass Comparison 
(2)

• Both cases order passes based stencil operation
– First, render increment pass
– Second, render decrement pass
– Why?

• Because standard stencil operations saturate
• Wrapping stencil operations can avoid this

• Which clip plane creates a problem
– Zpass: near clip plane 
– Zfail: far clip plane

• Either way is foiled by view frustum clipping
– Which clip plane (front or back) changes

Insight!
• If we could avoid either near plane or far plane 

view frustum clipping, shadow volume rendering 
could be robust

• Avoiding near plane clipping
– Not really possible
– Objects can always be behind you
– Moreover, depth precision in a perspective view goes to 

hell when the near plane is too near the eye 
• Avoiding far plane clipping

– Perspective make it possible to render at infinity
– Depth precision is terrible at infinity, but

we just care about avoiding clipping



Avoiding Far Plane Clipping
• Usual practice for perspective GL projection matrix

– Use glFrustum (or gluPerspective)
– Requires two values for near & far clip planes

• Near plane’s distance from the eye
• Far plane’s distance from the eye

– Assumes a finite far plane distance
• Alternative projection matrix

– Still requires near plane’s distance from the eye
– But assume far plane is at infinity

• What is the limit of the projection matrix when
the far plane distance goes to infinity?

Standard glFrustum Projection 
Matrix
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Limit of glFrustum Projection 
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• First, second, and fourth rows are the same as in P
• But third row no longer depends on Far

• Effectively, Far equals ∞∞∞∞

Verifying Pinf Will Not Clip
Infinitely Far Away Vertices (1)

• What is the most distant possible vertex in front of 
the eye?
– Ok to use homogeneous coordinates
– OpenGL convention looks down the negative Z axis
– So most distant vertex is (0,0,-D,0) where D>0

• Transform (0,0,-D,0) to window space
– Is such a vertex clipped by Pinf?
– No, it is not clipped, as explained on the next slide



Verifying Pinf Will Not Clip
Infinitely Far Away Vertices (2)

• Transform eye-space (0,0,-D,0) to clip-space
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• Then, assuming glDepthRange(0,1), transform clip-space 
position to window-space position

• So ∞∞∞∞ in front of eye transforms to the maximum
window-space Z value, but is still within
the valid depth range (i.e., not clipped)

Is Pinf Bad for Depth Buffer 
Precision?

• Naïve question
– Wouldn’t moving the far clip plane to infinity waste 

depth buffer precision?  Seems plausible, but
• Answer: Not really

– Minimal depth buffer precision is wasted in practice
– This is due to projective nature of perspective

• Say Near is 1.0 and Far is 100.0 (typical situation)
– P would transform eye-space infinity to only 1.01 in 

window space
– Only a 1% compression of the depth range

is required to render infinity without clipping
– Moving near closer would hurt precision

Pinf Depth Precision Scale Factor
• Using Pinf with Near instead of P with Near and 

Far compresses (scales) the depth precision by

Far
NearFar )( −

• The compression of depth precision is uniform, but the 
depth precision itself is already non-uniform on  eye-
space interval [Near,Far] due to perspective
• So the discrete loss of precision is more towards the far clip 

plane

• Normally, Far >> Near so the scale factor
is usually less than but still nearly 1.0
• So the compression effect is minor

Without Near (or Far) Plane Capping
• Use Zfail Stenciling Approach

– Must render geometry to close shadow volume extrusion 
on the model and at infinity (explained later)

• Use the Pinf Projection Matrix
– No worries about far plane clipping
– Losses some depth buffer precision (but not much)

• Draw the infinite vertices of the shadow volume 
using homogeneous coordinates (w=0)

Robust Stenciled Shadow Volumes



Rendering Closed, but Infinite,
Shadow Volumes

• To be robust, the shadow volume geometry must 
be closed, even at infinity

• Three sets of polygons close the shadow volume
1. Possible silhouette edges extruded to infinity away from 

the light
2. All of the occluder’s back-facing (w.r.t. the light) 

triangles projected away from the light to infinity
3. All of the occluder’s front-facing (w.r.t. the light) 

triangles
• We assume the object vertices and light position 

are homogeneous coordinates, i.e. (x,y,z,w)
– Where w≥0

1st Set of Shadow Volume 
Polygons

• Assuming
– A and B are vertices of an occluder model’s possible 

silhouette edge
– And L is the light position

• For all A and B on silhouette edges of the occluder 
model, render the quad
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• What is a possible silhouette edge?
• One polygon sharing an edge faces toward L
• Other faces away from L

Homogenous 
vector differences

Examples Silhouette Edges

An object viewed from the 
same basic direction that the 
light is shining on the object 
has an identifiable light-view 
silhouette

An object’s light-view 
silhouette appears quite 
jumbled when viewed form a 
point-of-view that does not 
correspond well with the 
light’s point-of-view

2nd and 3rd Set of
Shadow Volume Polygons

• 2nd set of polygons
– Assuming A, B, and C are each vertices of occluder 

model’s back-facing triangles w.r.t. light position L
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• These vertices are effectively directions (w=0)
• 3rd set of polygons

• Assuming A, B, and C are each vertices of occluder 
model’s front-facing triangles w.r.t. light position L
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Homogenous 
vector differences



Requirements for Stenciled
Shadow Volumes

1. Models must be composed of triangles only 
(avoiding non-planar polygons)

2. Models must be closed (2-manifold) and have a 
consistent winding order
– Bergeron [’86] approach could be used to handle “open” 

models if necessary
3. Homogeneous object coordinates are permitted, 

assuming w≥0
– If not, (x, y, z, -1) = (-x, -y, -z, 1)

4. Ideal light sources only
– Directional or positional, assuming w≥0

Requirements for Stenciled 
Shadow Volumes

5. Connectivity information for occluding models 
must be available
– So silhouette edges w.r.t. light positions can be 

determined at shadow volume construction time
6. Projection matrix must be perspective

– Not orthographic
– NV_depth_clamp extension provides orthographic 

support (more later)
7. Render must guarantee “watertight” rasterization

– No double hitting pixels at shared polygon edges
– No missed pixels at shared polygon edges

Requirements for Stenciled 
Shadow Volumes

8. Enough stencil bits
– N stencil bits where 2N is greater than the maximum 

shadow depth count ever encountered
– Scene dependent
– 8-bits is usually quite adequate & what all recent stencil 

hardware provides
– Wrapping stencil increment/decrement operations (i.e. 

OpenGL’s EXT_stencil_wrap) permit deeper shadow 
counts, modulo aliasing with zero

– Realize that shadow depths > 255 imply too
much fill rate for interactive applications

Requirements for Stenciled 
Shadow Volumes

9. Rendering features provided by OpenGL 1.0 or 
DirectX 6 (or subsequent versions)
– Transformation & clipping of homogenous positions
– Front- and back-face culling
– Masking color and depth buffer writes
– Depth buffering (i.e. conventional Z-buffering)
– Stencil-testing support

In practice, these are quite reasonable 
requirements for nearly any polygonal-based 
3D game or application



Examples

Scene with shadows.
Yellow light is embedded in 
the green three-holed object.  
Pinf is used for all the 
following scenes.

Same scene visualizing
the shadow volumes.

Examples
Details worth noting . . .

Fine details: Shadows
of the A, N, and T letters on
the knight’s armor and shield.

Hard case: The shadow volume 
from the front-facing hole
would definitely intersect
the near clip plane.

Examples

Alternate view of same scene 
with shadows. Yellow lines 
indicate previous view’s view 
frustum boundary.  Recall 
shadows are view-independent.

Shadow volumes from the 
alternate view.

Examples

Clip-space view. Original 
view’s scene seen from clip 
space.  The back plane is “at 
infinity” with very little effective 
depth precision near infinity.

Clip-space view of shadow 
volumes. Back-facing
triangles w.r.t. light are seen
projected onto far
plane at infinity.



Examples

Original eye’s view. Again, 
yellow light is embedded in 
the green three-holed 
object.  Pinf is used for all 
the following scenes.

Eye-space view of previous 
eye’s view. Clipped to the 
previous eye’s Pinf view
frustum.  Shows knight’s
projection to infinity.

Examples

Clip-space view of previous 
eye’s view. Shows shadow 
volume closed at infinity and 
other shadow volume’s 
intersection with the near clip 
plane.

Original eye’s far
clip plane

Original eye’s near
clip plane

Stenciled Shadow Volumes with
Multiple Lights

Three colored lights. 
Diffuse/specular bump 
mapped animated 
characters with 
shadows.  34 fps on 
GeForce4 Ti 4600;
80+ fps for one light.

Stenciled Shadow Volumes for
Simulating Soft Shadows

Cluster of 12 dim 
lights approximating 
an area light source. 
Generates a soft 
shadow effect; careful 
about banding.  8 fps on 
GeForce4 Ti 4600.

The cluster of 
point lights.



Issues With Shadow Volumes

• The addition of shadow volume polygons 
can greatly increase your database size

• Using the stencil buffer approach, pixel fill 
becomes a key speed factor

• Create a shadow volume from the silhouette 
of an object instead of each polygon

• Take care when coding the algorithm

Hardware Enhancements:
Wrapping Stencil Operations

• Conventional OpenGL 1.0 stencil operations
– GL_INCR increments and clamps to 2N-1
– GL_DECR decrements and clamps to zero

• DirectX 6 introduced “wrapping” stencil operations
• Exposed by OpenGL’s EXT_stencil_wrap 

extension
– GL_INCR_WRAP_EXT increments modulo 2N

– GL_DECR_WRAP_EXT decrements modulo 2N

• Avoids saturation throwing off the shadow
volume depth count
– Still possible, though very rare, that 2N,

2×2N, 3×2N, etc. can alias to zero

Hardware Enhancements:
Two-sided Stencil Testing (1)

• Current stenciled shadow volumes required 
rendering shadow volume geometry twice
– First, rasterizing front-facing geometry
– Second, rasterizing back-facing geometry

• Two-sided stencil testing requires only one pass
– Two sets of stencil state: front- and back-facing
– Boolean enable for two-sided stencil testing
– When enabled, back-facing stencil state is used for stencil 

testing back-facing polygons
– Otherwise, front-facing stencil state is used
– Rasterizes just as many fragments,

but more efficient for CPU & GPU

Hardware Enhancements:
Two-sided Stencil Testing (2)

NV_stencil_two_side OpenGL extension
– Enable applies if GL_STENCIL_TEST also enabled

glEnable(GL_STENCIL_TEST_TWO_SIDE_NV);
glDisable(GL_STENCIL_TEST_TWO_SIDE_NV);

– Control of front- and back-facing stencil state update
glActiveStencilFaceNV(GL_FRONT);
glActiveStencilFaceNV(GL_BACK);

– Existing stencil routines (glStencilOp, glStencilMask, 
glStencilFunc) update the active stencil face state

– glClear and non-polygon primitives always
use the front-facing stencil state

• Expect on future GPUs



Usage of NV_stencil_two_side & 
EXT_stencil_wrap

OLD SCHOOL
glDepthMask(0);
glColorMask(0,0,0,0);
glEnable(GL_CULL_FACE);
glEnable(GL_STENCIL_TEST);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
// Increment for back faces

glCullFace(GL_BACK);
glStencilOp(GL_KEEP,   // stencil test fail

GL_INCR,   // depth test fail
GL_INCR);  // depth test pass

renderShadowVolumePolygons();
// Decrement for front faces
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP,   // stencil test fail

GL_DECR,   // depth test fail
GL_KEEP);  // depth test pass

renderShadowVolumePolygons();

NEW SCHOOL
glDepthMask(0);
glColorMask(0,0,0,0);
glDisable(GL_CULL_FACE);
glEnable(GL_STENCIL_TEST);
glEnable(GL_STENCIL_TEST_TWO_SIDE_NV);
glActiveStencilFaceNV(GL_BACK);
glStencilOp(GL_KEEP,            // stencil test fail

GL_INCR_WRAP_EXT, // depth test fail 
GL_KEEP);            // depth test pass

glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
glActiveStencilFaceNV(GL_FRONT);
glStencilOp(GL_KEEP,    // stencil test fail

GL_DECR_WRAP_EXT,  // depth test fail
GL_KEEP);  // depth test pass

glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
renderShadowVolumePolygons();

New approach calls renderShadowVolumePolygons() just once.

Shadow Volume History (1)
• Invented by Frank Crow [’77]

– Software rendering scan-line approach
• Brotman and Badler [’84] 

– Software-based depth-buffered approach
– Used lots of point lights to simulate soft shadows

• Pixel-Planes [Fuchs, et.al. ’85] hardware
– First hardware approach
– Point within a volume, rather than ray intersection

• Bergeron [’96] generalizations
– Explains how to handle open models
– And non-planar polygons

Shadow Volume History (2)
• Fournier & Fussell [’88] theory

– Provides theory for shadow volume counting approach 
within a frame buffer

• Akeley & Foran invent the stencil buffer
– IRIS GL functionality, later made part of OpenGL 1.0
– Patent filed in ’92

• Heidmann [IRIS Universe article, ’91]
– IRIS GL stencil buffer-based approach

• Deifenbach’s thesis [’96]
– Used stenciled volumes in multi-pass framework

Shadow Volume History (3)
• Dietrich slides [March ’99] at GDC

– Proposes zfail based stenciled shadow volumes
• Kilgard whitepaper [March ’99] at GDC

– Invert approach for planar cut-outs
• Bilodeau slides [May ’99] at Creative seminar

– Proposes way around near plane clipping problems
– Reverses depth test function to reverse stencil volume ray 

intersection sense
• Carmack [unpublished, early 2000]

– First detailed discussion of the equivalence of
zpass and zfail stenciled shadow
volume methods



Shadow Volume History (4)
• Kilgard [2001] at GDC and CEDEC Japan

– Proposes zpass capping scheme
• Project back-facing (w.r.t. light) geometry to the near clip plane 

for capping
• Establishes near plane ledge for crack-free

near plane capping
– Applies homogeneous coordinates (w=0) for rendering 

infinite shadow volume geometry
• Cass and Kilgard [2001] presented most of these 

slides at GDC. See their papers on the nVidia web 
site.

• Carmack’s Doom engine uses this technique.

Shadow Maps

• Basic Theory
• Several Implementations

– Hardware shadow maps
– Multi-texturing and shadow maps
– Object buffers

Z-Buffer Shadow Maps

• Define a coordinate system (light space) 
such that the light is the center of projection

• Render a depth buffer (z-buffer) of the 
visible scene, each pixel (x’, y’, z’)

• For each visible surface point in eye space 
transform to light space
– (xc, yc, zc) => (xl, yl, zl)

• If zl > z’ then point is in shadow

Shadow Map

• Visible surface point E 
is in shadow and 
occluded by point L 
when transformed to 
light space

Light

Eye

Eye-ray nearest 
intersection point

Light-ray nearest 
intersection point

L

E

If L is closer to the light than E, 
then E is in shadow



Shadow Map : Two Pass 
Approach 1st Pass

View from light 
Depth Buffer 

2nd Pass

Visible surface depth 

2nd Pass

Non-green in shadow 
Final Image 



Shadow Maps With Graphics 
Hardware

• Render scene using the light as a camera
• Read depth buffer out and copy to a 2D texture.

– Rather than Binary projected shadow, we now have a 
depth texture.

• Fragment’s light position can be generated using 
eye-linear texture coordinate generation

• specifically OpenGL’s GL_EYE_LINEAR texgen
• generate homogenous (s, t, r, q) texture coordinates as light-

space (x, y, z, w)

Introducing Another Technique:
Shadow Mapping

• Image-space shadow determination
– Lance Williams published the basic idea in 1978

• By coincidence, same year Jim Blinn invented bump 
mapping (a great vintage year for graphics)

– Completely image-space algorithm
• means no knowledge of scene’s geometry is required
• must deal with aliasing artifacts

– Well known software rendering technique
• Pixar’s RenderMan uses the algorithm
• Basic shadowing technique for Toy Story, etc.

Shadow Mapping
References

• Important SIGGRAPH papers
– Lance Williams, “Casting Curved Shadows on Curved 

Surfaces,” SIGGRAPH 78
– William Reeves, David Salesin, and Robert Cook 

(Pixar), “Rendering antialiased shadows with depth 
maps,” SIGGRAPH 87

– Mark Segal, et. al. (SGI), “Fast Shadows and Lighting 
Effects Using Texture Mapping,” SIGGRAPH 92

The Shadow Mapping
Concept (1)

• Depth testing from the light’s point-of-view
– Two pass algorithm
– First, render depth buffer from the light’s point-of-view

• the result is a “depth map” or “shadow map”
• essentially a 2D function indicating the depth of the 

closest pixels to the light
– This depth map is used in the second pass 



The Shadow Mapping
Concept (2)

• Shadow determination with the depth map
– Second, render scene from the eye’s point-of-view
– For each rasterized fragment

• determine fragment’s XYZ position relative to the light
• this light position should be setup to match the frustum 

used to create the depth map
• compare the depth value at light position XY in the depth 

map to fragment’s light position Z

The Shadow Mapping
Concept (3)

• The Shadow Map Comparison
– Two values

• A = Z value from depth map at fragment’s light XY position
• B = Z value of fragment’s XYZ light position

– If B is greater than A, then there must be something 
closer to the light than the fragment

• then the fragment is shadowed

– If A and B are approximately equal, the fragment is lit

Shadow Mapping
with a Picture in 2D (1)

light
source 

eye
position 

depth map Z  = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A < B shadowed fragment case

Shadow Mapping
with a Picture in 2D (2)

light
source 

eye
position 

depth map Z  = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A ≅≅≅≅ B unshadowed fragment caseThe A ≅≅≅≅ B unshadowed fragment case



Note image precision mismatch!Note image precision mismatch!

The depth mapThe depth map
could be at acould be at a
different resolutiondifferent resolution
from the framebufferfrom the framebuffer

This mismatch canThis mismatch can
lead to artifactslead to artifacts

Shadow Mapping
with a Picture in 2D (3)

Visualizing the Shadow
Mapping Technique (1)

• A fairly complex scene with shadows

the pointthe point
light sourcelight source

Render Scene and
Access the Depth Texture

• Realizing the theory in practice
– Fragment’s light position can be generated using eye-

linear texture coordinate generation
• specifically OpenGL’s GL_EYE_LINEAR texgen
• generate homogenous (s, t, r, q) texture coordinates as 

light-space (x, y, z, w)
• T&L engines such as GeForce accelerate texgen!
• relies on projective texturing

Recall
Projective Texturing

• A slide projector analogy

Source: Wolfgang Heidrich [99]Source: Wolfgang Heidrich [99]



Projective Texture Shadows

Light’s point-of-view Shadow projective 
texture (modulation 
image or light-map)

Eye’s point-of-view, 
projective texture 

applied to ground-plane
(self-shadowing is from 

another algorithm)

Projective Texture Shadows

Two-pass approach
• For each light source:

– Create a light camera that encloses shadowed area
– Render shadow casting objects into light’s view

only need to create a light map (1 in light, 0 in 
shadow)

– Create projective texture from light’s view
– Render fully-lit shadow receiving objects with applied 

modulation projective-textures (need additive blending 
for all light sources except first one)

• Render fully-lit shadow casting objects

Perspective-Correct Texturing

• First, what is perspective-correct texturing?
– Normal 2D texture mapping uses (s, t) coordinates
– 2D perspective-correct texture mapping

• means (s, t) should be interpolated linearly in eye-space
• so compute per-vertex s/w, t/w, and 1/w
• linearly interpolate these three parameters over polygon
• per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / 

(1/w)
• results in per-fragment perspective correct (s’, t’)

Projective Texturing

• So what is projective texturing?
– Now consider homogeneous texture coordinates

• (s, t, r, q) --> (s/q, t/q, r/q)
• Similar to homogeneous clip coordinates where

(x, y, z, w) = (x/w, y/w, z/w)
– Idea is to have (s/q, t/q, r/q) be projected per-fragment
– This requires a per-fragment divider

• yikes, dividers in hardware are fairly expensive



Projective Texturing

• Hardware designer’s view of texturing
– Perspective-correct texturing is a practical requirement

• otherwise, textures “swim”
• perspective-correct texturing already requires the 

hardware expense of a per-fragment divider
– Clever idea [Segal, et.al. ‘92]

• interpolate q/w instead of simply 1/w
• so projective texturing is practically free if you already 

do perspective-correct texturing!

Projective Texturing

• Tricking hardware into doing projective textures
– By interpolating q/w, hardware computes per-fragment

• (s/w) / (q/w) = s/q
• (t/w) / (q/w) = t/q

– Net result:  projective texturing
• OpenGL specifies projective texturing
• only overhead is multiplying 1/w by q
• but this is per-vertex

Projected Shadow Maps

• Assign light-space texture coordinates via texgen
– Transform eye-space (x, y, z, w) coordinates to the 

light’s view frustum (match how the light’s depth map 
is generated)

– Further transform these coordinates to map directly into 
the light view’s depth map

– Expressible as a projective transform
• load this transform into the 4 eye linear plane equations for S,

T, and Q coordinates

– (s/q, t/q) will map to light’s depth map texture

OpenGL’s Standard
Vertex Coordinate Transform

• From object coordinates to window coordinates

object

coordinates
(x, y, z, w)

objectobject

coordinatescoordinates
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viewport &
depth range
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device
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clipclip

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

window

coordinates

windowwindow

coordinatescoordinates
onward to
primitive
assembly
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Eye Linear Texture
Coordinate Generation

• Generating texture coordinates from eye-
space

object

coordinates

objectobject

coordinatescoordinates

eye

coordinates

eyeeye

coordinatescoordinates
modelview

matrix
modelviewmodelview

matrixmatrix
projection

matrix
projectionprojection

matrixmatrix
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by w
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viewport &
depth range
viewport &viewport &

depth rangedepth range
normalized 

device
coordinates

normalized normalized 

devicedevice
coordinatescoordinates

clip

coordinates

clipclip

coordinatescoordinates

window

coordinates

windowwindow

coordinatescoordinates

eye-linear
plane

equations

eyeeye--linearlinear
planeplane

equationsequations
(s, t, r, q)(s, t, (s, t, rr, q), q)

(x, y, z)(x, y, z)(x, y, z)

Setting Up
Eye Linear Texgen

•With OpenGL
– GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
– glTexGenfv(GL_S, GL_EYE_PLANE, Splane);
– glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
– glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);
– glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
– glEnable(GL_TEXTURE_GEN_S);
– glEnable(GL_TEXTURE_GEN_T);
– glEnable(GL_TEXTURE_GEN_R);
– glEnable(GL_TEXTURE_GEN_Q);

•Each plane equation is transformed by current inverse 
modelview matrix (a very handy thing for us)

Eye Linear
Texgen Transform

• Plane equations form a projective transform

• The 4 eye linear plane equations form a 4x4 matrix
(No need for the texture matrix!)
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glTexGen automatically applies 
this when modelview matrix 
contains just the eye view 

transform

glTexGen automatically applies glTexGen automatically applies 
this when modelview matrix this when modelview matrix 
contains just the eye view contains just the eye view 

transformtransform

Supply this combined transform to glTexGenSupply this combined transform to glTexGenSupply this combined transform to glTexGen



Shadow Map Operation

• Automatic depth map lookups
– After the eye linear texgen with the proper transform 

loaded 
• (s/q, t/q) is the fragment’s corresponding location within 

the light’s depth texture
• r/q is the Z planar distance of the fragment relative to the 

light’s frustum, scaled and biased to [0,1] range
– Next compare texture value at (s/q, t/q) to value r/q

• if  texture[s/q, t/q] ≅ r/q  then not shadowed
• if  texture[s/q, t/q] < r/q  then shadowed

Shadow Map Construction

– Set up your view matrix to be the light’s 
“LookAt” matrix

– Set up the projection matrix based on the light 
type

• For spotlights, use the penumbra angle for the FOV
• For directional lights, use an orthographic projection
• For point lights, use a cubemap

– And render once for each face with a 90 degree FOV

Shadow Map Construction

– Render your depth value into the texture
• As an Alpha or Color Value

– 0 means at the light plane
– FF means at the edge of the light’s range

• Or into the depth buffer
– Extract it with glReadPixels
– Extract with new extensions (more later)
– Map it into a hi-precision texture.

Dedicated Hardware
Shadow Mapping Support

• SGI RealityEngine, InfiniteReality, and 
GeForce3 Hardware
– Performs the shadow test as a texture filtering operation

• looks up texel at (s/q, t/q) in a 2D texture
• compares lookup value to r/q
• if texel is greater than or equal to r/q, then generate 1.0
• if texel is less than r/q, then generate 0.0

– Modulate color with result
• zero if fragment is shadowed or unchanged color if not



OpenGL Extensions for
Shadow Map Hardware

• Two extensions work together
– SGIX_depth_texture

• supports high-precision depth texture formats
• copy from depth buffer to texture memory supported

– SGIX_shadow
• adds “shadow comparison” texture filtering mode
• compares r/q to texel value at (s/q, t/q)

– Multi-vendor support: SGI, NVIDIA, others?
• Brian Paul has implemented these extensions in Mesa!

New Depth Texture
Internal Texture Formats

• SGIX_depth_texture supports textures containing depth values 
for shadow mapping

• Three new internal formats
– GL_DEPTH_COMPONENT16_SGIX
– GL_DEPTH_COMPONENT24_SGIX
– GL_DEPTH_COMPONENT32_SGIX

(same as 24-bit on GeForce3)
• Use GL_DEPTH_COMPONENT for your external format
• Work with glCopySubTexImage2D for fast copies from depth 

buffer to texture
– NVIDIA optimizes these copy texture paths

Depth Texture Details

• Usage example:
glCopyTexImage2D(GL_TEXTURE_2D,level=0,  

internalfmt=GL_DEPTH_COMPONENT24_SGIX,

x=0, y=0, w=256, h=256, border=0);

• Then use glCopyTexSubImage2D for faster 
updates once texture internal format initially 
defined

Depth Texture Details

• Hint: use GL_DEPTH_COMPONENT for 
your texture internal format
– Leaving off the “n_SGIX” precision specifier 

tells the driver to match your depth buffer’s 
precision

– Copy texture performance is optimum when 
depth buffer precision matches the depth 
texture precision



Texture Copy Performance

• The more depth values you copy, the slower the 
performance
– 512x512 takes 4 times longer to copy than 256x256
– Tradeoff:  better defined shadows require higher 

resolution shadow maps, but slows copying
• 16-bit depth values copy twice as fast as 24-bit 

depth values (which are contained in 32-bit words)
– Requesting a 16-bit depth buffer (even with 32-bit color 

buffer) and copying to a 16-bit depth texture is faster 
than using a 24-bit depth buffer

– Note that using 16-bit depth buffer usually
requires giving up stencil

Issues With Shadow Maps

• Compute shadow maps for all light sources
• Need space to store shadow maps
• How do you filter the shadow map when 

indexing into it?
• Does a mismatch in shadow map resolution 

and screen resolution matter?

Shadow-Maps

Depth Sampling 
Problems

Can we just use the nearest 
sample?

How would you anti-alias 
depth?

What is we move closer to 
the reciever?
– Opposite problem

Shadow-Maps
Depth sampling: normal filtering

• Averaging depth doesn’t really make sense 
(unrelated to surface, especially at shadow boundaries!)

• Still a binary result, (no anti-aliased softer shadows)



Depth Values are not Blend-able
• Traditional filtering is inappropriate

eye
position 

What pixel covers in
shadow map texture

Texel sample
depth = 0.25

Texel sample
depth = 0.63

0.63

0.25 0.25

0.63

Average(0.25, 0.25, 0.63, 0.63) = 0.44
0.57  > 0.44 so pixel is wrongly “in shadow”
Truth: nothing is at 0.44, just 0.25 and 0.63

Pixel depth = 0.57

Shadow-Maps
Depth sampling: percentage closer filtering 

(Reeves87)

• Could average binary results of all depth map 
pixels covered

• Soft anti-aliased shadows
• Very similar to point-sampling across an area light 

source in ray-traced shadow computation

Shadow-Maps
How do you choose the samples?

Quadrilateral represents the area covered by a pixel’s projection 
onto a polygon after being projected into the shadow-map

Hardware Shadow
Map Filtering

• “Percentage Closer” filtering
– Provides anti-aliasing at shadow map edges

• Not soft shadows in the umbra/penumbra sense

• Does not do full filtering
– Will lead to aliasing for picket-fence shadows.



Hardware Shadow Map
Filtering Example

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heighten filtering artifacts

Issues with Shadow Mapping

• Not without its problems
– Prone to aliasing artifacts

• “percentage closer” filtering helps this
• normal color filtering does not work well

– Depth bias is not completely foolproof
– Requires extra shadow map rendering pass and texture 

loading
– Higher resolution shadow map reduces blockiness

• but also increases texture copying expense 

Issues with Shadow Mapping

• Not without its problems
– Shadows are limited to view frustums

• could use six view frustums for omni-directional light
– Objects outside or crossing the near and far clip planes 

are not properly accounted for by shadowing
• move near plane in as close as possible
• but too close throws away valuable depth map precision 

when using a projective frustum

Shadow Map Resolutions

• Requires knowing how pixels (samples) in the light’s view 
compare to the size of pixels (samples) in the eye’s view
– A re-sampling problem

• When light source frustum is reasonably well aligned with 
the eye’s view frustum, the ratio of sample sizes is close to 
1.0
– Great match if eye and light frustum’s are nearly 

identical
– But that implies very few viewable shadows
– Consider a miner’s lamp (i.e., a light attached to your 

helmet)
– The chief reason for such a lamp is you don’t see 

shadows from the lamp while wearing it



Shadow Map Resolution

• So best case is miner’s lamp
• Worst case is shadows from light shining at the 

viewer
– “that deer in the headlights” problem – definitely worst 

case for the deer
– Also known as the “dueling frusta” problem

(frusta, plural of frustum)
• Let’s attempt to visualize what happens…

Dueling Frusta Case

Eye’s
View

Light’s
View

Eye’s View with 
projection
of color-coded
mipmap levels
from light:
Blue = 
magnification
Red = minification

Light’s View with
re-projection
of above image
from the eye

Dueling Frusta Case

Eye’s
View

Light’s
View

Region that is smallest in 
the light’s view is a region 
that is very large in the 
eye’s view.  This implies 
that it would require a very 
high-resolution shadow 
map to avoid obvious 
blocky shadow edge 
artifacts.

Dueling Frusta

Light position 
out here pointing 
towards the 
viewer.

Blocky 
shadow edge 
artifacts.

Notice that 
shadow 
edge is 
well 
defined in 
the 
distance.



Good Situation, Close to the 
Miner’s Lamp

Eye’s
View

Light’s
View

Very 
similar 
views

Note how the color-
coded images share 
similar pattern and 
the coloration is 
uniform.  Implies 
single depth map 
resolution would 
work well for most of 
the scene.

Ghosting is 
where projection 
would be in 
shadow.

More Examples
• Smooth surfaces with object self-shadowing

Note object self-shadowing

More Examples

• Complex objects all shadow

More Examples

• Even the floor casts shadow
Note shadow 
leakage due to
infinitely thin 
floor

Could be fixed by
giving floor 
thickness



Projective Texturing
for Spotlight Shadows

• Use a spotlight-style projected texture to give 
shadow maps a spotlight 
falloff.

Multi-texturing Shadow Maps

• Consumer 3D hardware solution
– Proposed by Wolfgang Heidrich in his 1999 Ph.D. 

thesis
– Leverages today’s consumer multi-texture hardware

• 1st texture unit accesses 2D depth map texture
• 2nd texture unit accesses 1D Z range texture

– Extended texture environment subtracts 2nd texture 
from 1st

• shadowed if greater than zero, unshadowed otherwise
• use alpha test to discard shadowed fragments

Dual-texture Shadow
Mapping Approach

• Constructing the depth map texture
– Render scene from the light view (can disable 

color writes)
– Use projective textures and a shadow map as 

before.

Dual-texture Shadow
Mapping Approach

• Two-pass shadow determination
– 1st pass: draw everything shadowed

• render scene with light disabled -or- dimmed substantially and 
specular light color of zero

• with depth testing enabled

– 2nd pass: draw unshadowed, rejecting shadowed 
fragments

• use glDepthFunc(GL_EQUAL) to match 1st pass pixels
• enable the light source, un-rejected pixels = unshadowed
• use dual-texture as described in subsequent slides



Dual-texture Shadow
Mapping Approach

• Dual-texture configuration
– 1st texture unit

• bind to 2D texture containing light’s depth map texture
• intensity texture format (same value in RGB and alpha)

– 2nd texture unit
• bind to 1D texture containing a linear ramp from 0 to 1
• maps S texture coordinate in [0, 1] range to intensity value in 

[0, 1] range

Dual-texture Shadow
Mapping Approach

• Texgen Configuration
– 1st texture unit using 2D texture

• generate (s/q, t/q) to access depth map texture, 
ignore R
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Supply this combined transform to glTexGenSupply this combined transform to glTexGenSupply this combined transform to glTexGen
glTexGen

automatically
applies this

glTexGenglTexGen
automaticallyautomatically
applies thisapplies this

Dual-texture Shadow
Mapping Approach

• Texgen Configuration
– 2nd texture unit using 1D texture

• generate Z planar distance in S, flips what R is into S
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Dual-texture Shadow
Mapping Approach

• Texture environment (texenv) configuration
– Compute the difference between Tex0 from Tex1

• un-extended OpenGL texenv cannot subtract

– But can use standard EXT_texture_env_combine
extension

• add signed operation
• compute fragment alpha as

alpha(Tex0) + (1 - alpha(Tex1)) - 0.5
• result is greater or equal to 0.5 when Tex0 >= Tex1

result is less than 0.5 when Tex0 < Tex1



Dual-texture Shadow
Mapping Approach

•Texture environment (texenv) specifics
•glActiveTextureARB(GL_TEXTURE0_ARB);
•glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);

•glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
•glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_PRIMARY_COLOR_EXT);
•glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);

•glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
•glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
•glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);

•glActiveTextureARB(GL_TEXTURE1_ARB);
•glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);

•glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
•glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_PREVIOUS_EXT);
•glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);

•glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD_SIGNED_EXT);
•glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PREVIOUS_EXT);
•glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
•glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
•glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);

Dual-texture Shadow
Mapping Approach

• Post-texture environment result
– RGB is lit color (lighting is enabled during 

second pass)
– Alpha is the biased difference of T0 and T1

• unshadowed fragments have alpha >= 0.5
• shadowed fragments have an alpha of < 0.5

Dual-texture Shadow
Mapping Approach

• Next, reject shadowed fragments
– shadowed or unshadowed depends on alpha 

value
• less than 0.5 means shadowed

– use the alpha test to rejected shadowed 
fragments

• glEnable(GL_ALPHA_TEST)
• glAlphaFunc(GL_GREATER, 0.5)

Dual-texture Shadow
Mapping Approach

• Careful about self-shadowing
– fragments are likely to shadow themselves

• surface casting shadow
must not shadow itself

• “near equality” common
when comparing Tex0
and Tex1



Dual-texture Shadow
Mapping Approach

• Biasing values in depth map helps
– recall glPolygonOffset suggestion during the depth map 

construction pass
– this bias should be done during depth map construction

• biases in the texgen transform do not work
• problem is depth map has non-linear distribution due to 

projective frustum

– polygon offset scale keeps edge-on polygons from self-
shadowing

Depth Map Bias

• How much polygon offset bias depends

Too little bias,
everything begins to
shadow

Too little bias,
everything begins to
shadow

Too little bias, shadow
starts too far back
Too little bias, shadow
starts too far back

Just rightJust right

Shadow Mapping Precision

• Conserving your 8-bit depth map precision

Frustum confined to objects of 
interest
Frustum confined to objects of 
interest

Frustum expanded out considerably
breaks down the shadows
Frustum expanded out considerably
breaks down the shadows

More Precision Allows
Larger Lights Frustums

• Compare 8-bit to 16-bit precision for large 
frustum

8-bit:  Large frustum breaks down the 
shadows, not enough precision
8-bit:  Large frustum breaks down the 
shadows, not enough precision

16-bit:  Shadow looks just fine16-bit:  Shadow looks just fine



Object ID Buffers

• ObjectID buffers are similar to Shadow Depth 
buffers in that both are per-pixel approaches

• ObjectID Buffers work by identifying each 
“Object” in the light’s range and giving it a unique 
numerical ID
– An Object is defined as something that can’t shadow 

itself
– So, any convex object or piece of a convex object will 

do

Object ID Shadows

• Each object in the light’s range has it’s ID 
rendered to a texture (with depth testing).
– After this step, the buffer contains the ID of the closest 

object for each pixel

• Map this texture as a projective texture.
• Render the scene from the eye-point.

– Compare the ID of the object you are drawing to the 
texture value.

• If they are the same, the pixel is lit
• If they are different, that means there must be some other 

object closer, so the pixel is in shadow.

Object ID Shadows

• Some HW supports generating a unique ID 
for each polygon submitted

• This is more convenient, but doesn’t solve 
the real issue
– Two adjacent coplanar polygons with different 

IDs can alias with each other
• The only solutions are :

– Use per-object ID’s instead of per-triangle
– Perform multiple jittered tests and only shadow 

if all tests agree the pixel is in shadow

Object ID Shadows

• Advantages of this Technique :
– Can support any light range with equal 

precision
– For convex objects, it works great
– Doesn’t suffer from 8 bit precision issues like 

the depth buffer approach
– Works better for point lights



Object ID Shadows

• Disadvantages of this Technique :
– Objects must be convex or they won’t self-

shadow
• To handle this, you can break objects into smaller 

convex pieces, each with their own ID
– Suffers from aliasing problems

• When shadow testing, you won’t always project 
exactly onto the same shadow buffer pixel, causing  
a different ID value to be found instead

– Hard, jaggy edges

Combining Shadow and Object 
Maps

• ObjectIDs are great because they work at 
any light range at all – good for inter-
object shadowing

• Shadow Depth Buffers are great because 
they support self shadowing – good for 
intra-object shadowing

Combining Shadow and Object 
Maps

• Combine the two:
– Projective texture contains both an ObjectID 

and a “depth” value for each texel.
• Each object has its own ID as before 
• The Shadow Depth buffer is actually computed 

per-object.
– Depth range is limited to the object’s bounding box.
– Self-shadowing precision is thus, maximized

ObjectID & Depth Buffer Texture

Red Vertical Axis – ObjectID from 0 to ff

Green Horizontal Axis – Ramp from 0 to ff

Blue Horizontal Axis – Ramp from 0 to ff repeated 8 
times – limited by max size of texture

Blue represents the 8 bits of depth.

Green distinguishes the proper shadow map (or 
shadow map range) to use.



Shadow Map Conclusions
• Shadow mapping offers real-time shadowing effects

– Independent of scene complexity
– Very compatible with multi-texturing

• Does not mandate multi-pass as stenciled shadow volumes 
do

– Ideal for shadows from spotlights
• Consumer hardware shadow map support here today

– GeForce3
– Dual-texturing technique supports legacy hardware

• Same basic technique used by Pixar to generate 
shadows in their computer-generated  movies


