- Modeling surface details with images.
- Texture parameterization
- Texture evaluation
- Anti-aliasing and textures.
- Modeling complexity
- Why use textures?

"I am interested in the effects on an object that speak of human intervention. This is another factor that you must take into consideration. How many times has the object been painted? Written on? Treated? Bumped into? Scraped? This is when things get exciting. I am curious about: the wearing away of paint on steps from continual use; scrapes made by a moving dolly along the baseboard of a wall; acrylic paint peeling away from a previous coat of an oil base paint; cigarette burns on tile or wood floors; chewing gum - the black spots on city sidewalks; lover's names and initials scratched onto park benches..."
- Owen Demers
[digital] Texturing \& Painting, 2002

Texture Mapping

Texture Mapping

- Given an object and an image:
-How does the image map to the vertices or set of points defining the object?

- Problem \#2 Mapping from a pixel to a texel
- Problem \#1 Fitting a square peg in a round hole

What is an image?

- How would I rotate an image 45 degrees?
- How would I translate it 0.5 pixels?
- Given the (u,v), want:
$-\mathbf{F}(\mathrm{u}, \mathrm{v})==>$ a continuous reconstruction
$\cdot=\{R(u, v), G(u, v), B(u, v)\}$
- $=\{\mathrm{I}(\mathrm{u}, \mathrm{v})\}$
- $=\{$ index $(\mathrm{u}, \mathrm{v})\}$
- $=\{\operatorname{alpha}(\mathrm{u}, \mathrm{v})\}$
- $=\{$ normals($u, \mathrm{v})\}$
$\cdot=\{$ surface_height(u,v) $\}$
- = ...

What is a Texture?

- Procedural Image
- RGB Image
- Intensity image
- Opacity table

Periodic and everything else
Checkerboard
Scale: $s=10$
If ($u^{*} s$) \% 2=0 \&\& ($\left.v^{*} s\right) \% 2=0$ texture(u,v) $=0 ; / /$ black
Else
texture $(u, v)=1 ; / /$ white

RGB Textures

OHio Intensity Modulation Textures

- Multiply the objects color by that of the texture.

Camuto 1998

- A binary mask, really redefines the geometry.

- New Microsoft Extension for 8-bit textures.
- Also some cool new extensions to SGI's OpenGL to perform table look-ups after the texture samples have been computed.

Bump Mapping

- This modifies the surface normals.
- More on this later.
- Modifies the surface position in the direction of the surface normal.

- Kd, Ks
- BDRF's
- Brushed Aluminum
- Tweed
- Non-isotropic or anisotropic surface micro facets.
- Each pixel in a texture map is called a Texel
- Each Texel is associated with a 2D, (u,v), texture coordinate
- The range of u, v is $[0.0,1.0]$

(u, v) tuple

- For any (u,v) in the range of (0-1, 0-1), we can find the corresponding value in the texture using some interpolation

Two-Stage Mapping

1. Model the mapping: $(\mathrm{x}, \mathrm{y}, \mathrm{z})->(\mathrm{u}, \mathrm{v})$
2. Do the mapping

$T(u, v)$

For each scanline, y

```
For each pixel, x
    compute u(x,y) and v(x,y)
    copy texture(u,v) to image(x,y)
```

- Samples the warped texture at the appropriate image pixels.
- inverse mapping
- Problems:
- Finding the inverse mapping
- Use one of the analytical mappings that are invertable.
- Bi-linear or triangle inverse mapping
- May \ldots... parts of the texture map

For each v
For each u
compute $x(u, v)$ and $y(u, v)$
copy texture (u, v) to image (x, y)

- Places each texture sample to the mapped image pixel.
- forward mapping
- Problems:
- May not fill image
- Forward mapping needed

- We are given a discrete set of values:
$-\mathbf{F}[i, j]$ for $\mathrm{i}=0, \ldots, \mathrm{~N}, \mathrm{j}=0, \ldots, \mathrm{M}$
- Nearest neighbor:
$-\mathbf{F}(\mathrm{u}, \mathrm{v})=\mathbf{F}\left[\operatorname{round}\left(\mathrm{N}^{*} \mathrm{u}\right), \operatorname{round}\left(\mathrm{M}^{*} \mathrm{v}\right)\right]$
- Linear Interpolation:
$-\mathrm{i}=$ floor $\left(\mathrm{N}^{*} \mathrm{u}\right), \mathrm{j}=$ floor $\left(\mathrm{M}^{*} \mathrm{v}\right)$
- interpolate from $\mathbf{F}[i, j], \mathbf{F}[i+1, j], \mathbf{F}[i, j+1]$, $\mathbf{F}[i+1, j+1]$
- Definition:
- The process of assigning texture coordinates or a texture mapping to an object.
- The mapping can be applied:
- Per-pixel
- Per-vertex
- Higher-order interpolation
$-\mathbf{F}(\mathrm{u}, \mathrm{v})=\sum_{\mathrm{i}} \sum_{\mathrm{j}} \mathbf{F}[i, j] h(u, v)$
- $h(u, v)$ is called the reconstruction kernel
- Guassian
- Sinc function
- splines
- Like linear interpolation, need to find neighbors.
- Usually four to sixteen
- Mapping to a 3D Plane
- Simple Affine transformation
- rotate
- scale
- translate

- Mapping to a Cylinder
- Rotate, translate and scale in the uv-plane
- u -> theta
- v-> z
$-\mathrm{x}=\mathrm{V} \mathrm{r} \cos ($ theta $), \mathrm{y}=\mathrm{r} \sin ($ theta $)$

- Mapping to a Sphere

- Mapping to Sphere
- Impossible!!!!
- Severe distortion at the poles
- u -> theta
-v -> phi
$-\mathrm{x}=\mathrm{r} \sin ($ theta $) \cos (\mathrm{phi})$
$-y=r \sin ($ theta $) \sin (p h i)$
$-\mathrm{z}=\mathrm{r} \cos$ (theta)

Part of a sphere

$$
\begin{aligned}
(u, v) & =(0,0) \Leftrightarrow(\theta, \phi)=(0, \pi / 2) \\
(u, v) & =(1,0) \Leftrightarrow(\theta, \phi)=(\pi / 2, \pi / 2) \\
(u, v) & =(0,1) \Leftrightarrow(\theta, \phi)=(0, \pi / 4) \\
(u, v) & =(1,1) \Leftrightarrow(\theta, \phi)=(\pi / 2, \pi / 4)
\end{aligned},
$$

- Setup up surface, define correspondence, and voila!
- Can even solve for (θ, ϕ) and (u, v)
$-\mathrm{A}=\pi / 2, \mathrm{~B}=0, \mathrm{C}=-\pi / 4, \mathrm{D}=\pi / 2$

So looks like we have the texture space \Leftrightarrow object space part done!

- Let's take a closer look:

Started with squares and ended with curves $:$: It only gets worse for larger parts of the sphere

- Map texture to:
- Plane
- Cylinder
- Sphere

- Box
- Map object to same.

- Cylindrical Mapping

- Intermediate \rightarrow Object is O mapping

$$
(\mathrm{u}, \mathrm{v}) \xrightarrow{\mathrm{S}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \xrightarrow{\mathrm{T}}\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}\right)
$$

Texture space \longrightarrow Intermediate space \longrightarrow Object space

- A method to relate the surface to the cylinder

- Bier and Sloan defined 4 main ways

- Plane/ISN (projector)
- Works well for planar objects
- Cylinder/ISN (shrink-wrap)
- Works well for solids of revolution
- Box/ISN
- Sphere/Centroid
- Box/Centroid

- Plane/ISN

Texture Parameterization

- Plane/ISN
- Draw vector from point (vertex or object space pixel point) in the direction of the texture plane.
- The vector will intersect the plane at some point depending on the coordinate system

- Cylinder/ISN

- Distortions on horizontal planes
- Draw vector from point to cylinder
- Vector connects point to cylinder axis

Watt

- Sphere/ISN
- Small distortion everywhere.
- Draw vector from sphere center through point on the surface and intersect it with the sphere.

Watt

- What is this ISN?
- Intermediate surface normal.
- Needed to handle concave objects properly.
- Sudden flip in texture coordinates when the object crosses the axis.

- Flip direction of vector such that it points in the same half-space as the outward surface normal.

- Given: a triangle with texture coordinates at each vertex.
- Find the texture coordinates at each point within the triangle.

- Given: a triangle with texture coordinates at each vertex.
- Find the texture coordinates at each point within the triangle.

Triangle Mapping

- Triangles define linear mappings.
- $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}$
- $v(x, y, z)=E x+F y+G z+H$
- Plug in the each point and corresponding texture coordinate.
- Three equations and three unknowns
- Need to handle special cases: $u==u(x, y)$ or $\mathrm{v}==\mathrm{v}(\mathrm{x})$, etc.
- The equation: $f(x, y)=\mathrm{A} x+\mathrm{B} y+\mathrm{C}$ defines a linear function in 2D.
- Knowing the values of $f()$ at three locations gives us enough information to solve for A, B and C.
- Provided the triangle lies in the xy-plane.

- We need to find two 3D functions: $u(x, y, z)$ and $v(x, y, z)$.
- However, there is a relationship between x , y and z, so they are not independent.
- The plane equation of the triangle yields:

$$
z=A x+B y+D
$$

- A linear function in 3 D is defined as

$$
-f(x, y, z)=A x+B y+C z+D
$$

- Note, four points uniquely determine this equation, hence a tetrahedron has a unique linear function through it.
- Taking a slice plane through this gives us a linear function on the plane.

Triangle Interpolation

- We get a similar set of equations for $v(x, y, z)$.
- Note, that if the points lie in a plane parallel to the $x z$ or $y z$-planes, then z is undefined.
- We should then solve the plane equation for y or x, respectively.
- For robustness, solve the plane equation for the term with the highest coefficient.
- Given: four texture coordinates on four vertices of a quadrilateral.
- Determine the texture coordinates throughout the quadrilateral.
- Given a quadrilateral with texture coordinates at each vertex
- The exact mapping, M, is unknown

ohio Inverse Bilinear Interpolation

- Given:
- $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{u}_{0}, \mathrm{~V}_{0}\right)$
$-\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{u}_{1}, \mathrm{v}_{1}\right)$
$-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{u}_{2}, \mathrm{~V}_{2}\right)$
$-\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{u}_{3}, \mathrm{~V}_{3}\right)$
- (xs,ys,zs) - The screen coords. w/depth
- T^{-1}
- Calculate (xt,yt,zt) from T-1*(xs,ys,zs)

Barycentric Coordinates:

$$
\begin{aligned}
& x(s, t)=x_{0}(1-s)(1-t)+x_{1}(s)(1-t)+x_{2}(s)(t)+x_{3}(1-s)(t)=x t \\
& y(s, t)=y_{0}(1-s)(1-t)+y_{1}(s)(1-t)+y_{2}(s)(t)+y_{3}(1-s)(t)=y t \\
& z(s, t)=z_{0}(1-s)(1-t)+z_{1}(s)(1-t)+z_{2}(s)(t)+z_{3}(1-s)(t)=z t \\
& u(s, t)=u_{0}(1-s)(1-t)+u_{1}(s)(1-t)+u_{2}(s)(t)+u_{3}(1-s)(t) \\
& v(s, t)=v_{0}(1-s)(1-t)+v_{1}(s)(1-t)+v_{2}(s)(t)+v_{3}(1-s)(t)
\end{aligned}
$$

Solve for s and t using two of the first three equations.
This leads to a quadratic equation, where we want the root between zero and one.

- When mapping a square texture to a rectangle, the solutions will be linear.
- The quadratic will simplify to a linear equation.
$-\mathrm{s}(\mathrm{x}, \mathrm{y})=\mathrm{s}(\mathrm{x})$, or $\mathrm{s}(\mathrm{y})$.
- You need to check for these conditions.

- Linearly interpolate each edge
- Linearly interpolate (u1,v1),(u2,v2) for each scan line
 What Should We Do?
- If we march in equal steps in screen space (in a line say) then how to do move in texture space?
- Must take into account perspective division
- We failed to take into account perspective foreshortening
- Linearly interpolating doesn't follow the object
- Scan-conversion and color/z/normal interpolation take place in screen space
- What about texture coordinates?
- Do it in clip space, or homogenous coordinates
- From the two end points of a line segment (scan line), interpolate for a point Q inbetween:

$$
\mathbf{Q}^{s}=\left(1-t^{s}\right) \mathbf{Q}_{1}^{s}+t^{s} \mathbf{Q}_{2}^{s}
$$

- Where: $\mathbf{Q}_{1}^{s}=\mathbf{Q}_{1} / w_{1}$ and $\mathbf{Q}_{2}^{s}=\mathbf{Q}_{2} / w_{2}$.
- Easy to show: in most occasions, t and t^{s} are different
- Two end points of a line segment (scan line)

$$
\mathbf{Q}_{1}=\left(x_{1}, y_{1}, z_{1}, w_{1}\right) \quad \mathbf{Q}_{2}=\left(x_{2}, y_{2}, z_{2}, w_{2}\right)
$$

- Interpolate for a point Q in-between

$$
\mathbf{Q}=(1-t) \mathbf{Q}_{1}+t \mathbf{Q}_{2}
$$

- All such interpolation happens in homogeneous space.
- Use A and B to linearly interpolate texture coordinates
- The homogeneous texture coordinate is: (u,v,1)
- $u^{\prime}=A /(A+B) u_{1}{ }^{\prime}+B /(A+B) u_{2}{ }^{\prime}$
- $w^{\prime}=A /(A+B) w_{1}{ }^{\prime}+B /(A+B) w_{2}{ }^{\prime}=1$
- $u=u^{\prime} / w^{\prime}=u^{\prime}=\left(A u_{1}^{\prime}+B u_{2}{ }^{\prime}\right) /(A+B)$
- $u=\left(a u_{1}{ }^{\prime}+B u_{2}{ }^{\prime}\right) /(A+B)$
- $u=\left(a u_{1}{ }^{\prime} / w_{1}{ }^{\prime}+b u_{2}{ }^{\prime} / w_{2}{ }^{\prime}\right) /\left(a^{1 /} / w_{1}{ }^{\prime}+b^{1 /} / w_{2}^{\prime}\right)$

Homogeneous Texture Coordinates

Open GL functions

- During initialization read in or create the texture image and place it into the OpenGL state.
gITexImage2D (GL_TEXTURE_2D, 0, GL_RGB,
imageWidth, imageHeight, O, GL_RGB,
GL_UNSIGNED_BYTE, imageData);
- Before rendering your textured object, enable texture mapping and tell the system to use this particular texture.
gIBindTexture (GL_TEXTURE_2D, 13);
- Nate Miller's pages
- OpenGL Texture Mapping : An Introduction
- Advanced OpenGL Texture Mapping
- During rendering, give the cartesian coordinates and the texture coordinates for each vertex.
gIBegin (GL_QUADS);
gITexCoord2f (0.0, 0.0);
g/Vertex3f (0.0, 0.0, 0.0);
gITexCoord2f (1.0, 0.0);
glVertex3f(10.0, 0.0, 0.0);
gITexCoord2f(1.0, 1.0);
g/Vertex3f (10.0, 10.0, 0.0);
gITexCoord2f (0.0, 1.0);
gIVertex3f (0.0, 10.0, 0.0);
glEnd ();
- Determine a texture parameterization to a blank image.
- Usually not continuous
- Form a texture map atlas
- Mouse on the 3D model and paint the texture image.
- Deep Paint 3D demo
- Find patches on the 3D model
- Place these (map them) on the texture map image.
- Space them apart to avoid neighboring influences.

Texture Atlas

- Add the color image (or bump, ...) to the texture map.
- Each polygon, thus has two sets of coordinates:
x, y, z world u, v texture

- To interactively paint on a model, we need several things:

1. Real-time rendering.
2. Translation from the mouse pixel location to the texture location.
3. Paint brush style depositing on the texture map.

- Translating from pixel space to texture space.
- We know a polygon's projection to the image.
- We know a polygon's projection to the texture.
- The question is, which polygons are covered by our virtual paintbrush?
- Picking or ray intersections
- Item Buffers (also called Id- or Object-buffers)
- If you have less than $2 * * 24$ polygons in your object, give each polygon a unique color.
- Turn off shading and lighting.
- Read out the sub-image that the brush covers.
- For each polygon id (and xs,ys,zs position), determine the mapping to texture space and the portion of the brush to paint.
- Problems:
- Mip-mapping leads to overlapped regions.
- Large spaces in the texture map to avoid overlap really wastes texture space.
- A common vertex may need to be repeated with different texture coordinates.
- Sprites - usually refer to 2D animated characters that move across the screen.
- Like Pacman Com
- Three types (or styles) of billboards
- Screen-aligned (parallel to top of screen)
- World aligned (allows for head-tilt)
- Axial-aligned (not parallel to the screen)
- Annotated polygons do not exist with OpenGL 1.3 directly.
- If you specify the billboards for one viewing direction, they will not work when rotated.

- The alpha test is required to remove the background.
- More on this example when we look at depth textures.

- Billboards need to be re-oriented as the camera moves.
- This requires immediate mode (or a vertex shader program).
- Can either:
- Recalculate all of the geometry.
- Change the transformation matrices.
- Need a projected point (say the lower-left), the projected up-direction, and the projected scale of the billboard.
- Difficulties arise if we are looking directly at the ground plane.

Screen-aligned Billboards

- Extract the projection and model view matrices.
- Determine the pure rotation component of the combined matrix.
- Take the inverse.
- Multiply it by the current model-view matrix to undo the rotations.
- Alternatively, we can think of this as two rotations.
- First rotate around the $u p$-vector to get the normal of the billboard to point towards the eye.
- Then rotate about a vector perpendicular to the new normal orientation and the new up-vector to align the top of the sprite with the edge of the screen.
- This gives a more spherical orientation.

Useful for placing text on the screen.

- Allow for a final rotation about the eyespace z-axis to orient the billboard towards some world direction.
- Allows for a head tilt.

Lastra

- The up-vector is constrained in worldspace.
- Rotation about the up vector to point normal towards the eye as much as possible.
- Assuming a ground plane, and always perpendicular to that.
- Typically used for trees.

- Many textures are the result of small perturbations in the surface geometry
- Modeling these changes would result in an explosion in the number of geometric primitives.
- Bump mapping attempts to alter the lighting across a polygon to provide the illusion of texture.
- Exar

- Consider the lighting for a modeled surface.

- We can model this as deviations from some base surface.
- The question is then how these deviations change the lighting.

- Assumption: small deviations in the normal direction to the surface.

$$
\overrightarrow{\mathbf{X}}=\overrightarrow{\mathbf{X}}+\mathrm{B} \overrightarrow{\mathbf{N}}
$$

Where B is defined as a 2 D function parameterized over the surface:

$$
\mathrm{B}=\mathrm{f}(\mathrm{u}, \mathrm{v})
$$

Bump Mapping

Bump Mapping

- Define the tangent plane to the surface at a point (u, v) by using the two vectors O_{u} and O_{v}, resulting from the partial derivatives.
- The normal is then given by:
- $N=O_{u} \times O_{v}$

- The new surface positions are then given by:

$$
\cdot \mathbf{O}^{\prime}(\mathrm{u}, \mathrm{v})=\mathbf{O}(\mathrm{u}, \mathrm{v})+\mathrm{B}(\mathrm{u}, \mathrm{v}) \mathbf{N}
$$

- Where, $\mathbf{N}=\mathbf{N} /|\mathbf{N}|$
- Differentiating leads to:
- $\mathbf{O}_{\mathbf{u}}^{\prime}=\mathbf{O}_{\mathbf{u}}+\mathrm{B}_{\mathbf{u}} \mathbf{N}+\mathrm{B}(\mathbf{N})_{u} \approx \mathbf{O}_{\mathbf{u}}^{\prime}=\mathbf{O}_{\mathbf{u}}+\mathrm{B}_{\mathbf{u}} \mathbf{N}$
- $\mathbf{O}_{v}^{\prime}=\mathbf{O}_{v}+B_{v} \mathbf{N}+B(\mathbf{N})_{v} \approx \mathbf{O}_{v}^{\prime}=\mathbf{O}_{v}+B_{v} \mathbf{N}$

If B is small.

- This leads to a new normal:

$$
\begin{aligned}
\quad \mathbf{N}^{\prime}(\mathrm{u}, \mathrm{v})= & \mathbf{O}_{\mathbf{u}} \times \mathbf{O}_{\mathbf{v}}-\mathrm{B}_{\mathbf{u}}\left(\mathbf{N} \times \mathbf{O}_{\mathbf{v}}\right)+\mathrm{B}_{\mathbf{v}}\left(\mathbf{N} \times \mathbf{O}_{\mathbf{u}}\right) \\
& +\mathrm{B}_{\mathbf{u}} \mathrm{B}_{\mathbf{v}}(\mathbf{N} \times \mathbf{N}) \\
& =\mathbf{N}-\mathrm{B}_{\mathbf{u}}\left(\mathbf{N} \times \mathbf{O}_{\mathbf{v}}\right)+\mathrm{B}_{\mathbf{v}}\left(\mathbf{N} \times \mathbf{O}_{\mathbf{u}}\right) \\
= & \mathbf{N}+\mathbf{D}
\end{aligned}
$$

Bump Mapping

- An alternative representation of bump maps can be viewed as a rotation of the normal.
- The rotation axis is the cross-product of N and N^{\prime}.
- This is commonly called a offset vector map.
- Note: It is oriented in tangent-space, not normal space.
- The cross products are geometry terms only.
- \mathbf{N} ' will of course need to be normalized after the calculation and before lighting.
- This floating point square root and division makes it difficult to embed into hardware.
- For efficiency, can store B_{u} and B_{v} in a 2component texture map.
- We can store:
- The height displacement
- The offset vectors in tangent space
- The rotations in tangent space
- Matrices
- Quaternians
- Euler angles
- Object dependent versus reusable.
- GeForce 3 allows pseudo-depth textures to get rid of the smoothness of the bumpmapped surface silhouettes.

Dot Product Depth Replace

- Originally you would send the geometry down, transform it, shade it, texture it, and THEN blend it with whatever is in the framebuffer
- Multi-texture keeps the geometry and applies more texture operations before it dumps it to the framebuffer.
- Rasterization is even more important now!
- Doubling pixels will result in bright spots
- Be careful the order in which you blend
- From Kenny
- Given: Polygons A, B, C; polygon opacity factors: $\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}}, \mathrm{K}_{\mathrm{C}}$; and polygon intensities (perhaps RGB triplets: $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$)
- $\mathrm{rI}_{\mathrm{K}}=$ resulting intensity at polygon K
- $r I_{A}=\left(1-K_{A}\right) I_{A}+K_{A} r I_{B}$
$r I_{B}^{A}=\left(1-K_{B}\right) I_{B}^{A}+K_{B} r I_{C}$
$r I_{A}=\left(1-K_{A}\right) I_{A}+K_{A}^{B}\left[\left(1-K_{B}\right) I_{B}+K_{B} I_{C}\right]<-A$ to B to C
- $r I_{B}=\left(1-K_{B}\right) I_{B}+K_{B}\left[\left(1-K_{A}\right) I_{A}+K_{A} I_{C}<-B\right.$ to A to C
- $I_{A}=1, I_{B}=0.5, K_{A}=0.2, K_{B}=0.5:\left(I_{C}=1\right)$
$r I_{A}=(1-0.2)(1)+(0.2)[(1-0.5)(0.5)+(0.5)(1)]=$
0.95
${ }_{0}^{r I_{\mathrm{B}}}=(1-0.5)(0.5)+(0.5)[(1-0.2)(1)+(0.2)(1)]=$
- Blending order matters! Should sort!
- Determine reflected ray.
- Look-up direction from a sphere-map.

- Reflection only depends
 on the direction, not the position.
- We can also encode the reflected directions using several other formats.
- Greene, et al suggested a cube. This has the advantage that it can be constructed by six normal renderings.

- Create six views from the shiny object's centroid.
- When scan-converting the object, index into the appropriate view and pixel.
- Use reflection vector to index.
- Largest component of reflection vector will determine the face.
- Problems:
- Reflection is about object's centroid.
- Okay for small objects and and distant reflections.

- Sphere mapping
- Unpeel the sphere, such that the outer radius of the circle is the back part of the sphere

- Dual Paraboloid
- Multi-textured or multi-pass

- Cheap environment mapping
- Material is very glossy, hence perfect reflections are not seen.
- Index into a pre-computed view independent texture.
- Reflection vectors are still view dependent.
- Applications
- Specular highlights
- Multiple light sources
- Reflections for shiny surfaces
- Irradiance for diffuse surfaces
- Usually, we set it to a very blurred landscape image.
- Brown or green on the bottom
- White and blue on the top.
- Normals facing up have a white/blue color
- Normals facing down on average have a brownish color.
- Also useful for things like fire.
- The major point, is that it is not important what actually is shown in the reflection, only that it is view dependent.

Anti-aliasing for Texture Mapping

Quality considerations

- Pixel area maps to "weird" (warped) shape in texture space

- We need to:
- Calculate (or approximate) the integral of the texture function under this area
- Approximate:
- Convolve with a wide filter around the center of this area
- Calculate the integral for a similar (but simpler) area.
- The area is typically approximated by a rectangular region (found to be good enough for most applications)
- Filter is typically a box/averaging filter other possibilities
- How can we pre-compute this?
- Mipmapping was invented in 1983 by Lance Williams
- Multi in parvo "many things in a small place"
- An image-pyramid is built.

- Find level of the mip-map where the area of each mip-map pixel is closest to the area of the mapped

- Mip-maps are thus indexed by u, v, and the level, or amount of compression, d.
- The compression amount, d, will change according to the compression of the texels to the pixels, and for mip-maps can be approximated by:
- $d=\operatorname{sqrt}$ (Area of pixel in $u v$-space)
- The sqrt is due to the assumption of uniform compression in mip-maps.
- Recall how to calculate the area of a 2D polygon (in this case, the quadrilateral of the mapped pixel corners)
- The texel location can be determined to be either:

1. The $u v$-mapping of the pixel center.
2. The average u and v values from the projected pixel corners (the centroid).
3. The diagonal crossing of the projected quadrilateral.

- However, there are only so many mip-map centers.
- Pros
- Easy to calculate:
- Calculate pixels area in texture space
- Determine mip-map level
- Sample or interpolate to get color
- Cons
- Area not very close - restricted to square shapes (64×64 is far away from 128×128).
- Location of area is not very tight - shifted.
- Alpha can be averaged just like rgb for texels
- Watch out for borders though if you interpolate

- OpenGL allows you to specify each level individually (see glTexImage $2 D$ function).
- The GLU routine gluBuild2Dmipmaps() routine offers an easy interface to averaging the original image down into its mip-map levels.
- You can (and probably should) recalculate the texture for each level.
Warning: By default, the filtering assumes mipmapping. If you do not specify all of the mip-map levels, your image will probably be black.
- Two considerations should be made in the construction of the higher-levels of the mip-map.

1. Filtering - simple averaging using a box filter, apply a better low-pass filter.
2. Gamma correction - by taking into account the perceived brightness, you can maintain a more consistent effect as the object moves further away.

- A pixel may rarely project onto texture space affinely.
- There may be large distortions in one direction.

- Multiple mip-maps or Ripmaps
- Summed Area Tables (SAT)
- Multi-sampling for anisotropic texture filtering.
- EWA filter
- Scale by half by x across a row.
- Scale by half in y going down a column.
- The diagonal has the equivalent mip-map.
- Four times the amount of storage is required.
- To use a ripmap, we use the pixel's extents to determine the appropriate compression ratios.
- This gives us the four neighboring maps from which to sample and interpolate from.
- Use an axis aligned rectangle, rather than a square
- Pre-compute the sum of all texels to the left and below for each texel location
- For texel (u,v), replace it with:

$$
\operatorname{sum}(\operatorname{texels}(i=0 \ldots u, j=0 \ldots v))
$$

- Determining the rectangle:
- Find bounding box and calculate its aspect ratio

- Determine the rectangle with the same aspect ratio as the bounding box and the same area as the pixel

- Calculating the color
- We want the average of the texel colors within this rectangle

- Center this rectangle around the bounding box center.
- Formula:
- Area $=$ aspect_ratio*x*x
- Solve for x - the width of the rectangle
- Other derivations are also possible using the aspects of the diagonals, ...
- To get the average, we need to divide by the number of texels falling in the rectangle.

Color $=\operatorname{SAT}(\mathrm{u} 3, \mathrm{v} 3)-\operatorname{SAT}(\mathrm{u} 4, \mathrm{v} 4)-\operatorname{SAT}(\mathrm{u} 2, \mathrm{v} 2)+\operatorname{SAT}(\mathrm{u} 1, \mathrm{v} 1)$
Color $=$ Color $/((u 3-u 1) *(v 3-v 1))$

- This implies that the values for each texel may be very large:

For 8-bit colors, we could have a maximum SAT value of $255 *$ nx*ny
32 -bit pixels would handle a 4 kx 4 k texture with 8 -bit values. RGB images imply 12 -bytes per pixel.

- Pros

Still relatively simple

- Calculate four corners of rectangle
- 4 look-ups, 5 additions, 1 multiply and 1 divide.
- Better fit to area shape
- Better overlap
- Cons
- Large texel SAT values needed.
- Still not a perfect fit to the mapped pixel.
- The divide is expensive in hardware.
- Uses parallel hardware to obtain multiple mip-map samples for a fragment.
- A lower-level of the mip-map is used.
- Calculate d as the minimum length, rather than the maximum.

Elliptical Weighted Average (EWA) Filter

- Treat each pixel as circular, rather than square.
- Mapping of a circle is elliptical in texel space.

- Precompute?
- Can use a better filter than a box filter.
- Heckbert chooses a Gaussian filter.
- Calculating the Ellipse
- Scan converting the Ellipse
- Determining the final color (normalizing the value or dividing by the weighted area).
- Calculating the ellipse
- We have a circular function defined in (x, y).
- Filtering that in texture space $h(u, v)$.
$-(\mathrm{u}, \mathrm{v})=\mathrm{T}(\mathrm{x}, \mathrm{y})$
- Filter: h(T(x,y))
- Ellipse:
$-\phi(u, v)=A u^{2}+B u v+C v^{2}=\mathrm{F}$
$-(u, v)=(0,0)$ at center of the ellipse
- $A=v_{x}^{2}+v_{y}^{2}$
- $B=-2\left(u_{x} v_{y}+u_{y} v_{x}\right)$
- $C=u_{x}{ }^{2}+u_{y}{ }^{2}$
- $F=u_{x} v_{y}+u_{y} v_{x}$
- Scan converting the ellipse:
- Determine the bounding box
- Scan convert the pixels within it, calculating $\phi(u, v)$.
- If $\phi(u, v)<\boldsymbol{F}$, weight the underlying texture value by the filter kernel and add to the sum.
- Also, sum up the filter kernel values within the ellipse.
- Determining the final color
- Divide the weighted sum of texture values by the sum of the filter weights.
- What about large areas?
- If \boldsymbol{m} pixels fall within the bounding box of the ellipse, then we have $\mathbf{O}\left(\boldsymbol{n}^{2} \boldsymbol{m}\right)$ algorithm for an $n x n$ image. \boldsymbol{m} maybe rather large.
- We can apply this on a mip-map pyramid,rather than the full detailed image.
- Tighter-fit of the mapped pixel
- Cross between a box filter and gaussian filter.
- Constant complexity - O(\boldsymbol{n}^{2})

Procedural and Solid Textures

- Introduced by Perlin and Peachey (Siggraph 1989)
- Look for book by Ebert et al: V "Texturing and Modeling: A
Procedural Approach"
- It's a 3D texturing approach (can be used in 2D of course)
- Gets around a bunch of problems of 2D textures
- Deformations/compressions
- Worrying about topology
- Excessively large texture maps
- In 3D, analogous to sculpting or carving
- Much simpler than 2D texture mapping:
- $u=x$
- $v=y$
- $w=z$
- Object Density Function $D(x)$
- defines an object, e.g. implicit description or inside/outside etc.
- Density Modulation Function (DMF) f_{i}
- position dependent
- position independent
- geometry dependent
- Hyper-texture:
$H(D(x), x)=f_{n}\left(\ldots f_{2}\left(f_{1}(D(x))\right)\right)$
- Base DMF's:
- bias

used to bend the Density function either upwards or downwards over the $[0,1]$ interval. The rules the bias function has to follow are: $\operatorname{bias}(b, 0)=0$
$b=0.25 \operatorname{bias}(b, 5)=b$

bias(b,1)=1

The following function exhibits those properties:
$b=0.75 \cdot \operatorname{bias}(b, t)=t^{\wedge}(\ln (b) / \ln (0.5))$

Procedural Textures

The gain function is used to help shape how fast the midrange of an objects soft region

Procedural Textures

- Gain

- The gain function is defined as a spline of two bias curves: gain $(g, t)=$ if ($t<0.5$) then $\operatorname{bias}(1-\mathrm{g}, 2 * \dagger)$ else $1-\operatorname{bias}(1-\mathrm{g}, 2-2 * 2 \dagger) / 2$ the a higher rate in change. The rules of the gain function are as follows:
gain($g, 0$)=0
gain $(g, 1 / 4)=(1-g) / 2$
gain $(g, 1 / 2)=1 / 2$
gain $(g, 3 / 4)=(1+g) / 2$
$\operatorname{gain}(g, 1)=1$

$G=0.25$
$G=0.75$

Noise

- Noise
- some strange realization that gives smoothed values between -1 and 1
- creates a random gradient field $G[i, j, k]$ (using a 3 step monte carlo process separate for each coordinate)
- Set all integer lattice values to zero
- Randomly assign gradient (tangent) vectors

Procedural Textures

- Noise
- for an entry (x, y, z) - he does a cubic interpolation step between the dotproduct of G and the offset of the 8 neighbors of G of (x, y, z):
- creates "higher order" noise - noise of higher frequency, similar to the fractal brownian motion:

- Increase frequency, decrease amplitude

Turbulence

Procedural Textures

- Effects (on colormap):
- noise:

- Effects (on colormap):
- sum 1/f(noise):

- Effects (on colormap):
- sum 1/f(|noisel):

OHO
 SIATE
 Density Function Models

- Radial Function (2D Slice)
- Effects (on colormap):
$-\sin (x+\operatorname{sum} 1 / f(\mid$ noise $\mid)):$

- Modulated with Noise function.

- Thresholded (iso-contour or step function).

- Volume Rendering of Hypertextured Sphere

Procedural Textures

- Effects:

- noisy sphere
- modify amplitude/frequency
- (Perlins fractal egg)

- Effects:
- marble
- marble $(x)=m _\operatorname{color}(\sin (x+$ turbulence $(x)))$
- fire

Procedural Textures

Procedural Textures

Many other effects!!

- Wood,
- fur,
- facial animation,
- etc.

Procedural Textures

- Rendering
- solid textures
- keeps original surface
- map (x, y, z) to (u,v,w)
- hypertexture
- changes surface as well (density function)
- volume rendering approach
- I.e. discrete ray caster

So-so marble Brick with mortar

Better marble

Better marble

 as well.
OHio
 SAATE
 More Marble

Decent Marble

Not so good fire.

More examples

Bump Mapping

Bump Mapping

- Bump map based on a simple image or procedure. Cylindrical texture space used.

