
Why do clipping?

• Clipping is a visibility
preprocess. In real-world
scene clipping can remove
a substantial percentage of
the environment from
consideration.

• Clipping offers an
important optimization

• Also need to avoid setting
pixel values outside of the
range.

What is clipping, two views

• Clipping spatially partitions geometric primitives,
according to their containment within some
region. Clipping can be used to:
– Distinguish whether geometric primitives are inside or

outside of a viewing frustum or picking frustum
– Detect intersections between primitives

• Clipping subdivides geometric primitives. Several
other potential applications.
– Binning geometric primitives into spatial data structures
– computing analytical shadows.

Xmin Xmax

Ymin

Ymax

Point ClippingPoint ClippingPoint ClippingPoint Clipping

(x, y)
is inside iff

Xmin x Xmax≤ ≤ AND Ymin y Ymax≤ ≤

y < ymax y > ymin

x > xmin x < xmax

= ∩∩∩∩interior

xmin xmax

ymin

ymax

Line Clipping - Half Plane Tests

Modify endpoints to lie in rectangle
“Interior” of rectangle?
Answer: intersection of 4 half-planes
3D ? (intersection of 6 half-planes)

Line Clipping

Is end-point inside a clip region? - half-plane test
If outside, calculate intersection between line and
the clipping rectangle and make this the new end
point

• Both endpoints inside:
trivial accept

• One inside: find
intersection and clip

• Both outside: either clip or
reject (tricky case)

Cohen-Sutherland Algorithm
(Outcode clipping)

• Classifies each vertex of a
primitive, by generating an
outcode. An outcode
identifies the appropriate half
space location of each vertex
relative to all of the clipping
planes. Outcodes are usually
stored as bit vectors.

Cohen-Sutherland Algorithm
(Outcode clipping)

if (outcode1 == '0000' and outcode2 == ‘0000’) then
line segment is inside

else
if ((outcode1 AND outcode2) == 0000) then

line segment potentially crosses clip region
else

line is entirely outside of clip
region

endif
endif

The Maybe cases?

If neither trivial accept nor reject:
Pick an outside endpoint (with nonzero
outcode)
Pick an edge that is crossed (nonzero bit of
outcode)
Find line's intersection with that edge
Replace outside endpoint with intersection
point
Repeat until trivial accept or reject

The Maybe case The Maybe Case

The Maybe Case Difficulty

• This clipping will handle most cases.
However, there is one case in general that
cannot be handled this way.
– Parts of a primitive lie both in front of and

behind the viewpoint. This complication is
caused by our projection stage.

– It has the nasty habit of mapping objects in
behind the viewpoint to positions in front of it.

One Plane At a Time Clipping

• (a.k.a. Sutherland-Hodgeman Clipping)
• The Sutherland-Hodgeman triangle clipping

algorithm uses a divide-and-conquer strategy.
• Clip a triangle against a single plane. Each of the

clipping planes are applied in succession to every
triangle.

• There is minimal storage requirements for this
algorithm, and it is well suited for pipelining.

• It is often used in hardware implementations.

• Clip a polygon (input: vertex list) against a single
clip edges

• Output the vertex list(s) for the resulting clipped
polygon(s)

• Clip against all four planes
– Generalizes to 3D (6 planes)
– Generalizes to clip against any convex

polygon/polyhedron
• Used in viewing transforms

Sutherland-Hodgman
Polygon Clipping Algorithm

Sutherland-Hodgman
Polygon Clipping Algorithm

SHclippedge(var: ilist, olist: list; ilen, olen, edge : integer)

s = ilist[ilen]; olen = 0;

for i = 1 to ilen do

d := ilist[i];

if (inside(d, edge) then

if (inside(s, edge) then -- case 1 just add d

addlist(d, olist); olen := olen + 1;

else -- case 4 add new intersection pt. and d

n := intersect(s, d, edge);

addlist(n, olist); addlist(d, olist); olen = olen + 2;

else if (inside(s, edge) then -- case 2 add new intersection pt.

n := intersect(s, d, edge); addlist(n, olist); olen ++; s = d;

end_for;

Sutherland-Hodgman

Clip input polygon ilist to
the edge, edge, and ouput
the new polygon.

Sutherland-Hodgman

SHclip(var: ilist, olist: list; ilen, olen : integer)

{

SHclippedge(ilist, tmplist1, ilen, tlen1, RIGHT);

SHclippedge(tmplist1, tmplist2, tlen1, tlen2, BOTTOM);

SHclippedge(tmplist2, tmplist1, tlen2, tlen1, LEFT);

SHclippedge(tmplist1, olist, tlen1, olen, TOP);

}

Pictorial Example

Sutherland-Hodgman

• Advantages:
– Elegant (few special cases)
– Robust (handles boundary and edge conditions well)
– Well suited to hardware
– Canonical clipping makes fixed-point implementations

manageable
• Disadvantages:

– Only works for convex clipping volumes
– Often generates more than the minimum number of

triangles needed
– Requires a divide per edge

Interpolating Parameters

3D Clipping (Planes)

x

y

z

image plane

near
far

4D Polygon Clip

Use Sutherland Hodgman algorithm

Use arrays for input and output lists

There are six planes of course !

OpenGL uses -1<=x<=1, -1<=y<=1, -1<=z<=1
We use: -1<=x<=1, -1<=y<=1, -1<=z <=0
Must clip in homogeneous coordinates:

w>0: -w<=x<=w, -w<=y<=w, -w<=z<=0
w<0: -w>=x>=w, -w>=y>=w, -w>=z>=0

Consider each case separately
What issues arise ?

4D Clipping 4D Clipping

• Point A is inside, Point B is outside. Clip edge AB
x = Ax + t(Bx – Ax)
y = Ay + t(By – Ay)
z = Az + t(Bz – Az)
w = Aw + t(Bw – Aw)

• Clip boundary: x/w = 1 i.e. (x–w=0);
w-x = Aw – Ax + t(Bw – Aw – Bx + Ax) = 0

Solve for t.

Why Homogeneous Clipping

• Efficiency/Uniformity: A single clip procedure is
typically provided in hardware, optimized for
canonical view volume.

• The perspective projection canonical view volume
can be transformed into a parallel-projection view
volume, so the same clipping procedure can be
used.

• But for this, clipping must be done in homogenous
coordinates (and not in 3D). Some transformations
can result in negative W : 3D clipping would not
work.

Difficulty (revisit)

• Clipping will handle most cases. However,
there is one case in general that cannot be
handled this way.
– Parts of a primitive lie both in front of and

behind the viewpoint. This complication is
caused by our projection stage.

– It has the nasty habit of mapping objects in
behind the viewpoint to positions in front of it.

• Solution: clip in homogeneous coordinate

P1 and P2 map to same physical point !

Solution:

Clip against both regions

Negate points with negative W

4D Clipping Issues

P2=[-1,-2,-3,-4]

W=1

P1=[1,2,3,4]

W=-X W=X

P1

W=1 Inf-Inf

4D Clipping Issues

Line straddles both regions

After projection one gets two line segments

How to do this? Only before the perspective division

Additional Clipping Planes

• At least 6 more clipping planes available
• Good for cross-sections
• Modelview matrix moves clipping plane
• clipped
• glEnable(GL_CLIP_PLANEi)

• glClipPlane(GL_CLIP_PLANEi, GLdouble*
coeff)

0<+++ DCzByAx

Reversing Coordinate Projection

• Screen space back to world space
• glGetIntegerv(GL_VIEWPORT, GLint viewport[4])

• glGetDoublev(GL_MODELVIEW_MATRIX, GLdouble mvmatrix[16]
)

• glGetDoublev(GL_PROJECTION_MATRIX,
GLdouble projmatrix[16])

• gluUnProject(GLdouble winx, winy, winz,
mvmatrix[16], projmatrix[16],
GLint viewport[4],
GLdouble *objx, *objy, *objz)

• gluProject goes from world to screen space

Shaders

• Local illumination quite complex
– Reflectance models
– Procedural texture
– Solid texture
– Bump maps
– Displacement maps
– Environment maps

• Need ability to collect into a single
shading description called a shader

• Shaders also describe
– lights, e.g. spotlights
– atmosphere, e.g. fog

Shading v. Modeling

• Shaders generate more than color
– Displacement maps can move geometry
– Opacity maps can create holes in geometry

• Frequency of features
– Low frequency modeling operations
– High frequency shading operations

Shade Trees

• Cook, SIGGRAPH 84
• Hierarchical

organization of shading
• Breaks a shading

expression into simple
components

• Visual programming
• Modular
• Drag-n-drop shading

components

*

+ copper
color

*
ka Ca

*
ks specular

normal viewer roughness

Texture v.
Bump Mapping

• Texture
mapping
simulates detail
with a color
that varies
across a surface

• Bump mapping
simulates detail
with a surface
normal that
varies across a
surface

+
* *

tex(s,t)

NL

kskd

H

+
* *

tex(s,t)

bump()L

kskd

H

N B

⋅ ⋅

⋅ ⋅

Problems with Shade Trees

• Shaders can get very complex
• Sometimes need higher-level constructs

than simple expression trees
– Variables
– Iteration

• Need to compile a program instead of
evaluate an expression

Renderman Shading Language

• Hanrahan & Lawson, SIGGRAPH 90
• High level little language
• Special purpose variables useful for shading

– P – surface position
– N – surface normal

• Special purpose functions useful for shading
– smoothstep(x0,x1,a) – smoothly interpolates from x0 to

x1 as a varies from 0 to 1
– specular(N,V,m) – computes specular reflection given

normal N, view direction V and roughness m.

Types

• Colors
– Multiplication is componentwise
– e.g. Cd*(La + Ld) + Cs*Ls + Ct*Lt

• Points
– Built in dot (L.N) and cross (N^L) products
– Transform to other coordinate systems: “raster,”

“screen,” “camera,” “world,” and “object”
• Variables

– Uniform – independent of position
– Varying – changes across surface

Lighting

• Constructs
– illuminate() – point source with cone spread
– solar() – directional source

• Variables
– L – direction of light (independent)
– Cl – color of light (dependent)

• Types
– ambient – non-directional (but can vary with position)
– point – equal in all directions
– spot – focused around a given direction
– shadowed – modulated by texture/shadow map
– distant –directional source
– environment map – distant source modulated by texture

Local Illumination

• Construct
– illuminance()

• Variables
– L – incoming light direction
– Cl – incoming light color
– C – output color

• Example (hair diffuse)
color C = 0;
illuminance(P,N,Pi/2) {

L = normalize(L);
C += Kd * Cd * Cl * length(L^T);

}

Texture Functions

• texture() returns float/color based on texture
coordinates

• bump() returns normal perturbation based
on texture coordinates

• environment() returns float/color based on a
direction passed to it

• shadow() returns a float indicating the
percentage a point’s position is shadowed

Renderman
Example

Surface dent(float Ks=.4, Kd=.5, Ka=.1, roughness=.25, dent=.4) {
float turbulence;
point Nf, V;
float I, freq;
/* Transform to solid texture coordinate system */
V = transform(“shader”,P);
/* Sum 6 octaves of noise to form turbulence */
turbulence = 0; freq = 1.0;
for (i = 0; i < 6; i += 1) {

turbulence += 1/freq + abs(0.5*noise(4*freq*V));
freq *= 2;

}
/* sharpen turbulence */
turbulence *= turbulence * turbulence;
turbulence *= dent;
/* Displace surface and compute normal */
P -= turbulence * normalize(N);
Nf = faceforward(normalize(calculatenormal(P)),I);
V = normalize(-I);
/* Perform shading calculations */
Oi = 1 – smoothstep(0.03,0.05,turbulence);
Ci = Oi*Cs*(Ka*ambient() + Ks*specular(Nf,V,roughness));

}

Try It
Yourself

• Photorealistic Renderman
– Based on REYES polygon renderer
– Uses shadow maps

• Blue Moon Rendering Tools
– Free
– Uses ray tracer
– No displacement maps
– http://www.exluna.com/products/bmrt/

Deferred Shading

• Makes procedural shading more efficient
• Why apply shader to entire surface if only small

portion is actually visible
• Separate rendering into two passes

– Pass 1: Render geometry using Z-buffer
• But rather than storing color in frame buffer
• Store shading parameters instead

– Pass 2: Shade frame buffer
• Apply shading procedure to frame buffer
• Replaces shading parameters with color

• Problem: Fat framebuffer

OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

Per-Fragment Operations

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

Getting to the Framebuffer

BlendingBlendingDepth
Test

Depth
Test DitheringDithering Logical

Operations
Logical

Operations

Scissor
Test

Scissor
Test

Stencil
Test

Stencil
Test

Alpha
Test

Alpha
Test

Fr
ag

m
en

t

Fr
am

eb
uf

fe
r

Scissor Box

• Additional Clipping Test
• glScissor(x, y, w, h)

– any fragments outside of box are clipped
– useful for updating a small section of a

viewport
• affects glClear() operations

Alpha Test

• Reject pixels based on their alpha value
• glAlphaFunc(func, value)

• glEnable(GL_ALPHA_TEST)

– use alpha as a mask in textures

Stencil Buffer

• Used to control drawing based on values in
the stencil buffer
– Fragments that fail the stencil test are not drawn
– Example: create a mask in stencil buffer and

draw only objects not in mask area

Stencil Testing

• Now broadly supports by both major APIs
– OpenGL
– DirectX 6

• RIVA TNT and other consumer cards now
supporting full 8-bit stencil

• Opportunity to achieve new cool effects and
improve scene quality

What is Stenciling?
• Per-pixel test, similar to depth buffering.
• Tests against value from stencil buffer;

rejects fragment if stencil test fails.
• Distinct stencil operations performed when

– Stencil test fails
– Depth test fails
– Depth test passes

• Provides fine grain control of pixel update

OpenGL API

• glEnable/glDisable(GL_STENCIL_TEST);
• glStencilFunc(function, reference, mask);
• glStencilOp(stencil_fail,

depth_fail, depth_pass);
• glStencilMask(mask);
• glClear(… | GL_STENCIL_BUFFER_BIT);

Controlling Stencil Buffer

• glStencilFunc(func, ref, mask)
– compare value in buffer with ref using func
– only applied for bits in mask which are 1
– func is one of standard comparison functions

• glStencilOp(fail, zfail, zpass)
– Allows changes in stencil buffer based on passing or

failing stencil and depth tests: GL_KEEP, GL_INCR

Request a Stencil Buffer

• If using stencil, request sufficient bits of stencil
• Implementations may support from zero to 32 bits

of stencil
• 8, 4, or 1 bit are common possibilities
• Easy for GLUT programs:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
GLUT_DEPTH | GLUT_STENCIL);

glutCreateWindow(“stencil example”);

Stencil Test

• Compares reference value to pixel’s stencil buffer
value

• Same comparison functions as depth test:
– NEVER, ALWAYS
– LESS, LEQUAL
– GREATER, GEQUAL
– EQUAL, NOTEQUAL

• Bit mask controls comparison
((ref & mask) op (svalue & mask))

Stencil Operations
• Stencil side effects of

– Stencil test fails
– Depth test fails
– Depth test passes

• Possible operations
– Increment, Decrement (saturates)
– Increment, Decrement (wrap, DX6 option)
– Keep, Replace
– Zero, Invert

• Way stencil buffer values are controlled

Stencil Write Mask

• Bit mask for controlling write back of
stencil value to the stencil buffer

• Applies to the clear too!

• Stencil compare & write masks allow
stencil values to be treated as sub-fields

Very Complex Clip Window

Digital Dissolve

Creating a Mask

• gluInitDisplayMode(…|GLUT_STENCIL|…);

• glEnable(GL_STENCIL_TEST);

• glClearStencil(0x0);

• glStencilFunc(GL_ALWAYS, 0x1, 0x1);

• glStencilOp(GL_REPLACE, GL_REPLACE,
GL_REPLACE);

• draw mask

Using Stencil Mask

• Draw objects where stencil = 1
• glStencilFunc(GL_EQUAL, 0x1, 0x1)

• Draw objects where stencil != 1
• glStencilFunc(GL_NOTEQUAL, 0x1, 0x1

);

• glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP
);

•

Performance

• With today’s 32-bit graphics accelerator
modes, 24-bit depth and 8-bit stencil packed
in same memory word

• RIVA TNT is an example
• Performance implication:

if using depth testing, stenciling is at
NO PENALTY

Repeating that!

• On card like RIVA TNT2 in 32-bit mode

if using depth testing, stenciling has
NO PENALTY

• Do not treat stencil as “expensive” --
in fact, treat stencil as “free” when already
depth testing

Pseudo Global Lighting Effects
• OpenGL’s light model is a “local” model

– Light source parameters

– Material parameters

– Nothing else enters the equation

• Global illumination is fancy word for real-world
light interactions
– Shadows, reflections, refractions, radiosity, etc.

• Pseudo global lighting is about clever hacks

Planar Reflections

Dinosaur is reflected by the planar floor.
Easy hack, draw dino twice, second time has

glScalef(1,-1,1) to reflect through the floor

Compare Two Versions

Good. Bad.

Notice right image’s reflection falls off the floor!

Stencil Maintains the Floor

Clear stencil to zero.
Draw floor polygon with stencil set to one.
Only draw reflection where stencil is one.

Recursive Planar Mirrors

Basic idea of planar reflections can be applied
recursively. Requires more stencil bits.

The Trick (bird’s eye view)

Next: Planar Shadows

Shadow is projected into the plane of the floor.

Constructing a Shadow Matrix
void shadowMatrix(GLfloat shadowMat[4][4], GLfloat groundplane[4], GLfloat lightpos[4])
{
GLfloat dot;
/* Find dot product between light position vector and ground plane normal. */
dot = groundplane[X] * lightpos[X] +
groundplane[Y] * lightpos[Y] +
groundplane[Z] * lightpos[Z] +
groundplane[W] * lightpos[W];
shadowMat[0][0] = dot - lightpos[X] * groundplane[X];
shadowMat[1][0] = 0.f - lightpos[X] * groundplane[Y];
shadowMat[2][0] = 0.f - lightpos[X] * groundplane[Z];
shadowMat[3][0] = 0.f - lightpos[X] * groundplane[W];
shadowMat[X][1] = 0.f - lightpos[Y] * groundplane[X];
shadowMat[1][1] = dot - lightpos[Y] * groundplane[Y];
shadowMat[2][1] = 0.f - lightpos[Y] * groundplane[Z];
shadowMat[3][1] = 0.f - lightpos[Y] * groundplane[W];
shadowMat[X][2] = 0.f - lightpos[Z] * groundplane[X];
shadowMat[1][2] = 0.f - lightpos[Z] * groundplane[Y];
shadowMat[2][2] = dot - lightpos[Z] * groundplane[Z];
shadowMat[3][2] = 0.f - lightpos[Z] * groundplane[W];
shadowMat[X][3] = 0.f - lightpos[W] * groundplane[X];
shadowMat[1][3] = 0.f - lightpos[W] * groundplane[Y];
shadowMat[2][3] = 0.f - lightpos[W] * groundplane[Z];
shadowMat[3][3] = dot - lightpos[W] * groundplane[W];

}

How to Render the Shadow
/* Render 50% black shadow color on top of whatever

the floor appearance is. */
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_LIGHTING); /* Force the 50% black. */
glColor4f(0.0, 0.0, 0.0, 0.5);

glPushMatrix();
/* Project the shadow. */
glMultMatrixf((GLfloat *) floorShadow);
drawDinosaur();

glPopMatrix();

Note Quite So Easy (1)
Without stencil to avoid double blending
of the shadow pixels:

Notice darks spots
on the planar shadow.

Solution: Clear stencil to zero. Draw floor with stencil
of one. Draw shadow if stencil is one. If shadow’s
stencil test passes, set stencil to two. No double blending.

Note Quite So Easy (2)
There’s still another problem even if using
stencil to avoid double blending.

depth buffer Z
fighting artifacts

Shadow fights with depth values from the
floor plane. Use polygon offset to raise shadow
polygons slightly in Z.

Everything All At Once

Lighting, texturing, planar shadows, and
planar reflections all at one time. Stencil &
polygon offset eliminate aforementioned artifacts.

Pseudo Global Lighting

• Planar reflections and shadows add more than
simplistic local lighting model

• Still not really global
– Techniques more about hacking common cases based

on knowledge of geometry
– Not really modeling underlying physics of light

• Techniques are “multipass”
– Geometry is rendered multiple times to improve the

rendered visual quality

Bonus Stenciled Halo Effect

Halo does not obscure
or blend with the

haloed object.

Halo is blended
with objects behind

haloed object.

Clear stencil to zero. Render object, set stencil
to one where object is. Scale up object with
glScalef. Render object again, but not where
stencil is one.

Other Stencil Uses

• Digital dissolve effects
• Handling co-planar geometry such as decals
• Measuring depth complexity
• Constructive Solid Geometry (CSG)

Digital Dissolve

Stencil buffer holds dissolve pattern.
Stencil test two scenes against the pattern

Co-planar Geometry

Shows “Z fighting” of
co-planar geometry

Stencil testing fixes
“Z fighting”

Visualizing Depth Complexity

Use stencil to count pixel updates,
then color code results.

Dithering

• glEnable(GL_DITHER)

• Dither colors for better looking results
– Used to simulate more available colors

Logical Operations on Pixels

• Combine pixels using bitwise logical operations
• glLogicOp(mode)

– Common modes
• GL_XOR – Rubberband user-interface.
• GL_AND

– Others
• GL_CLEAR, GL_SET , GL_COPY,
• GL_COPY_INVERTED, GL_NOOP, GL_INVERT
• GL_AND, GL_NAND, GL_OR
• GL_NOR, GL_XOR, GL_AND_INVERTED
• GL_AND_REVERSE, GL_EQUIV, GL_OR_REVERSE
• GL_OR_INVERTED

Imaging and Raster Primitives

• Describe OpenGL’s raster primitives:
bitmaps and image rectangles

• Demonstrate how to get OpenGL to read
and render pixel rectangles

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel

TextureTexture

Pixel-based primitives

• Bitmaps
– 2D array of bit masks for pixels

• update pixel color based on current color

• Images
– 2D array of pixel color information

• complete color information for each pixel

• OpenGL doesn’t understand image formats

May 22-26, 2000 Dagstuhl Visualization

Frame
Buffer

Rasterization
(including

Pixel Zoom)

Per Fragment
Operations

Texture
Memory

Pixel-Transfer
Operations

(and Pixel Map)
CPU

Pixel
Storage
Modes

glReadPixels(), glCopyPixels()

glBitmap(), glDrawPixels()

glCopyTex*Image();

Pixel Pipeline

• Programmable pixel storage
and transfer operations

Positioning Image Primitives

• glRasterPos3f(x, y, z)

– raster position transformed like geometry
– discarded if raster position

is outside of viewport
• may need to fine tune

viewport for desired
results

Raster Position

Rendering Bitmaps
• glBitmap(width, height, xorig, yorig,

xmove, ymove, bitmap)

– render bitmap in current color
at

– advance raster position by
after

rendering

 ()yorigyxorigx −−

()ymovexmove

width

he
ig

ht

xorig

yorig

xmove

Rendering Fonts using Bitmaps

• OpenGL uses bitmaps for font rendering
– each character is stored in a display list

containing a bitmap
– window system specific routines to access

system fonts
•glXUseXFont()

•wglUseFontBitmaps()

Rendering Images

• glDrawPixels(width, height, format,
type, pixels)

– render pixels with lower left of
image at current raster position

– numerous formats and data types
for specifying storage in memory

• best performance by using format and type that
matches hardware

Reading Pixels

• glReadPixels(x, y, width, height, format,
type, pixels)

– read pixels from specified (x,y) position in framebuffer
– pixels automatically converted from framebuffer format

into requested format and type

• Framebuffer pixel copy
• glCopyPixels(x, y, width, height, type)

Raster
Position

glPixelZoom(1.0, -1.0);

Pixel Zoom

• glPixelZoom(x, y)

– expand, shrink or reflect pixels
around current raster position

– fractional zoom supported

• glPixelZoom(x, y)

– expand, shrink or reflect pixels
around current raster position

– fractional zoom supported

Storage and Transfer Modes

• Storage modes control accessing memory
– byte alignment in host memory
– extracting a subimage

• Transfer modes allow modify pixel values
– scale and bias pixel component values
– replace colors using pixel maps

Immediate Mode versus Display
Listed Rendering

• Immediate Mode Graphics
– Primitives are sent to pipeline and display right away
– No memory of graphical entities

• Display Listed Graphics
– Primitives placed in display lists
– Display lists kept on graphics server
– Can be redisplayed with different state
– Can be shared among OpenGL graphics contexts

Display Lists

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel

TextureTexture

Immediate Mode versus
Display Lists

Immediate Mode

Display Listed

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

Display Lists

• Creating a display list
GLuint id;
void init(void)
{

id = glGenLists(1);
glNewList(id, GL_COMPILE);
/* other OpenGL routines */
glEndList();

}

• Call a created list
void display(void)
{

glCallList(id);
}

Display Lists

• Not all OpenGL routines can be stored in display
lists

• State changes persist, even after a display list is
finished

• Display lists can call other display lists
• Display lists are not editable, but you can fake it

– make a list (A) which calls other lists (B, C, and D)
– delete and replace B, C, and D, as needed

Display Lists and Hierarchy

• Consider model of a car
– Create display list for chassis
– Create display list for wheel

• glNewList(CAR, GL_COMPILE);
• glCallList(CHASSIS);
• glTranslatef(…);
• glCallList(WHEEL);
• glTranslatef(…);
• glCallList(WHEEL);
• …
• glEndList();

Advanced Primitives

• Vertex Arrays• Vertex Arrays

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel

TextureTexture

Vertex
Arrays

• Pass arrays of vertices, colors, etc. to OpenGL in a
large chunk
glVertexPointer(3, GL_FLOAT, 0, coords)

glColorPointer(4, GL_FLOAT, 0, colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)
glDrawArrays(GL_TRIANGLE_STRIP, 0, numVerts);

• All active arrays are used in rendering

• Pass arrays of vertices, colors, etc. to OpenGL in a
large chunk
glVertexPointer(3, GL_FLOAT, 0, coords)

glColorPointer(4, GL_FLOAT, 0, colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)
glDrawArrays(GL_TRIANGLE_STRIP, 0, numVerts);

• All active arrays are used in rendering

Color
data

Vertex
data

Why use Display Lists or Vertex
Arrays?

• May provide better performance than immediate
mode rendering
– Avoid function call overheads and small packet sends.

• Display lists can be shared between multiple
OpenGL context
– reduce memory usage for multi-context applications

• Vertex arrays may format data for better memory
access

Alpha: the 4th Color Component

• Measure of Opacity
– simulate translucent objects

• glass, water, etc.

– composite images
– antialiasing
– ignored if blending is not enabled

glEnable(GL_BLEND)

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel
TextureTexture

Blending

• Combine pixels with what’s in already
in the framebuffer
• glBlendFunc(src, dst)

FramebufferFramebuffer
PixelPixel
((dstdst))

Blending
Equation

Blending
Equation

FragmentFragment
((srcsrc))

BlendedBlended
PixelPixel

pfr CdstCsrcC +=

Multi-pass Rendering

• Blending allows results from multiple
drawing passes to be combined together
– enables more complex rendering algorithms

Example of bump-mapping
done with a multi-pass

OpenGL algorithm

