IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

1463

String Tightening as a Self-Organizing Phenomenon

Bonny Banerjee, Student Member, IEEE

Abstract—The phenomenon of self-organization has been of
special interest to the neural network community throughout
the last couple of decades. In this paper, we study a variant of
the self-organizing map (SOM) that models the phenomenon
of self-organization of the particles forming a string when the
string is tightened from one or both of its ends. The proposed
variant, called the string tightening self-organizing neural net-
work (STON), can be used to solve certain practical problems,
such as computation of shortest homotopic paths, smoothing
paths to avoid sharp turns, computation of convex hull, etc. These
problems are of considerable interest in computational geometry,
robotics path-planning, artificial intelligence (AI) (diagrammatic
reasoning), very large scale integration (VLSI) routing, and ge-
ographical information systems. Given a set of obstacles and a
string with two fixed terminal points in a 2-D space, the STON
model continuously tightens the given string until the unique
shortest configuration in terms of the Euclidean metric is reached.
The STON minimizes the total length of a string on convergence
by dynamically creating and selecting feature vectors in a com-
petitive manner. Proof of correctness of this anytime algorithm
and experimental results obtained by its deployment have been
presented in the paper.

Index Terms—Convex hull, homotopy, neural network,
self-organization, shortest path, smooth path, tighten string.

1. INTRODUCTION

ELF-ORGANIZATION, as a phenomenon, has received
S considerable attention from the neural network community
in the last couple of decades. Several attempts have been made
to use neural networks to model different self-organization
phenomena. One of the most well known of such attempts
is that of Kohonen’s who proposed the self-organizing map
(SOM) [1] inspired by the way in which various human sensory
impressions are topographically mapped into the neurons of
the brain. SOM possesses the capability to extract features
from a multidimensional data set by creating a vector quantizer
by adjusting weights from common input nodes to M output
nodes arranged in a 2-D grid. At convergence, the weights
specify the clusters or vector centers of the set of input vectors
such that the point density function of the vector centers tend
to approximate the probability density function of the input
vectors. Several authors in different contexts reported different
dynamic versions of SOM [1]-[10].

Manuscript received November 18, 2005; revised February 16, 2006 and July
12, 2006; accepted December 27, 2006. This work was supported by participa-
tion in the Advanced Decision Architectures Collaborative Technology Alliance
sponsored by the U.S. Army Research Laboratory under Cooperative Agree-
ment DAAD19-01-2-0009.

The author is with the Laboratory for AI Research, Department of Computer
Science and Engineering, The Ohio State University, Columbus, OH 43210
USA (e-mail: banerjee @cse.ohio-state.edu).

Digital Object Identifier 10.1109/TNN.2007.891192

In this paper, assuming a string is composed of a sequence
of particles, we claim that the phenomenon undergone by the
particles of the string, when the string is pulled from one or
both ends to tighten it, is that of self-organization, by mod-
eling the phenomenon using a variant of SOM, called the string
tightening self-organizing neural network (STON). We further
use the proposed variant to solve a few well-known practical
problems—computation of shortest path in a given homotopy
class, smoothing paths to avoid sharp turns, and computation
of convex hull. Other than theoretical considerations in com-
putational geometry [11], computation of shortest homotopic
paths is of considerable interest in robotics path-planning [12],
Al (diagrammatic reasoning) [13], VLSI routing [14], and ge-
ographical information systems. Smooth paths are required for
navigation of large robots incapable of taking sharp turns, and
also for handling unexpected obstacles. To generate a path that
is smooth, shorter, collision-free, and is homotopic to the orig-
inal path requires generation of the configuration space of a
robot which is computationally expensive and difficult to repre-
sent [15]. Computation of a convex hull finds numerous appli-
cations in computational geometry algorithms, pattern recogni-
tion, image processing, and so on. The aim of this paper is to
study the properties of STON and how it might be applied to
solve some practical problems as aforementioned.

The remainder of this paper is organized as follows. In
Section II, the STON algorithm is described assuming the
given string is sampled at a frequency of at least d/2 where d
is the minimum distance between the obstacles. Thereafter, an
analysis of the algorithm is presented along with proof of its
important properties and correctness. Section IV discusses how
STON might be extended when the aforementioned constraint
on sampling is not met. The extension is used for computation
of shortest path in a given homotopy class. Proof of correctness
and complexity analysis of the extension are also included.
Finally, simulation results from real life and synthesized data
sets are presented for the problems—computation of shortest
homotopic path, smooth path, and convex hull—using both the
original and extended algorithms. The paper concludes with a
general discussion.

II. STON ALGORITHM

A. Homotopy

A string 7 in a 2-D space (2) might be defined as a con-
tinuous mapping 7 : [0,1] — R2, where 7(0) and 7 (1) are
the two terminal points of the string. A string is simple if it
does not intersect itself; otherwise, it is nonsimple. Let 71 and
Ty be two strings in 2 sharing the same terminal points, i.e.,
71(0) = w2(0) and 71 (1) = mo(1), and avoiding a set of ob-
stacles P C R2. The strings 71 and 7o are considered to be ho-
motopic to each other or to belong to the same homotopy class,

1045-9227/$25.00 © 2007 IEEE



1464

with respect to the set of obstacles P, if there exists a continuous
function ¥ : [0, 1] x [0, 1] — %2 such that the following hold:

1) U(0,t) = m1(t) and W(1,¢t) = ma(t), for 0 < ¢ < 1;

2) U(X,0) =71(0) = m2(0) and ¥(A, 1) = 71(1) = ma(1),

for0 < A\ < 1;

3) U(\,t) g P,for0<A<1land0 <t <1
Informally, two strings are considered to be homotopic with re-
spect to a set of obstacles, if they share the same terminal points
and one can be continuously deformed into the other without
crossing any obstacle. Thus, homotopy is an equivalence rela-
tion.

Given a string 7;, specified in terms of sampled points, and a
set of obstacles P, STON computes a string 75 such that 7; and
75 belong to the same homotopy class, and the Euclidean dis-
tance covered by 7 is the shortest among all strings homotopic
to ;. It is noteworthy that 7, is unique and has some canonical
form [16].

B. Objective

Assume a string wound around obstacles in R? with two fixed
terminal points. A shorter configuration of the string can be ob-
tained by pulling its terminals. The unique shortest configura-
tion can be obtained by pulling its terminals until they cannot
be pulled any more. The proposed algorithm models this phe-
nomenon as a self-organized mapping of the points forming a
given configuration of a string into points forming the desired
shorter configuration of the string. Let us consider a set of n
data points or obstacles, P = {p1,pa,...pn}, representing the
input signals, and a sequence of variable (say, k) processors
(g1, q2, - - - qr) each of which (say ¢;) is associated with a weight
vector w; (t) at any time ¢. A weight vector represents the posi-
tion of its processor in R2. If the k processors are placed on a
string in N2, the STON is an anytime algorithm for tuning the
corresponding weights to different domains of the input signals
such that, on convergence, the processors will be located in such
a way that they minimize a distance function ¢(w) given by

$(w) = 3 ljwia(®) — w0 m

where ¢; and ¢;41 are two consecutive processors on the string
with corresponding weights w;(¢) and w;41(t) at any time ¢.
The algorithm further guarantees that the final configuration of
the string formed by the sequence of processors at convergence
lies in the same homotopy class as the string formed by the ini-
tial sequence of processors with respect to P. Thus, assuming
fixed q; and g, the STON defines the shortest configuration of
the k processors in an unsupervised manner. The phenomenon
undergone by the particles forming the string is modeled by the
processors in the neural network.

C. Initialization of the Network

The STON is initialized with a given number of connected
processors, the weight corresponding to each of which is ini-
tialized at a unique point on the given configuration of a string.
A feature vector, presented to the STON, is an attractor point in

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

R? and is either created dynamically or chosen selectively from
the given set of input obstacles P. The weight vectors are up-
dated iteratively on the basis of the created and chosen feature
space S(t); S(t) = {x1(t),x2(t),...xx(t)} being the set of
feature vectors at any time ¢. It is noteworthy that x;() is not
necessarily unique. Unlike SOM and many of its variants, ran-
domized updating of weights does not yield better results in the
STON model; updating weights sequentially or randomly both
yield the same result in terms of output quality as well as com-
putation time. On convergence, the location of the processors
representing the unique shortest configuration homotopic to the
given configuration of the string is obtained.

D. Creating/Choosing Feature Vectors

A feature vector z;(t) is created if the triangular area spanned
by three consecutive processors ¢,,—1, ¢m, and g,,+1 does not
contain any obstacle p; € P. In that case

Wi 1) + w1 (")
2

zi(t) = @)
where ¢ and t” assume the value ¢ if the weight has not yet
been updated in the current iteration or sweep and the value
t 4+ 1 if the weight has been updated in the current sweep, and
1 < m < k.If an obstacle, say p; € P, lies within the triangular
area spanned by three consecutive processors ¢,,—1, ¢m, and
dm-+1, the feature vector x;(¢) is chosen to be

zi(t) = pj-. (€)

For this algorithm, we assume the given string is sampled in
such a way that there cannot exist multiple nonidentical obsta-
cles within the triangular area spanned by any three consecutive
processors (see Appendix I for how to achieve such sampling).

E. Updating Weights

The STON evolves by means of a certain processor evolution
mechanism, given by [17]

wn(t+1) = w(t) + at) [2;(t) —wa ()] @)

where «(t) is the gain term or learning rate which might vary
with time and 0 < «(t) < 1. a(t) might be unity only when
feature vectors are created according to (2). All the weight vec-
tors are updated exactly once in a single sweep, indexed by .

In this process, modification of weights is continued and the
processors tend to produce shorter configurations at the end of
each sweep. The weight vectors converge when

lwip1(t) —wi(t)]| <e Vi (5)

where € is a predetermined sufficiently small positive quantity.

III. ANALYSIS OF STON

STON is a variant of SOM. As in SOM, each feature vector in
STON pulls the selected processors in a neighborhood towards
itself as a result of updating in a topologically constrained
manner, ultimately leading to an ordering of processors that
minimizes some residual error. Neighborhood, in SOM, is



BANERIJEE: STRING TIGHTENING AS A SELF-ORGANIZING PHENOMENON

1465

Fig. 1. If p; lies inside the triangle formed by ¢;_1, ¢;, and g;41, then g; has
to lie in the shaded region.

something like a smoothing kernel over a 2-D grid often taken
as the Gaussian which shrinks over time. In STON, all those
processors are included within the neighborhood of a feature
vector that form triangles with their adjacent processors such
that the feature vector lies within their triangles. Such a neigh-
borhood is conceptually similar to that proposed in [18] where
the neighborhood is not dependent on time but on the nature of
the input signals. STON incorporates competitive learning as
the weights adapt themselves to specific chosen features of the
input signal defined in terms of the obstacles. The residual error
is defined in SOM in terms of variance while in STON, in terms
of Euclidean distance. From the inputs, the net adapts itself
dynamically in an unsupervised manner to acquire a stable
structure at convergence, thereby manifesting self-organization
[19]. The STON possesses certain key properties which are
discussed in this section that eventually lead to the proof of
correctness of the algorithm.

Property 1: The configuration of a string formed by the se-
quence of processors at initialization and the same at conver-
gence is homotopic.

Proof: We start by noting that, given a fixed set of obsta-
cles and fixed terminal points, the homotopy class of a string can
be altered only by crossing any obstacle. The configuration of a
string formed by the sequence of processors at any time ¢ is ob-
tained by updating the weights with respect to the selected fea-
ture vectors at time ¢ — 1, the feature vectors being selected ac-
cording to (2) or (3). In the first case, creation of a feature vector
and updating the weight does not change the homotopy class of
the string as there was no obstacle in the triangular area, hence
updating the weight did not result in crossing any obstacle.

In the second case, a feature vector is selected by (3) from
the set of obstacles. A processor is pulled towards the feature
vector by updating its weight. It requires to be proven that by
such selection of feature vectors and updating of weights, a
string cannot cross any obstacle. Let ¢;_1, ¢;, and ¢; 1 be three
consecutive processors on a string with corresponding weights
being w;_1(t'), w;(t), and w; 1 (¢") and ', ¢ € {t,t+ 1}, and
z;(t) = p; be the selected feature vector (see Fig. 1). In order
to complete the proof, we need to show that p; will never be
crossed if the following is true: 1) weight for processor ¢; is up-
dated and 2) weight for one of the neighbors of ¢; (i.e., ¢;—1 or
¢i+1) is updated.

Fig. 2. Feature vector for updating the weight for ¢; 1, if not p;, can lie only
in the shaded region.

First, we note that in order for p; to be inside the triangle
formed by ¢;_1, ¢;, and ¢;1, the processor g; has to be in the
region bounded by extensions of the lines joining ¢;—; and ;41
to p; (i.e., the shaded region in Fig. 1). Since updating the weight
for processor g; pulls it towards the obstacle p; along a straight
line, ¢; continues to remain within the shaded region after up-
dating, thereby never letting the segments g;—1q; and g;q;+1
cross the obstacle p;. That proves condition 1).

Now, let us consider the case when the weight for a neighbor
of ¢;, say g;41 without loss of generality, is updated. Let ;12
be the other neighbor of ¢;41. Then, either the obstacle p; lies
inside the triangle formed by ¢;, ¢;+1, and ¢;42, or it does not.
If p; lies inside, it is the selected feature vector that pulls g;1
towards itself and it will never be crossed [due to condition 1)].
If p; does not lie inside, then there lies either some other ob-
stacle, say p;, inside the triangle formed by ¢;, ¢;+1, and g; 42,
or there does not exist any obstacle inside. In the former case, p;:
is the selected feature vector while in the later, the feature vector
is created according to (2). In any case, the feature vector can
lie only in the partition, bounded by the extensions of the lines
joining ¢; and ¢; 1 to p;, in which ¢;; lies (shaded region in
Fig. 2). Thus, updating the weight for ¢;; will not make the
string cross the obstacle p;. In general, updating the neighbors
of ¢; will not make the string cross p;, proving condition 2).

From this, we conclude that updating a weight vector with
respect to a created or selected feature vector does not change
the homotopy class of a string. Hence, the configurations of a
string at the end of consecutive sweeps are homotopic. But ho-
motopy is a transitive relation. This concludes the proof that the
configurations of a string at initialization and at convergence are
homotopic. u

Property 2: The Euclidean distance covered by the configu-
ration of a string formed by the sequence of processors at time
t + 1 is less than the same at time ¢.

Proof: Let us consider a triangle formed by three consec-
utive processors ¢;—1, ¢i, and g;+1 with corresponding weights
wi—1(t"), w;(t), and w;1(t"); ¢',¢" € {t,t + 1}, on a con-
figuration of a string (see Fig. 3). Let w; (¢ + 1) be the weight




1466

q; [Wi (’)] 7

i qi+l[wi+l (’")]

i [wia ()]

Fig. 3. Euclidean distance covered by a configuration of the string from
qi—1w;_1(t")] to giyq1[wiyq1 ()] via g;[w; (¢ + 1)] is less than the same via
i[wi (t)].

vector after updating w; (¢) with respect to a feature vector ei-
ther created according to (2) or chosen according to (3). We are
required to prove that the Euclidean distance covered by a con-
figuration of the string from ¢;_1[w;—1(t')] to git1[wi+1(t")]
via ¢;[w;(t + 1)] is less than the same via ¢; [w;(t)].

In order to prove that, we extend the line segment
gi—1[wi—1(¥)]q:[wi(t + 1)] to intersect the line segment
qi[w; (t)]gix1[wir1(¢"")] at a point, say A located at a. Then,
from Fig. 3, using the triangle inequality, we get

i1 (') = wit + DIl + [[wilt + 1) — a
< ffwica(t)) = wil®)] + lwi(t) - a
it + 1) = wi ()]
< fwilt +1) = afl + lla = wisa (¢")]]

From the previous inequalities, we get

[lwi—1(t") = wi(t + DI + [lwit + 1) = wipa (")
< Nlwiea (') = wi (@)1 + lwi(t) — all + lla — wipa (7).

Thus, at any time ¢, after updating a weight w;(t), we have

lwim1 (') = wit + DI + [lwi(t + 1) = wipa (")
< lwi-a(8) = wi)1] + [Jwi(£) — wiga ()]

i.e., updating w;(t) contributes to the minimization of the
sum of lengths of the segments ¢;—1[w;—1(¢')]qg:[w;(t)] and
qi[w;(t)]qi+1[wi+1(¢")]. Each weight is updated exactly once
in every sweep. Thus, updating a weight contributes to the
minimization of a length of the current configuration of the
string at every sweep, thereby minimizing ¢(w). [ |

Property 1 shows that the STON algorithm guarantees that
the final configuration 7 of the string belongs to the same ho-
motopy class as its initial configuration ;. From Property 2, it
can be seen that if sufficient number of sweeps are computed,
the shortest configuration in the given homotopy class can be
reached. Thus, the proposed algorithm is correct with respect to
the goal of obtaining the shortest homotopic configuration of a
string, as defined in Section II-B. This, however, does not guar-
antee that the optimum solution will always be reached. It is
possible for the algorithm to get stuck at suboptimal solutions,
a situation that can be averted by choosing o much less than
unity when feature vectors are selected by (3). We will discuss
this issue further in Section V.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

qi[wi(t)]

L —_—qi+l[W,~+l(t")]
q%wi(l‘+])] ______ I --
/oD,

9i-1 [Wi—l (")] g

Fig. 4. STON algorithm might fail to perform correctly if the given path is
sparsely sampled. The configuration formed by ¢;_1[w;_1(¢t')], q:[w;(¢)],
and ¢;41[w;+1(t")] and that formed by ¢;_1[w; _1(t')], ¢;[w;(t + 1)], and
¢i+1[wis+1(t"")] are not homotopic to each other as the obstacle p; has been
crossed.

IV. COMPUTATION OF THE SHORTEST HOMOTOPIC PATHS

The solution to the problem of computing the shortest homo-
topic path can be viewed as an instance of pulling a string to
tighten it, where the given path corresponds to the initial con-
figuration of the string while the shortest homotopic path cor-
responds to the tightened configuration of the same string. The
STON assumes a string to be sampled such that there exists at
most one obstacle in the triangle formed by any of the three
consecutive processors. In this section, given a path 7;, we pro-
pose an extension of STON to do away with that assumption and
apply the extension for computing the shortest homotopic path
s with respect to a given set of obstacles P, where m; might
be simple or nonsimple. The set of obstacles P is specified as a
set of points in R? with no assumption being made about their
connectivity. The input path 7; is specified in terms of a pair
of terminal points and either a mathematical equation or a se-
quence of points in k2. In the former case, the path is sampled
to obtain the sequence of points in R2.

A. Extending STON for Sparsely Sampled Paths

When a path is sampled sparsely, it can no longer be guaran-
teed that at the time of choosing a feature vector, there will exist
only one obstacle within the triangular area spanned by any of
the three consecutive processors. Hence, the algorithm might
fail to perform correctly as Property 1 no longer holds true (see
Fig. 4).

Let us assume that the given path is very sparsely sampled.
In that case, whenever more than one obstacle point is encoun-
tered within a triangle formed by three consecutive processors
qi—1, i, and g; 11, the centroid, say C, of the obstacle points
lying within the triangle is computed. The line segments joining
the processors ¢; 1 and ¢;+1 to C partitions the obstacle space
within the triangle into two disjoint parts. The convex hull of
the obstacle points lying within the partition adjacent to the pro-
cessor g; is computed [see Fig. 5(a)]. A new processor is intro-
duced and initialized near each vertex of the convex hull! [see
Fig. 5(b)]. The indices of all processors and their corresponding
weights are updated. The processor g; is considered as “useless”
and is deleted. A similar notion of useless units has been used
in [10].

We claim that this extension of STON works correctly in all
cases. Let us, for a contradiction, assume that there exists an

1See Appendix II for details of how we introduce processors near each vertex
of the convex hull.



BANERIJEE: STRING TIGHTENING AS A SELF-ORGANIZING PHENOMENON

94— —
e S
\‘ . < O
‘O’T/ o
./'
./.
‘/.
./'
qi—l b
4

(b)

Fig.5. C is the centroid of all obstacle points lying within the triangle formed
by ¢i—1, ¢:, and g;4+1. (a) Convex hull of the obstacle points lying in the par-
tition, formed by the line segments joining the processors ¢;_1 and g;+1 to C,
adjacent to g¢;, is shown. (b) Introduction of the new processors ¢;, g;+1, and
¢i+2 near the vertices of the convex hull.

. s = - .
9; S — e
- - i+1
C = e -
. L _ -
./ ,” -
. . .
-
/ ’ ’,” - -
-
e i
/L -
Rt -
Lol
. c 7
qi1 o

Fig. 6. Shortest homotopic path cannot pass through any obstacle point lying
in the partition, formed by line segments joining processors ¢;_1 and ¢;+1 to
C, not adjacent to g;.

obstacle in the partition not adjacent to the processor g; [see
Fig. 5(a)] at which a processor has to be introduced in order
to obtain the shortest homotopic path. That is, the shortest ho-
motopic path will pass through an obstacle in the partition not
adjacent to the processor g;. Let p; be such an obstacle point
(see Fig. 6). The line from ¢;_; through p; partitions the tri-
angle formed by ¢;_1, ¢i, and ¢; 1 into two disjoint parts. If the
shortest homotopic path passes through p;, there cannot exist
any obstacle point in the partition, formed by the line from ¢;_1
through p;, adjacent to ¢;. But in that case, the centroid C' cannot
lie in the partition, formed by the line from ¢; _; through p;, ad-
jacent to g;; hence, a contradiction. If the shortest homotopic
path passes through p;, the centroid C' will lie in the partition,
formed by the line from g;_ through p;, not adjacent to ¢;. In

1467

that case, the obstacle point p; lies in the partition, formed by
line segments joining processors ¢;—1 and ¢;4+1 to C, adjacent
to ¢;. Hence, the claim follows.

B. Algorithm: Extension of STON

1. initialize the weights
2.t <0
3. while convergence criteria (5) not satisfied, do
4. t+—t+1
5. for each processor on path, do
6. z < number of obstacles inside triangle formed with
neighboring processors
7. ifz=0
8. create feature vector (2)
9. update weight (4)
10. ifz=1
11. select feature vector (3)
12. update weight (4)
13. ifz>1
14. compute convex hull of the selected obstacles
15. introduce new processors and update their weights.

First, we note that the algorithm for the original version of
STON comprised of steps 1-12 of the previously described al-
gorithm. Computational complexity of step 6 is O(logn + m)
where n is the number of obstacle points and m is the number
of obstacle points inside the triangle formed by a processor and
its adjacent neighbors, 0 < m < mn. This complexity can be
achieved by a one-time construction of a 2-D range tree of the
obstacle points in O(nlogn) time. Querying the tree requires
O(log n+ m) time using fractional cascading [20]. On average,
m = (n/k) where k is the number of processors. Thus, com-
plexity of STON is O(logn + n/k) per processor per sweep,
assuming the input path has been sampled at half the minimum
distance between the obstacles. The purpose of extending STON
is to eliminate the constraint on sampling. As a result, steps
13—15 had to be introduced which use the algorithm recursively
for computing convex hull. Let T'(n) be the complexity of exten-
sion of STON for each sweep and k& be the number of processors
at the end of a sweep. Then, from the previous algorithm, we get

T(n) =k (r.T(m)+logn+m) (6)

where 7. is the number of sweeps required to compute convex
hull. The convex hull is computed to determine the number
and locations of new processors that have to be introduced so
that there does not exist more than one obstacle in any triangle
formed by three consecutive processors. For this purpose, it is
sufficient to compute just one sweep of the convex hull instead
of a tight convex hull. This strategy saves computational costs
as the newly added processors will eventually not remain on the
convex hull of the obstacles but will remain on the path. There-
fore

n

T(n) :k(T(k> +logn +

n

k) = O (n(logk + log;, n))

(N

Thus, the complexity of extension of STON is
O((n/k)(logk + log; n)) per processor per sweep. As the
number of processors (k) increases, . — 1 and the complexity



1468

Fig. 7. STON works incorrectly for large values of «. Circles represent point
obstacles, while dark and light lines represent initial and tightened configura-
tions of a path respectively.

of extension of STON becomes O(log n). Thus, the extension
of STON starts with a complexity of O((n/k)(logk + log;, 1))
and reaches a complexity of O(log n) when no more processors
are required to be introduced. It is interesting to note that the
complexity of STON is comparable with that of some of the
recently proposed variants of SOM [9], [21].

In computational geometry, many researchers have proposed
algorithms to solve this problem with the primary goal of min-
imizing computational complexity (refer to [11] for a detailed
review). Efrat e al. [22] and Bespamyatnikh [23] have indepen-
dently proposed output-sensitive algorithms for the problem.
Their algorithms tackle the problem for simple and nonsimple
paths in different ways, with the one for nonsimple paths having
higher complexity. Bespamyatnikh’s algorithm for nonsimple
paths achieves O(log? n) time per output vertex. If the terminal
points of a given path are not fixed, the resulting problem is
NP-hard [24] which has not been dealt with in this paper.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained by
deploying STON to different data sets for different purposes.
The extension of STON has been used to compute shortest ho-
motopic paths, smooth paths, and convex hulls. In Fig. 7, the
performance of STON is illustrated assuming « is assigned a
large value close to unity when feature vectors are chosen ac-
cording to (3). In that case, the algorithm might fail to perform
optimally as the final path might cling to undesired obstacles,
as shown by the arrow in Fig. 7. This happens because once a
processor falls on an obstacle, which might happen for some
processors before convergence if « is large, the processor fails
to let the obstacle go as the obstacle continues to remain within
its triangle and the processor has no memory of which direc-
tion it proceeded from. Such performance from STON can only
be averted by choosing o much smaller than unity when feature
vectors are selected by (3). This provides ample time for the pro-
cessors to distribute themselves along the path before coming

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

(e) )

Fig. 8. STON applied to a nonsimple path that turns out to be simple when
tightened. Circles denote point obstacles while dots denote locations of the pro-
cessors on the path. (a) At initialization. (b) After first sweep. (c) After 5 sweeps.
(d) After 10 sweeps. (e) After 15 sweeps. (f) After 20 sweeps.

close to any obstacle. For our experiments, o was chosen as fol-
lows:

if feature vector is created
if feature vector is selected

1.0,
-
where [ is the learning constant, 0 < § < 0.5, and 7T’ is the total
number of sweeps that STON is expected to converge within.
Typically, § and 71" are assigned values 0.01 and 5000, respec-
tively. Thus, initially, a processor proceeds slowly towards the
chosen obstacle but the rate of the proceeding increases as more
and more sweeps are computed. This prevents STON from con-
verging at suboptimal solutions. Throughout our experiments, €
is chosen to be 0.001% of the maximum distance covered along
any one dimension by the obstacles.

Fig. 8(a) illustrates a complicated configuration of a path that
has not been sampled uniformly. STON was applied to shorten
this path and the configurations reached after 1, 5, 10, 15, and
20 sweeps are shown in Fig. 8. It can be seen that the proces-
sors gradually distribute themselves evenly along the path due
to their weights being updated with respect to created feature
vectors (2). This and the assignment of a according to (8) help
STON avoid suboptimal convergence which could have been the
case after 10 sweeps [see Fig. 8(d)]. The correct shortest con-
figuration was reached within 20 sweeps.



BANERIJEE: STRING TIGHTENING AS A SELF-ORGANIZING PHENOMENON

(a) (b)

Fig. 9. Performance of STON in a structured obstacle environment. Dotted
lines represent the contours of the obstacles while firm lines represent paths.
(a) At initialization. (b) After 15 sweeps.

(©) (d

Fig. 10. STON finds a smooth homotopic path with respect to a large set (thou-
sands) of obstacles. Dots represent point obstacles while firm lines represent
paths. (a) At initialization. (b) After first sweep. (c) After 10 sweeps. (d) After
20 sweeps.

Fig. 9 illustrates the performance of STON in a structured
environment where obstacles are not point objects but are 2-D
shapes. The algorithm converged within 15 sweeps. In a struc-
tured environment, STON considers the points forming the 2-D
shapes as point obstacles and does not use their connectivity
information. The algorithm performs equally well in the struc-
tured as well as unstructured environments.

In real-world applications, such as navigational planning of
mobile robots [15] or route formation for military planning [13],
the absolute shortest path is not always desired; a suboptimal
path that is devoid of sharp turns is often more desirable in such
cases. Fig. 10 shows the capability of STON to produce such
paths by appropriately adjusting the parameter €. In this case,
€ was chosen to be 0.1%. The illustration in Fig. 10 further
demonstrates the capability of STON to handle a large number
of obstacles, in the range of a few thousand.

STON can be used to compute the convex hull of a set of
points, as shown in Fig. 11. A path has a starting and an ending
point which are fixed and common for all paths belonging to the

1469

o
<] o
o
° o o o
[} o
(a) (b)
Fig. 11. STON computes the convex hull of a set of points represented by cir-

cles. Lines represent the contour of the convex hull while dots on the contour
represent locations of the processors. (a) At initialization. (b) After 10 sweeps.

12 T T T T T T T T

10 B

0.1% error

Average # sweeps per processor

. .
0 100 200 300 400 500 600 700 800 900
# processors

Fig. 12. Experiments show that average number of sweeps per processor re-
quired for convergence using STON decreases with the increase in number of
processors.

same homotopy class. To exploit this information for computa-
tion of the shortest homotopic paths, the first and the last pro-
cessors, g1 and g, on a path with k processors were assumed
to be fixed and their corresponding weights were never updated.
Computation of convex hull, however, does not require any fixed
processors, so weights corresponding to all processors were up-
dated. The starting and ending points were assumed to be the
same. Such a modification of STON makes it functionally sim-
ilar to an elastic band or a snake [25].

Experiments with a number of different data sets, a few of
which are shown in Figs. 7-11, assuming the learning constant
(3 to be 1072, reveal certain characteristics of STON. It is ex-
pected that the total number of sweeps required for convergence
increases with the increase in number of processors. Outcomes
of our experiments satisfy such expectations but they also show
that average number of sweeps per processor required for con-
vergence decreases with the increase in number of processors
(see Fig. 12). This is important in determining how many pro-
cessors to sample a path with as one should choose the optimum
number of processors for minimizing computational costs. The
errors in Fig. 12 refer to the ratio of the length of the shortened
path at convergence with respect to the length of the shortest
path.



1470

RO R A ——

-
'
'
'
'
i
'
'

# sweeps (log,, scale)

# processors

Fig. 13. As the learning constant decreases, the number of sweeps required for
convergence using STON increases.

The learning rate is an important factor for ensuring faster
convergence. For a fixed number of processors, the total number
of sweeps required for convergence increases with decrease
in learning constant 3 (see Fig. 13). We experimented with a
number of data sets including those shown in Figs. 7-11, sam-
pling the paths with 30, 59, 88, 117, 146, and 175 processors
at different locations and varying the learning constant 3 from
10~% to 0.2 for each data set. Choosing a very high learning
constant might lead to suboptimal results, as has been illustrated
in Fig. 7. It is interesting to note from Fig. 13 that for the low
learning constants, such as 10~2 or lower, the total number of
sweeps required for convergence is more for the lower number
of processors. This observation only reinforces the fact that
average number of sweeps per processor decreases with the
increase in number of processors for low learning constants.

VI. CONCLUSION

A self-organizing neural network algorithm STON is pro-
posed that models the phenomenon undergone by the particles
forming a string when the string is tightened from one or both
of its ends amidst obstacles. Discussions of the properties and
correctness of this anytime algorithm is presented assuming the
given string is sampled at a frequency of at least d/2 where d is
the minimum distance between the obstacles. It is shown how
STON might be extended for tightening strings when the pre-
vious constraint on sampling is not met. This extension is ap-
plied to compute the shortest homotopic path with respect to a
set of obstacles. Proof of correctness and computational com-
plexity of the extension of STON are included. Experimental
results show that the proposed algorithm works correctly with
both simple and nonsimple paths in reasonable time as long as
the constraints for correctness are met. STON is used to gen-
erate smooth and shorter homotopic paths, a problem that can
be modeled as the phenomenon of tightening a string. STON is
also used as an elastic band for computing convex hulls. Future
research aims at improving the computational complexity of the
extension of STON and using it to solve more problems that can
be mapped into the problem of tightening a string or an elastic
band.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

Pj

Fig. 14. Sampling a path uniformly at half the minimum distance between the
obstacles guarantees at most one obstacle in any triangle.

APPENDIX |
A FINITE SAMPLING THEOREM

A string in *2, wound around point obstacles, can be finitely
sampled in such a way so as to guarantee only one obstacle
within the triangular area spanned by any of the three consecu-
tive points on the string. The following theorem states the con-
straint necessary to be imposed on the sampling.

Theorem: Sampling a string at half the minimum distance
between the obstacles guarantees at most one obstacle in any
triangle formed by three consecutive points on the string.

Proof: Let d be the minimum distance between any two
unique obstacles in P, P being the set of point obstacles. Let
us sample the string such that the distance between any two
consecutive points on the string is at most d/2. Since d is finite,
clearly this leads to a finite sampling of the string. The theorem
claims that this sampling ensures that a triangle formed by any
of the three consecutive points on the string will never contain
more than one unique obstacle.

For contradiction, let us assume that there exist two obstacle
points in a triangle formed by three consecutive points ¢;_1,
¢, and g;4+1 (see Fig. 14). The segments g;,_1¢; and q;¢;+1 in-
cluded in the string that form two sides of the triangle are each
of length at most d/2. Thus, the maximum distance between
any two points lying within the triangle is less than d. But the
distance between any two obstacle points is at least d. Hence, a
contradiction, and the claim follows. [ |

APPENDIX II

Here, we describe the procedure for introducing processors
near each vertex of the convex hull in the extension of STON.
The newly introduced processor, say g;, should be placed at a
location such that connecting it with the neighboring proces-
sors g;—1 and g;41does not alter the homotopy class of the path,
i.e., the path in which the new processors are being introduced
should remain in the same homotopy class as the given path.
This is not a trivial task, as illustrated in Fig. 15, where all the
processors are introduced near the convex hull but the new path
Thew 18 N0t homotopic to the old path 7o1q.

In order for the new path to remain in the same homotopy
class as the old one, processors cannot be introduced within the
convex hull and lines joining consecutive processors cannot in-
tersect the edges of the convex hull. We claim that if processors
are introduced outside the convex hull in the regions bounded by
the extended adjacent edges of the convex hull, then the lines
joining the consecutive processors will not intersect with the
edges of the convex hull.



BANERIJEE: STRING TIGHTENING AS A SELF-ORGANIZING PHENOMENON

Told

4

Fig. 15. Introducing processors anywhere near the vertices (shown by circles)
of the convex hull does not guarantee that the new path will be homotopic to the
old one.

Fig. 16. Introduction of processors outside the convex hull in the regions
bounded by the extended adjacent edges of the convex hull guarantees that
the lines joining the consecutive processors will not intersect the edges of the
convex hull.

Proof: Let V1VaVs ...V, be an m-sided polygon which is
the convex hull for a set of obstacles under consideration (see
Fig. 16). Let g; be a processor in the region formed by extensions
of adjacent edges V;_1V; and V;11V;, Vi, 1 < ¢ < m. The
claim states that there cannot be an intersection between the line
segment ¢;¢;+1 and any edge of the convex hull.

Let us assume, for a contradiction, that there exists at least one
intersection between the line segment g;q;11 and an edge, say
Vi Vi1, of the convex polygon V1 V5Vs ... Vy,. Then, ¢; and
qj+1 must lie on the opposite sides of the extended line segment
V;Vj+1. But by construction, the processors g; and ¢;41 lie on
the same side of the extended line segment V; V1. Hence, the
contradiction; and the claim follows. [ |

REFERENCES

[1] T. Kohonen, Self-Organizing Maps.
Verlag, 2001.

[2] J. A. Kangas, T. Kohonen, and J. Laaksonen, “Variants of self-orga-

nizing maps,” IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 93-99, Jan.

1990.

B. Fritzke, “Growing cell structures—a self-organizing network for un-

supervised and supervised learning,” Neural Netw., vol. 7, no. 9, pp.

1441-1460, 1994.

[4] D. Choi and S. Park, “Self-creating and organizing neural networks,”
IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 561-575, Jul. 1994.

[5] L. Schweizer, G. Parladori, L. Sicuranza, and S. Marsi, “A fully neural
approach to image compression,” in Artificial Neural Networks, T. Ko-
honen, K. Makisara, O. Simula, and J. Kangas, Eds. Amsterdam, The
Netherlands: North-Holland, 1991, pp. 815-820.

Berlin, Germany: Springer-

3

—

1471

[6] K. Obermayer, H. Ritter, and K. Schulten, “Large-scale simulations of
self-organizing neural networks on parallel computers: Application to
biological modeling,” Parallel Comput., vol. 14, pp. 381-404, 1990.

[7] F. Favata and R. Walker, “A study of the application of Kohonen-type
neural networks to the traveling salesman problem,” Biol. Cybern., vol.
64, pp. 463468, 1991.

[8] H. J. Ritter and T. Kohonen, “Self-organizing semantic maps,” Biol.
Cybern., vol. 61, pp. 241-254, 1989.

[9] H. Kusumoto and Y. Takefuji, “ O(log, M) self-organizing map algo-
rithm without learning of neighborhood vectors,” IEEE Trans. Neural
Netw., vol. 17, no. 6, pp. 1656-1661, Nov. 2006.

[10] B. Fritzke, “A self-organizing network that can follow non-stationary
distributions,” in Proc. Int. Conf. Artif. Neural Netw., 1997, pp.
613-618.

[11] J.S.B. Mitchell, “Geometric shortest paths and network optimization,”
in Handbook on Computational Geometry, J. R. Sack and J. Urrutia,
Eds. New York: Elsevier, 2000, pp. 633-702.

[12] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algo-
rithms, and Implementation. Cambridge, MA: MIT Press, 2005.

[13] B. Chandrasekaran, U. Kurup, B. Banerjee, J. R. Josephson, and R.
Winkler, “An architecture for problem solving with diagrams,” in Dia-
grammatic Representation and Inference, Lecture Notes in Artificial In-
telligence, A. Blackwell, K. Marriott, and A. Shimojima, Eds.  Berlin,
Germany: Springer-Verlag, 2004, vol. 2980, pp. 151-165.

[14] S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, and W. Rlling, “On
continuous homotopic one layer routing,” in Proc. Symp. Comput. Ge-
ometry, 1988, pp. 392-402.

[15] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and robot control,” in Proc. IEEE Int. Conf. Robot. Autom., Atlanta,
GA, 1993, vol. 2, pp. 802-807.

[16] D. Grigoriev and A. Slissenko, “Polytime algorithm for the shortest
path in a homotopy class amidst semi-algebraic obstacles in the plane,”
in Proc. Int. Symp. Symbolic Algebraic Comput., Rostock, Germany,
1998, pp. 17-24.

[17] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6, pp.
386-408, 1958.

[18] E.Berglund and J. Sitte, “The parameterless self-organizing map algo-
rithm,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 305-316, Mar.
2006.

[19] T. DeWolf and T. Holvoet, “Emergence versus self-organisation:
Different concepts but promising when combined,” in Engineering
Self Organising Systems: Methodologies and Applications, ser. Lec-
ture Notes in Computer Science. Berlin, Germany: Springer-Verlag,
2005, vol. 3464, pp. 1-15.

[20] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-
putational Geometry. New York: Springer-Verlag, 1997.

[21] S. Pal, A. Datta, and N. R. Pal, “A multilayer self-organizing model
for convex-hull computation,” IEEE Trans. Neural Netw., vol. 12, no.
6, pp. 1341-1347, Nov. 2001.

[22] A. Efrat, S. G. Kobourov, and A. Lubiw, “Computing homotopic
shortest paths efficiently,” in Proc. 10th Ann. Eur. Symp. Comput.
Geometry, 2002, pp. 411-423.

[23] S.Bespamyatnikh, “Computing homotopic shortest paths in the plane,”
J. Algorithms, vol. 49, no. 2, pp. 284-303, 2003.

[24] D. Richards, “Complexity of single-layer routing,” IEEE Trans.
Comput., vol. C-33, no. 3, pp. 286288, Mar. 1984.

[25] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes active contour
models,” Int. J. Comput. Vis., pp. 321-331, 1988.

Bonny Banerjee (S’06) received the B.E. degree in
electronics and telecommunication engineering (with
honors) from Jadavpur University, Calcutta, India, in
2000, the M.S. degree in electrical engineering, and
the Ph.D. degree in computer science and engineering
from The Ohio State University, Columbus, in 2002
and 2007, respectively.

From 2001 to 2007, he was a Graduate Research
Associate at the Laboratory for AI Research at The
Ohio State University. His current research interests
include Al neural networks, and computer vision.

Dr. Banerjee was a recipient of the M. V. Chauhan Merit Certificate awarded
by the IEEE India Council in 1999, the J. N. Tata Scholarship for higher studies
abroad in 2000-2001, and the Edward J. Ray Travel Award for scholarship and
service from The Ohio State University in 2004 and 2006. He received the Na-
tional Scholarship, India, in 1994 and 1996.



