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Abstract. Much of the work on ontologies in AI has focused on describing some aspect
of reality: objects, relations, states of affairs, events, and processes in the world. A goal is
to make knowledge sharable, by encoding domain knowledge using a standard
vocabulary based on the ontology. A parallel attempt at identifying the ontology of
problem-solving knowledge has a goal of sharable problem-solving methods. For
example, when one is dealing with abductive inference problems, the following are some
of the terms that occur in the representation of problem-solving methods: hypotheses,
explanatory coverage, evidence, likelihood, plausibility, composite hypothesis, etc.
Method ontology is, in good part, goal- and method-specific. ``Generic Tasks,''
``Heuristic Classification,'' ``Task-specific Architectures,'' ``Task-method Structures,''
``Inference Structures'' and ``Task Structures'' are representative bodies of work in the
knowledge-systems area that have focused on domain-independent problem-solving
methods. However, connections have not been made to work that is explicitly concerned
with domain ontologies. Making such connections is the goal of this paper. This paper is
part review and part synthesis.

1 Ontologies as Content Theories
In philosophy, ontology is the study of the kinds of things that exist.  Ontologies are often said,
colorfully, to "carve the world at its joints." In AI, the term has largely come to mean one of two
related things.

• A representation vocabulary, typically specialized to some domain or subject matter.
More precisely, it is not the vocabulary as such that qualifies as an ontology, but the
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conceptualizations that the terms in the vocabulary are intended to capture. For example,
the ontology doesn't change by translating the terms from pseudo-English to pseudo-
French.  In engineering design, one might talk about the ontology of the domain of
electronic devices. Such an ontology might have conceptual elements such as
``transistors,'' ``operational amplifiers,'' ``voltages,'' and so on, and relations between
these elements, such as one class of devices is a subtype or a part of another, or that
certain terms are properties of certain devices. Identifying such terms --and the
underlying conceptualizations-- generally requires careful analysis of the kinds of objects
and relations that can exist in the domain. In what has come to be called ``Upper
Ontologies,'' i.e., ontologies that describe generic knowledge that holds across many
fields, the analysis required to establish the ontologies is a major research challenge.

• Occasionally, a body of knowledge describing some domain, typically a common sense
knowledge domain, using such a representation vocabulary. For example, CYC (Lenat &
Guha, 1990 ) often refers to its knowledge representation of some area of knowledge as
its ontology.

In this paper, we use the term ontology in the first sense, except that we broaden the notion of
knowledge to include knowledge about problem solving.  Our goal is both to review the work on
ontology of problem solving knowledge and to propose a framework in which new work may be
carried on more productively.

The current interest in ontologies is really the latest version of our field's alternation of focus
between content theories and mechanism theories. Sometimes everyone gets excited by some
mechanism, such as rule systems, frame languages, neural nets, fuzzy logic, constraint
propagation, unification, etc. The mechanisms are proposed as the secret of making intelligent
machines. At other times, there is a realization that, however wonderful the mechanism, it cannot
do much without a good content theory of the domain on which to set the mechanism to work.
Moreover, it is often realized that once a good content theory is available, many different
mechanisms might be used equally well to implement effective systems, all using essentially the
same content (Chandrasekaran, 1994).

In AI, there have been several attempts to characterize the essence of what it means to have a
content theory. McCarthy and Hayes' (McCarthy & Hayes, 1969) Epistemic versus Heuristic
distinction, Marr's three levels (Marr, 1982) --Information Processing Strategy level, algorithms
and data structures level, and physical mechanisms level-- and Newell's Knowledge Level versus
Symbol Levels (Newell, 1982) all grapple in their own ways with characterizing content.
Ontologies are quintessentially content theories.

1.1 Why Are Ontologies Important?

Ontological analysis clarifies the structure of knowledge. The first reason is that they form the
heart of any system of knowledge representation. If we do not have the conceptualizations that
underlie knowledge, then we do not have a vocabulary for representing knowledge. Thus the first
step in knowledge representation is performing an effective ontological analysis of some field of
knowledge. Weak analyses lead to incoherent knowledge bases. A good example of the need for
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good analysis comes from the field of databases (Wieringa & de Jonge , 1995). Consider a
domain in which there are people, some of whom are students, some professors, some are other
type of employees, some are females and some males. For quite some time, a simple ontology
was used in which the classes of students, employees, professors, males and females were
represented as ``types of'' humans. Soon this caused problems because it was noted that students
could also be employees at times and can also stop being students. Further ontological analysis
showed that ``students,'' ``employees,'' etc. are not ``types-of'' humans, but rather they are
``roles'' that humans can play, unlike categories such as ``females,'' which are in fact a ``type-of''
humans. Clarifying the ontology of this data domain made it possible to avoid various difficulties
in reasoning about the data. Analysis of this sort that reveals the subtle connections between
terms can often be quite challenging to perform.

Ontologies enable knowledge sharing. The second reason why ontologies are important is that
they provide a means for sharing knowledge. We just described how demanding it can be to
come up with the appropriate conceptualizations for representing some area of knowledge.
Suppose we do such an analysis and arrive at a satisfactory set of conceptualizations, and terms
standing for them, for some area of knowledge, say, the domain of ``electronic devices.'' The
resulting ontology would likely include terms such as ``transistors,'' and ``diodes,'' and more
general terms such as ``functions,'' ``causal processes,'' ``modes'', and also terms in the electrical
domain, such as "voltage," that would be necessary to represent the behavior of these devices. It
is important to note that the ontology − defined by the basic concepts involved and their relations
− is intrinsic to the domain, apart from a choice of vocabulary to represent it. If we can come up
with a set of terms to stand for the conceptualizations, and a syntax for encoding the
conceptualizations and the relations among them, then the efforts that went into analysis can be
encoded into an ontology. This ontology can be shared with others who have similar needs for
knowledge representation in that domain, avoiding the need for replicating the knowledge
analysis. These ontologies can form the basis for domain-specific knowledge representation
languages. In contrast to the previous generation of knowledge-representation languages, such as
KL-One, these domain-specific languages may be termed ``content-rich.'' That is, they have a
large number of terms that embody a complex content theory of the domain.

Given such an ontology, specific knowledge bases describing specific situations can be built. For
example, manufacturers of electronic devices could build catalogs that describe their products.
With the shared vocabulary and syntax, such catalogs could be shared easily, and used in
automated design systems. This kind of sharing vastly increases the potential for reuse of
knowledge.

We will now briefly review the basics of work on ontology to set the stage for discussing a
specific type of ontology, that of problem solving knowledge.

1.2 Terms for Describing the World

An ontology helps us to describe facts, beliefs, hypotheses, and predictions about the world in
general, or in a limited domain, if that is what is needed. Constructing ontologies for representing
factual knowledge is still an on-going research enterprise. Ontologies range in abstraction from
very general terms that lie at the heart of our understanding and descriptive capabilities in all
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domains, to terms that are restricted to specific domains of knowledge. Basic phenomena of
space, time, parts and subparts apply to all domains, while the concept of malfunction applies to
engineered or biological domains, and even more specifically, the concept of hepatitis applies to
medicine. These examples also suggest that there is no sharp line of abstraction separating the
general from the domain- specific. Domains come in differing degrees of generality. Ontologies
required to describe knowledge of some domain may require, in addition to domain-specific
terms, terms from higher levels of generality. Terms at very general levels of description are
often said to be part of the so-called ``upper ontology.'' There are many open research issues
about the correct ways to analyze knowledge at this level, and disagreements and open problems
abound. To give some idea of the issues involved, here is a quote from a recent call for papers:
(1)

``On the one hand there are entities, such as processes and events, which have temporal
parts... On the other hand there are entities, such as material objects, which are always
present in their entirety at any time at which they exist at all. The categorical distinction
between entities which do, and entities which do not have temporal parts is grounded in
common sense. Yet various philosophers have been inclined to oppose it. Some ... have
defended an ontology consisting exclusively of things with no temporal parts.
Whiteheadians have favored ontologies including only temporally extended processes.
Quine has endorsed a four-dimensional ontology in which the distinction between objects
and processes vanishes and every entity comprises simply the content of some arbitrarily
demarcated portion of space-time. One further option, embraced by philosophers such as
David Lewis, accepts the opposition between objects and processes, while still finding a
way to allow that all entities have both spatial and temporal parts.''

Sowa (Sowa, 1997), CYC (Lenat & Guha, 1990) and Guarino (Guarino, 1995) are some
researchers in AI who have proposed alternative upper ontologies. As a practical matter, there is
agreement that there are objects in the world; these objects have properties that can take values;
the objects may exist in various relations with each other; the properties and relations may
change over time; there are events that occur at different time instants; there are processes in
which objects participate and that occur over time; the world and its objects can be in different
states; events may cause other events as effects; and objects may have parts.  Further, perhaps
not as basic facts of the world but as ways of organizing them, is the notion of classes, instances,
and subclasses, where ``classhood'' is associated with shared properties. Thus, Is-A relations
indicating subclass relations are fundamental for ontology representations.

The representational repertoire of objects, relations, states, events and processes does not say
anything about what classes of these entities exist. They are left as commitments to be made by
the person modeling the domain of interest. Even at very general levels, such commitments
already appear. Many ontologies agree to have as root the class ``thing'' or ``entity'', but already
at the next more specific level, they start to diverge, a fact which is nicely illustrated by the
slightly different taxonomies of the top levels in existing ontology projects such as CYC,
Wordnet, Generalized Upper Model, Gensim, etc. (see Fridman-Noy & Hafner, 1997 for an
overview). The more specific the domain to be modeled, the more the ontological commitments.
For example, someone, faced with expressing his knowledge of a certain part of the world, might
assert that there are certain categories of things called animals, minerals and plants, that Has-
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Life(x), and Contains- carbon(x) are relevant properties for the objects; that Larger-than(x,y),
Can-eat(x,y) are two relations that may hold between any two objects. These commitments are
not arbitrary --any old declaration of classes and relations will not do. For them to be useful,
such commitments should reflect some underlying reality, should reflect real existence. Thus the
philosophical term ``ontology'' is especially appropriate for such commitments.

As mentioned, there is no sharp division between domain-independent and domain-specific
ontologies for representing knowledge. For example, the terms object, physical object, device,
engine, and diesel engine, all describe objects, but in an order of increasing domain- specificity.
Similarly, terms for relations between objects can span a range as well: e.g.,
connected(component1, component2) relation can be specialized as electrically-connected,
physically-attached, magnetically-connected and so on. Ontologies are terms that are needed to
describe the world, but an ontology for representing domain facts can of course be used to
represent non-facts, hopes, expectations, etc.

Two Levels of Ontology. Research on ontologies generally proceeds by asking the question,
``What is the ontology of P?'' where P is some type of entity, process or phenomenon. P may be
something very general and ubiquitous such as ``causal processes,'' or ``liquids.'' Or P can be of
narrower scope such as ``devices,'' or ``diseases of biological organisms.'' It is usual to identify
two levels at which such an analysis is often conducted, and correspondingly, two levels of
ontology for P can be distinguished (this distinction is reminiscent of the distinction between
core and peripheral ontologies in (van Heijst et al., 1997)).

At the first level, one identifies the basic conceptualizations needed to talk about all instances of
P. For example, the first level ontology of ``causal process'' would include such concepts as
``time instants,'' ``systems,'' ``system properties,'' ``system states,'' ``causes of change states,'' and
``effects (also states).''  We need this vocabulary to talk about causal. At the second level, one
would identify and name different types of P, and relate the typology to additional constraints on,
or types of, the concepts in the first-level ontology. For the causal process example, we might
identify two types of causal processes, ``discrete causal processes,'' and ``continuous causal
processes.''  These terms, and the corresponding conceptualizations, are also parts of the
ontology of the phenomenon being analyzed. Second-level ontology is essentially open-ended:
new types may be identified at any time.

How task-dependent are ontologies? What kinds of things actually exist does not depend on what
our goals are. In that sense, ontologies are not task-dependent. On the other hand, exactly what
aspects of reality in some domain get identified and written down in a particular ontology
depends on what tasks the ontology is being built for. An ontology of the domain of fruits would
focus on some aspects of reality if it is being written for selecting pesticides, and on different
aspects if it is being written to help chefs select fruits for cooking. As we will see, assumptions
or requirements of problem-solving methods can capture explicitly the way in which ontologies
are task-dependent (Fensel & Benjamins, 1996). Assumptions are therefore a key-factor in
practical sharing of ontologies.

Technology for Ontology Sharing. There have been several recent attempts at creating
engineering frameworks in which to construct ontologies. Neches, et al. (Neches et al., 1991)
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describe an enabling technology called KIF intended to facilitate expression of domain factual
knowledge using a formalism based on augmented Predicate Calculus. A language called
Ontolingua (Gruber, 1993) has been proposed to aid in the construction of portable ontologies.
In Europe, the CommonKADS project has taken a similar approach to modeling domain
knowledge (Schreiber et al., 1994). These languages use various versions of Predicate Calculus
as the basic formalism. Predicate Calculus facilitates the representation of objects, properties,
relations, and classes. Variations such as Situational Calculus can be used to introduce time so
that states, events and processes can be represented. If the idea of knowledge is extended to
include images and other sense modalities, radically different kinds of representation may be
needed. For now, PC provides a good starting point for ontology-sharing technologies.

Using a logical notation for writing and sharing ontologies does not imply any commitment to
implementing the knowledge system in that or a related logic. One is simply taking a Knowledge
Level stance in describing the knowledge system, whatever the means of implementation. In this
view, we can ask of any intelligent system, even one implemented in, say, neural networks,
``What does the system know?''

We are now ready to discuss the ontology of a specific phenomenon, that of problem-solving.
We think that almost all the work on ontologies, until recently (Fensel et al., 1997, Mizoguchi et
al., 1995), has been focused on one dimension of knowledge content. In order to explain this
claim, we will need to identify different dimensions to the study of ontologies. We turn next to
this task.

1.3 Dimensions for Ontology Specification in Knowledge Systems

In building a problem-solver, we need two types of knowledge:

1. Domain factual knowledge: Knowledge about the objective realities in the domain of
interest (Objects, relations, events, states, causal relations, etc.)

2. Problem-solving knowledge: Knowledge about how to achieve various goals. A piece of
this knowledge might be in the form of a problem-solving method (PSM) specifying, in a
domain-independent manner, how a class of goals can be accomplished.

Early research in KBS mixed together both factual and problem-solving knowledge into highly
domain-specific rules and called all of it ``domain knowledge.'' As research progressed, however,
it became clear that there were systematic regularities in how domain knowledge (we'll use
``domain knowledge'' as a short hand for ``domain factual knowledge'') was used for different
goals.  It also became clear that this knowledge could be abstracted and reused.

The domain knowledge dimension has been the overwhelming focus of most of the AI
investigations on ontologies. In our view, the historical reasons for this are the following. In AI,
there have been two distinct sets of practical applications of knowledge representation. One of
them has been the area that started out as Expert Systems, but has evolved into a somewhat
broader area called Knowledge-Based Problem-Solving (KBPS). Another area within AI that has
also needed knowledge representation is natural language understanding (NLU). Ontological
analysis is typically required to identify appropriate semantic structures for an understanding
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program to map utterances to. Knowledge also plays a crucial role in disambiguation. Database
and information systems communities have also recently begun to take interest in ontology
issues. In practice, much of the work on ontologies, and in knowledge representation in general,
has been driven more by concern with the needs of these communities, and these needs have
mostly to do with the structure of what we have called factual knowledge. NLU and database
systems typically do not do much problem solving of the sort done by KBPS systems.

KBPS systems on the other hand clearly need to be concerned with uses of the knowledge for
complex chains of reasoning. Thus the field of KBPS came to a realization in quick order that in
addition to factual knowledge there is also knowledge about how to use the knowledge to
achieve problem-solving goals. In fact, the so-called "second generation" research in knowledge
systems was fueled by this emphasis on methods appropriate for different types of problems.
Most of the work on knowledge representation that has gone on within the KBPS community is
not even known to the general knowledge-representation community.

The dimension of representing problem-solving knowledge will be the focus of this paper. We
will begin by analyzing the ontology of a problem-solver, and note the role of problem-solving
knowledge in it. We will ask: What is problem-solving knowledge made of? What are methods?
What specific methods are there for what kinds of problems? What is the relationship between
method ontologies and factual-knowledge ontologies? We will also discuss sharing and reusing
method knowledge, since these are the major motivations of this line of research.

2 Ontology of a Problem Solver
The major elements of a first-level ontology of a generic instance of problem solver are the
following:

1. A problem-solving goal

2. Domain data describing the problem-instance

3. Problem-solving state

4. Problem-solving knowledge (PSK)

5. Domain factual knowledge (DFK)

The underlying picture is that the problem-solver's state changes as a result of applying problem
solving knowledge and domain knowledge to problem data. Eventually, a part of its state
description might contain a solution to the goal, at which point the problem solving process
stops. It might also stop when, given its knowledge and data, no progress toward the goal is
possible. This description most likely does not suffice for all forms of what one might consider
problem-solving. For example, distributed problem solving, where a number of independent
agents collectively solve problems might require extensions to our description. However, for the
points we wish to make, this characterization is a good starting place.
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2.1 Problem-Solving Goals

A simple example of a problem-solving goal is a diagnostic goal, "Explain abnormal
observations of a system." This goal description is composed of two parts, an "attitude" term
(Explain) that takes as argument an external world description (abnormal observations).  This
applies to goal descriptions in general.  They are made up of attitude terms about world
descriptions.  Thus, the first-level ontology for goals is simply "attitudes on world descriptions."
Of course, fully a describing a goal instance would require using attitude terms as well as the
terms needed for their arguments, i.e., the DFK ontology that enables one to describe world
states, events, object configurations, and process descriptions.

We have mentioned that second level ontology terms arise by specializing first level ontology
terms and identifying appropriate constraints between them.  "Diagnostic goal" is a second-level
term in the goal ontology; it is obtained by specializing the attitude term to "Explain" and
constraining its argument to be world descriptions of the form "abnormal observations."  Other
attitude types are: ``make true that,'' ``prevent,'' "determine whether," "identify," and ``assign
likelihood to.''

Planning systems have goals to generate actions needed to achieve certain desired world states or
avoid undesired ones. Design systems have goals of synthesizing object configurations that will
behave in desired ways.  Prediction or simulation systems have the goal of predicting future
world states, and so on. Thus diagnose, design, plan, predict, etc., are some of the common terms
in the second-level ontology for problem-solving goals. Classification goals are very common in
knowledge systems as well. Many of these second-level elements of the goal ontology were
identified during the research on task-oriented approaches. In fact, the term ``task'' was used to
refer to goal types of certain generality (2). Tasks come in a range of generality: ``diagnose
medical problems,'' is more specific than ``diagnose systems,'' but is more general than
``diagnose liver illnesses.'' ``Explain observations,'' is more general than ``diagnose.'' ``Explain
observations'' can cover many other task types besides diagnosis.

2.2 Data Describing the Problem Instance

A problem instance is also described in terms of domain factual ontology. In diagnosis, it is a set
of observations. In prediction, it is description of actions and conditions that obtain in some
world. In design, it is a set of constraints and specifications. A problem instance for a logistic
planner might be a set of specific supply items to be delivered to specific locations and under
specific weather, transportation and storage availability conditions.

The ontology of problem instance data is the same as that of domain factual knowledge. The
second-level ontology for problem instance data parallels that of the goal. Data for diagnostic
goals are variously called normal and abnormal observations, and symptoms; for design goals,
they are specifications, constraints, and functions; for prediction goals, they are initial
conditions, and actions, and so on.
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2.3 Problem States

The problem-solver creates and changes a number of internal objects during the process of
problem solving. A problem state is a set of values of state variables representing these internal
objects. Problem state includes information about current goals and subgoals. It would also
include all knowledge inferred during problem solving: e.g., elements of candidate solutions,
their plausibility values, rejected solutions and reasons for them. In the case of diagnosis,
problem state would contain information such as: current diagnostic hypotheses, observations
explained by hypothesis H, the best hypotheses so far. In the case of design, problem state would
contain information such as:  partial design, design candidate, specifications satisfied by the
design candidate, best candidate so far. Thus task types determine types of problem state
variables. Active problem-solving goals and subgoals constitute a distinguished part of the
problem state description. As problem solving proceeds, some of the subgoals are achieved, new
subgoals are created, and some goals are abandoned.

2.4 Problem-Solving Knowledge

The basic unit of problem solving knowledge (PSK) is a mapping of the following form:

<conditions on the problem state (including goals)>
<conditions on domain knowledge>
<conditions on data describing the problem instance>
−>
changes to <problem state (including goal components)>

The above is not intended to be seen as a rule (which is an implementation formalism in KBS),
but as a Knowledge Level description of a basic unit of problem- solving knowledge. It describes
what the first-level ontology of a reasoning step is. It says that problem-solving behavior is
responsive to the current state of problem solving (including goals), and uses domain knowledge
and problem data to make changes to problem state, achieve goals and to set up subgoals, and to
obtain additional data. For example, a piece of diagnostic problem-solving knowledge might be
(3):

``If the problem state includes the goal Evaluate hypothesis H, and if domain knowledge
indicates that H can be evaluated as confirmed if the observations O1, ..., On have the
values v1, ..., vn respectively, and if O1, ..., On do have values v1, ..., vn in the data
describing the problem instance, then evaluate H as confirmed.''

Problem-solving knowledge may be indexed by the goal it serves (in the example, Evaluate
hypothesis). This facilitates sharing of this type of knowledge. It can be applied to any domain in
which we need to assess hypotheses as long as we have the domain knowledge corresponding to
the ``observations −> hypothesis'' part in the reasoning step. This is a key part of our analysis:
the above is not a rule such as a rule of Mycin, in which domain factual knowledge and problem-
solving knowledge were combined. It is an abstract description of a piece of problem-solving
knowledge.
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Problem Solver Element First Level Ontology Second Level Ontology

Problem Solving Goal Attitude terms whose arguments are world
descriptions (see Domain Factual
Knowledge (DFK) below)

Explain, determine whether,
identify, classify, construct

Diagnosis Example:
Explain abnormal observations in
terms of malfunction causes

Problem instance data DFK terms (see below) Diagnosis Example:
Sensor values, abnormal values,.:

Problem state components Solution candidates, parts of solutions,
goal, subgoals, solution valuation, satisfied
and unsatisfied problem requirements,..

Diagnosis Example:
Malfunction hypotheses: solution
candidates, parts of solution
Confirmed |rejected hypotheses,
plausibility of hypotheses: solution
valuation
Explained and unexplained
observations: satisfied and
unsatisfied problem requirements
Evaluate malfunction hypothesis:
subgoal

Problem Solving
Knowledge

Conditions on (sub)goal, state, problem
instance data, DFK, changes to state

Ontology of goal, state, and data
given above.  Change of state in the
form: change hypothesis
evaluations, set up explanatory,
data seeking,  and parsimony
subgoals

Domain Factual
Knowledge

Objects, properties, states, processes,
classes,..

Devices, functions, malfunctions,
modes, causes and effects,
observations, behavior,
components, …

Table 1.  Ontology of a problem solver and its elements.  The example of diagnosis is used to
illustrate second-level ontology.

PSK units may come at different degrees of abstraction, based on how abstract the indexing
goals are. The goal may range in abstractions: for example, from ``Establish hypothesis,'' through
``Establish diagnostic hypothesis,'' to ``Establish device malfunction,'' to ``Establish diode
failure.'' Actual implementations in specific domains may combine problem-solving knowledge
and domain knowledge, the way early rule-based systems did. For example, a system may have a
rule of the form:

``If the goal is to establish diode malfunction, then if voltage vi = 0, then confirm diode malfunction.''



11

This unit of problem-solving knowledge is harder to share across domains, even though for this
specific domain it may have exactly the same result as the application of the more abstract PSK
unit.

2.5 Domain Knowledge

We have already discussed the issues in describing factual knowledge in the world: Objects,
properties, relations, classes and subclasses, states, processes, events, and parts are some of the
elements in that ontology. We have also indicated that the ontology for domain knowledge is
determined by the needs of the goal and the problem-solving knowledge. A second level
ontology for diagnostic systems would contain terms such as device, event, component, and
component connection, function, malfunction, symptom, and normal/abnormal behavior, and
relational knowledge of the sort Can-cause(malfunction, {observation | malfunction}). The
domain knowledge might also have knowledge of the causal processes that realize the function
of a device. Similar analyses can be made for other tasks. The second-level ontology for domain
knowledge for design and diagnosis has much in common: the concepts of devices, components
and causal relations.

Table 1 is a summary description of the elements of a problem solver and their ontology.

2.6 Relations between Different Elements of the Problem-Solving Ontology

Elements of a problem-solver use domain knowledge of specific types, and place mutual
ontological constraints. McDermott coined the term knowledge roles to refer to how problem-
solving knowledge required domain knowledge of certain types. CommonKADS work --and
subsequent work built on it (Schreiber et al., 1994), (Coelho & Lapalme, 1996)-- concerning
inference structures tries to make explicit the relation between different elements of a problem
solving knowledge.

Let us take an example used by Coelho and Lapalme : Select_Parameter task (which, to look
ahead somewhat, is a subtask in the Propose-and-Revise method). Select is an attitude term.
Parameters are properties of some objects in the domain. Using our notation, this unit of
problem-solving knowledge may be described as:

(Sub)Goal: Select value for parameter ?p1
Condition on Problem Instance Data: value of parameter ?p2
Condition on Problem State: problem state includes a parameter ?p1 which has
not been assigned a value
Condition on Domain Knowledge: domain knowledge has a constraint relating the
values of ?p1 and ?p2
Changes to Problem State: change the problem state such that ?p1 has the value
allowed by the constraint, and remove subgoal

It is this close relationship between goal types (tasks), problem-solving knowledge, and domain
knowledge that makes possible the sharing of problem-solving knowledge. Problem-solving
knowledge can be reused in a different domain and task by applying it to knowledge stated in the
appropriate domain ontology. We'll discuss this in some detail later in the context of methods.
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3 Problem-Solving Methods
A problem solving method is an organized package of PSK units, indexed by the problem-
solving goal to which it is applicable. Why would one need to organize reasoning steps in the
form of methods? Recall that a PSK unit may set up a subgoal, as a means to achieve the goal for
which it is invoked. Suppose there is a PSK indexed with goal G, and this PSK sets up a subgoal,
G1. Suppose there is another PSK for the goal type G1. One may then use the combination of the
two PSK's as a packaged unit, index it by G and invoke it whenever G is encountered. A method
may consist of just one PSK unit. In general, however, methods derive their value by their larger
granularity, since a complex reasoning strategy may thus be reused.

In the example we just gave, the situation was quite simple: the PSK unit for G set up G1 and the
two PSK units then helped achieve G. However, more complex situations will commonly arise.
G may set up more than one subgoal, and a subgoal G1 may have more than one PSK unit
available to solve it, depending on conditions on data and DFK. Thus a method may include
alternate ways of accomplishing some of the subgoals. It also needs to include control
knowledge to organize invocation of subgoals, and also knowledge about exchanging and
integrating information between subgoals. Note that, just as PSK units, a method will either
achieve the main goal, or set up one or more subgoals that will need to be solved by additional
methods.

How general is the characterization of methods as compositions of problem-solving knowledge
units, related by subgoal relations? Again, similar to our point about our model of the problem
solver itself, the definition does not cover everything that would intuitively appear to be a
method. Our definition of a method is intended to capture the range of methods that a universal
subgoaling system such as SOAR (Laird et al., 1987) can accomplish. Our goal here is not to
account for all methods, but to indicate what method ontology looks like.

First-Level Ontology for Methods. The first-level ontology of a PSM, then, is simply the
ontology of PSK units plus control knowledge. The method ontology thus includes the goal (also
referred to as competence), the goal-subgoal tree it induces, the forms in which it requires data
and domain knowledge (i.e. assumptions and requirements of the method), and control
knowledge for organizing the invocation of the subgoals (see also (Fensel et al., 1997)). We have
discussed all the above elements earlier, except for control knowledge.

Control Ontology. Control may be explicitly specified using the standard vocabulary of control:
sequential control, conditional branching, iteration, recursion, etc. There appears to be no task-
specific vocabulary for control. Control flow of specific sorts may also emerge from an
interaction of domain knowledge and the problem state. For example, in hierarchical
classification, navigation over a hierarchy may be explicitly programmed. Or, one may simply
have the knowledge, ``consider the refinement of current concept,'' as in (Johnson, 1991). If the
domain knowledge has information about refinements for the concepts, then the resulting
behavior will be hierarchical navigation, without this strategy being explicitly stated. Complex
control behaviors may emerge as a result of the interaction between the architecture and the
contents of the knowledge base.
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Indexing of Methods. The method is indexed by its goal. Just as in the case of an individual
PSK unit, the goals and subgoals of the methods can occur at different degrees of generality. If
the goals are very abstract and general − say, ``Explain''− then the user of the method has the task
of mapping it to his needs. If the goal is very specific − say, ``diagnose TC tuner circuit''− then
the method's reusability is limited. This has come to be called the usability-reusability trade-off
(Klinker et al., 1991). There have been proposals in the literature to distinguish a class of
methods called task-neutral methods (Beys et al., 1996) i.e., methods that are not intended for a
specific goal type. The intent is to capture the idea that some methods have extremely general
applicability, while others seem to be more narrowly tailored to tasks of great specificity. We
think that there is no binary separation between task-specific and task-neutral methods. Instead,
there is a spectrum within which we can talk about more general and more specific (Fensel, 
1997) The point remains that the more general the task index of a method, then the more work
that will be needed to recognize how to apply it to a specific task. We will revisit this issue later
when we discuss the issues surrounding sharing and use of methods.

Operationalization of Methods. A method of the sort we have been discussing is
operationalized.  That is, the description of a method can be used directly to implement a
problem solver. As long as domain knowledge and problem data of the types required by the
method definition are available, the method should ``run.''

However, the term ``method'' has often been used in the literature to refer, not to operationalized
methods, but to general approaches and strategies. For example, one often sees references to the
``divide and conquer'' method; this method is so general, and potentially so ubiquitously
applicable, that it is impossible a priori to operationalize it for all cases to which it is applicable.
On the other hand, that method has indeed been successfully operationalized for specific
domains, such as for composition of a certain class of algorithms (Smith, 1991).

Then there are methods, such as ``Propose-and-Revise,'' and ``Heuristic Classification,'' that are
also quite general and may be applied to almost any problem in principle. These methods have
been operationalized: if we can find domain knowledge to suit their requirements, they can be
applied. Almost every problem in the world can in theory be solved by proposing an initial
solution of the right sort and then critiquing and revising it. The difficulty comes in identifying
the right sort of initial solution, and right sorts of criticisms and modifications for arbitrary
problems. Similarly, any problem can in theory be solved by categorizing its solution space into
classes and mapping from the problem statement into solution categories. If this were easy to do
in practice, then we do not need any other methods at all. The rub comes when one tries to
identify, for an arbitrary problem, knowledge corresponding to good initial solution, criticism
knowledge, etc. (for the Propose-and-Revise method), or a categorization of the solution space
and mapping from the problem statement to the solution category space (for the Classification
method). Thus, in practice, these methods, though operationalizable in general, can only be
usefully applied to a narrow range of problems. For example, Propose-and-Revise has been used
to solve parametric design problems in domains where there is often clear and straightforward
knowledge available about initial candidates and about how to assess and modify the parameters
(Schreiber & Birmingham, 1996). Similarly, classification methods can be operationalized and
applied to problems where knowledge about solution hierarchies and mappings from problem
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data to solution hierarchy elements is not hard to get. Simple types of selection problems, and
diagnostic problems where malfunction hierarchies are available, are examples of problems for
which the Classification method has been readily applicable.

3.1 Second-Level Method Ontology

A second level ontology for methods would identify, characterize and name methods based on
how they achieve their goals. How a method works is the goal-subgoal structure induced by all
the PSK units in the method. This goal-subgoal structure can be modified in many ways: by
replacing one of the PSK units with a new one for the same subgoal, or adding a new PSK unit
for the subgoal, we get a different overall goal-subgoal structure. Each variation counts as a new
method. Because of this, even for simple goal types, the number of distinct methods may be too
numerous to list and name.

In spite of the proliferation problem, one might still identify especially useful combinations of
goal-subgoal structures for various goal types, and make these methods available for sharing.
This was the approach adopted in the much of the work on task-oriented approaches. Thus work
on Heuristic Classification (Clancey, 1985), Generic Tasks (Chandrasekaran, 1986) and KADS'
Interpretation Models (Wielinga & Breuker, 1986) identified a number of such generically useful
problem-solving tasks and particularly appropriate problem-solving methods for them. Heuristic
Classification was a method with the subtasks of data abstraction, heuristic match, and class
refinement. The Generic Task paradigm identified hierarchical classification, abductive
assembly, hypothesis assessment, design-plan selection and refinement, and data abstraction as
some of the most ubiquitous tasks in knowledge systems. This framework also proposed how
complex problems might be solved by the composition of several different generic tasks. For
example, a diagnostic system might be built out of the methods for abductive assembly,
classification, hypothesis assessment, and data abstraction. This architecture is really for the
generic problem of best-explanation finding, a task discussed in detail in (Josephson &
Josephson, 1994). This task is very important, since perception, natural language understanding,
diagnostic problem-solving and scientific discovery can all be viewed as best-explanation
finding problems.

In related later work, instead of identifying a unique preferred method with a task, the notion of a
task structure was developed (Chandrasekaran, 1990). The task structure identifies a number of
alternative methods for a task. Each of the methods sets up subtasks in its turn. The methods are
typically shallow in the nesting of subgoals, increasing the chances that a user would use them as
a unit without much modification. This kind of task-method-subtask analysis can be carried on to
a level of detail where the tasks are primitive tasks with respect to the knowledge in the
knowledge base. The advantage of developing task structures for a task, as opposed to a specific
method, is that there is greater flexibility in putting together a method that meets with the needs
of the specific situation. Methods with shallow goal-subgoal trees have relatively small number
of PSK units. Of course, these methods would leave a number of subgoals unsolved. The user is
free to seek other methods for these subgoals, thus providing flexibility. For example, the
method of logarithms for multiplying two numbers might simply say, ``Find logarithms of the
two numbers, add them, and then find the antilogarithm of the sum,'' without specifying how to
achieve the subgoals ``Find logarithm of number,'' and ``Find antilogarithm of number.'' The task
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structure would identify alternate methods for each of these subtasks. The logarithm method is
highly reusable, while giving the user freedom to use appropriate methods for the subgoals.
Figure 1 illustrates task structure.

T a s k

A l t e r n a t i v e
M e t h o d s

S u b t a s k s

A l t e r n a t i v e
M e t h o d s

Figure 1.  Task structure.  A task may be solved by a number of alternative methods.  Each
method may set up subtasks.

Task structures have been developed for the task of design (Chandrasekaran, 1990), diagnosis
(Benjamins, 1993), planning (Barros, L. Nunes de et al., 1996) and abductive inference
(Josephson & Josephson, 1994). This is not the place to give the details of these task analyses.
The main points to be made here are the following. As a result of the Generic Task and Task
Structure work − and in general, of work on task analysis − we now have a good repertoire of
tasks and methods. The descriptions of the tasks and methods are a rich source of ontologies for
problem solving. The examples we gave in the earlier section for diagnosis and design are but a
small subset of the ontologies that can be constructed for problem solving knowledge from the
work on task-oriented approaches.  The fact that this work focuses on tasks of certain generality
makes the ontologies that arise from them of potential general interest as well.

The earlier generation of Generic Task languages can be viewed in the light of knowledge reuse.
To take a simple example, a Generic Task language called CSRL (Bylander & Mittal, 1990) was
widely used to build classification problem-solving systems. CSRL can be viewed as giving the
user an ability to:

1. synthesize a classification method using a method- specific ontology consisting of terms
such as ``establish concept'' and ``refine concept,'' within a control vocabulary that
allowed variations on top-down navigation of the classification hierarchy, and

2. represent domain factual knowledge for classification in the chosen domain.

Thus, the method ontology for classification directly resulted in a number of system builders
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reusing the problem-solving knowledge for classification embedded in CSRL.

Although the notion of problem-solving ontology as introduced in this paper is relatively new
compared to the work on domain ontologies, some work has been performed in the field of
knowledge engineering that provided important input. Already in the beginning of the nineties,
in Japan Mizoguchi's group started to talk about task-ontologies as valuable instruments to link
the vocabulary and view of a user to that of a problem solver (Mizoguchi et al.). These task
ontologies comprise the vocabulary and the reasoning steps of specific tasks and, in that sense,
they relate to our notions of problem-solving goal and problem-solving knowledge

Work carried out at Stanford on Protégé also is relevant for problem-solving ontologies. A
method ontology, in their view, defines the concepts and relationships that are used by the
method to achieve its goal (Gennari et al., 1994). Thus, "method ontology" in this research refers
to domain ontology from a method point of view. In this sense, Protégé-II is closely related to
what are called ontological assumptions or requirements of problem-solving methods (Benjamins 
et al., 1996). Such assumptions may define ontological commitments of PSMs in a domain-
independent way. However, assumptions not only refer to domain knowledge needed by the
PSM, but also to the task a method is supposed to realize, in which case they are called
teleological assumptions. Such assumptions define a weakening of the goal to be achieved by
introducing assumptions about the precise problem type. For example, the use of the
Classification method for diagnosis typically involves a weakening of the goal.  Normally, we
want an answer for diagnosis that doesn't have more malfunction hypotheses than necessary.
The Classification method would typically produce a number of plausible hypothesis classes, the
method cannot check for redundancy. Thus in fact the PSM achieves a weaker goal.

Several different research communities are nowadays working on ontologies. The SPAR
initiative (Shared Planning and Activity Representation (Tate, 1998)) aims at developing a
standard language for describing plans and domain knowledge used in planning. SPAR then
corresponds to a second-level ontology for planning, but it does not, however, include an
ontology of planning problem-solving steps.

4 Sharing of Method Knowledge
We argued that problem-solving method knowledge is a somewhat neglected dimension of
ontology studies, and that a motivation for studying its ontology is knowledge sharing. Consider
a knowledge-system builder who wishes to build a medical decision-making system. He wants a
system that will accept a description of a patient's complaints and produce an answer describing
what is wrong with the patient. We have deliberately not used the term diagnosis at this point. In
order to build the system, he is told that he will have to find knowledge libraries containing
knowledge about his medical domain and also about problem-solving methods. He will first have
to search the method libraries for a method that relates to the goal type for his problem-solver. If
successful in finding an appropriate method, he will have to use its operationalized specifications
to implement it. Then he will have to search knowledge libraries for medical knowledge of the
type the method needs. In theory he should be able to put the knowledge system together.

Suppose in a library of problem-solving methods there is a method for the goal type of
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classification. We know that this method is a good candidate − simple diagnostic systems have
been built by viewing diagnosis as classification of given symptoms into a disease/malfunction
hierarchy. Let us assume that his diagnostic problem is actually simple enough for this approach
to work. Our system builder sends out the goal, ``discover what is wrong with a patient'', hoping
that this would match a method in the library. The classification method in the library is indexed
with the goal: ``classify a situation into a classification hierarchy''. There is clearly a gap here.
Before the system builder can realize that this method is applicable, he will have to figure out the
relation between the level of abstraction at which his goal is stated and that of the method index.
Note that we are not simply talking about the vocabulary differences --we are assuming that this
problem is handled by the standardization of terms. We are talking about the deeper problem of
realizing that ``finding what is wrong with a patient'' is an instance of ``diagnosis,'' which under
some conditions is solvable by ``classification.''

Assuming that our system builder is able to recognize that his problem can be solved by a
classification method, suppose he retrieves that method and implements it. Now he is going to
need domain knowledge. The classification method in the library would describe the needed
knowledge in terms of classification hierarchy, observations, and causal associations between
observations and the classes. In order to map this ontology to something closer to his domain, he
will need to map ``classification hierarchy'' to ``disease hierarchy,'' and ``observations'' to
``symptoms,'' ``complaints,'' etc.

We have thus seen three possible gaps that have to be bridged before we can perform effective
method sharing.

1. The task and the method may use different underlying ontologies, and thus different
terminology.

2. The task associated with the the method may not be strong enough for achieving the task
at hand.

3. The method requirements are stated in different terminology than the domain knowledge
that the method has to reason about.

Fensel (Fensel, 1997) proposes adapters as an instrument to bridge these gaps. An adapter can
establish a mapping between the task and method ontology, can introduce teleological
assumptions to weaken to goal to be achieved, and can establish a mapping between method and
the domain ontology. In addition, adapters can introduce ontological assumptions on domain
knowledge in order to satisfy the requirements of the method. A significant part of the work of
adapters thus amounts to relating different ontologies to each other. How to do this is still an
ongoing issue. Earlier we spoke about task-neutral methods. Clearly, the more task-neutral a
method is, the more work needs to be done before it can be applied to a task and a domain, or, in
other words, the more adapters need to be used. Adapters thus have the capability to turn task-
neutral PSMs into task- dependent ones. Figure 2 illustrates how a system builder with a task
interacts with a method library and shows the role of the adapters.

The simple example of our system builder who wishes to build a system that would decide what
is wrong with a patient illustrates the problems in sharing and using method knowledge in a
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seamless way. Nevertheless, method-sharing has been practical to some extent for more than a
decade. The notion of problem-solving methods as separate items of knowledge that can be
hooked up with domain knowledge and reused originated with (Chandrasekaran, 1986, Clancey,
1985), and extended by (Musen, 1989, Steels, 1990), and, in the CommonKADS project, by
(Benjamins, 1993.) Typically, in this line of research it was required that the user of a method
and the method indexing share the same terms in the description of the goal. For example, once
one realizes that what he has is a classification problem, the Generic Task framework provided
the CSRL language to help build a classification problem-solver. The language guided the
system-builder in inputting domain knowledge that was required by the method. Similarly, DSPL
helped users build routine design systems. However, neither the knowledge requirements nor the
methods were stated in a formal way, making it difficult to search for knowledge or import
methods from a different source.

5 Concluding Remarks
In this paper, we made a distinction, within a problem-solving agent, between knowledge of the
world about which the agent is doing problem solving, and knowledge about how to solve
problems.  Of course, when an agent A is reasoning about another agent B, the domain
knowledge component of agent A will include knowledge about problem solving in general,
since A may need to predict, interpret, or debug the behavior of B.  In this case, of course, A will
also have problem-solving knowledge of its own.  For this reason, it is useful to have a dual view
of problem solving knowledge. In one view, problem-solving knowledge is a separate
component of a problem solver.  In another view, it is simply a kind of knowledge, part of the
ontology of the phenomenon called problem solving that intensional agents engage in, whether
they be artificial or natural.

Within the perspective of designing problem solving systems, we have argued for ontological
engineering efforts to move in two parallel tracks, one with the current focus on representing
domain knowledge, and the other with a new focus on representing problem-solving knowledge.
One of the major benefits of identifying and standardizing ontologies is the potential for
knowledge sharing. We should be able to share knowledge of problem solving just as easily as
factual knowledge about specific domains. We have provided in this paper what we believe is a
clearer analysis of the components of problem solving knowledge and related it to domain
factual knowledge. It turns out that much research on task analysis forms a good basis to develop
such problem-solving ontologies. We thus build on previous work in this area, some our own.

The topic that we have treated in this paper is important because a knowledge system consists of
both domain knowledge and problem-solving knowledge. Therefore, it is necessary to study
domain and problem-solving ontologies together and pay attention to their integration.
Moreover, for practical knowledge sharing and reuse identifying only the ontologies for domain
and problem-solving knowledge is not enough. We also need to establish mechanisms for
relating them to each other, such as mapping terms or making assumptions. And it is even
harder, but necessary, to automate these mechanisms as much as possible. Several new projects
include these goals in their objectives such as DARPA's HPKB (4) project and Esprit's IBROW3
(5) project, but there is still a long way to go.
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KBS to solve
problems of the type:
"Identify cause of
TV set misbehavior

.

Adapters

Library of
Problem Solving
Methods

Goal: Classify situation in a
classification hierarchy

Goal: Explain

Goal: ….

Goal: …

PSM1

PSM2

PSMn

Term in KBS Task Domain
Ontology

Adapter 1: Mapping to PSM
with goal "Explain

observations."

Term in PSM Ontology

Adapter 2: Mapping to PSM with
goal "Classify observations."

Term in PSM Ontology

Identify cause.. Explain observation Classify observations into classes
(Change in Teleological
assumption: Classes are not
necessarily the most parsimonious
account of causes.  Only a weaker
goal can be achieved.)

Symptoms Abnormal observations Abnormal observations

Device behavior data Observations Observations

Malfunction causes Explanatory hypotheses Malfunction hypothesis classes

<Malfunction> can cause
<Behavior data>

<Hypothesis> can
explain<Observation>

<Observations> categorized as
<Class Hypothesis>

Figure 2.  Adapters help bridge the ontology gap between a problem
and a method. Adapter 1 recognizes that the goal type of "Identify
cause.." can be mapped to the goal type "Explain observations.."  The
translations of terms shown makes explicit what the text calls
"ontological assumptions."  Adapter 2 maps the domain goal to the
PSM goal "Classify.."  Classification cannot achieve the original goal
completely, since it cannot ensure that the classificatory hypotheses
together parsimoniously explain the data, i.e., all the classificatory
hypotheses are in fact needed.  Adapter's mapping thus needs to
include goal weakening, i.e., teleological assumptions are changed.
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The Situated Cognition (SC) movement (Winograd & Flores, 1987) raises issues that challenge
the hope for reusing knowledge.  SC argues that knowledge is constructed in response to the
situation, rather than retrieved and reused.  For one situation, ``A causes B'' might be the relevant
knowledge, while for another, ``A causes B after a delay of 1 sec'', and for yet a third situation,
``A causes B as long as D and E are not true'' becomes the appropriate form in which the
knowledge is needed. Note that we are talking about essentially the same knowledge but
represented in different ways for different situations. SC proponents hold that these kinds of
additional conditions may be added indefinitely, thus making the prospect of representing the
essence of that item of knowledge, once and for all at the Knowledge Level, rather slim. Similar
comments may also be made about the representation of problem-solving methods.
Additionally, given the rather unsettled state of the philosophical foundations of upper ontology
− as evidenced by the quote from a conference announcement earlier in the paper − there are
additional reasons to be concerned about the vision of massive reuse of knowledge.

There are a number of things that make us optimistic, in spite of these concerns.  For one thing,
in these examples, what changes radically from situation to situation is not the ontology itself,
but assertions made using the ontology. Thus, it is very likely that changes in ontology will be
needed less often than changes to a knowledge base.  Secondly, situational change in knowledge
for classes of well-defined tasks and domains is likely to be relatively controllable.  For example,
knowledge sharing for engineering design in the domain of operational amplifiers is much less
subject to the changes in knowledge that SC proponents point to.  Thirdly, knowledge sharing is
not an all-or-nothing proposition.  Knowledge may be imported from a library and modified to
meet the needs of a specific task.  The work needed for modifying knowledge that is close to
what one needs would as a rule be much less than the work needed for identifying and encoding
knowledge from scratch for each system.  Exactly how much knowledge can be shared for what
task domains remains an empirical issue, and not one that can be settled by a priori arguments.
We feel that reuse issues should be investigated by varying the situations and task specifications
around a starting situation in such a way that we can track the needed changes to ontology and
the knowledge base. This suggests that we need systems that support the changes needed for
knowledge and method ontologies as situations are changed. This appears to be an important
new direction of research.

Method sharing raises additional issues, some of that we discussed.  Situations are described by
the concrete task that a system-builder wishes his knowledge system to solve.  As we saw, there
will often be gaps between the way a system-builder conceived the task and the way methods
would be indexed in a library.  Such a gap can probably never be completely eliminated.
However, some of the current ideas in the field that we discussed − assumptions that are attached
to the methods and adaptors that use these assumptions − can help to span this conceptual gap.
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Footnotes
note-1

Call for papers for a special issue on ``Temporal Parts'' for The Monist, An International
Quarterly Journal of General Philosophical Inquiry.

note-2

The term ``task'' has been used in two related, but still distinct, ways, causing some
confusion. In one usage, task is a set or sequence of things to do: that is, task is something
you do. Another usage has task as a term for a goal type, leaving open what the steps are in
achieving it. We use it in the latter sense; that is, tasks are goal types, what needs to be
accomplished.

note-3

Our examples throughout are chosen mainly for clarity in making the conceptual points
rather than for accuracy or completeness in describing the knowledge. In particular, in this
example, the knowledge for establishing hypotheses is usually substantially more complex
than the example.

note-4

HPKB URL is http://www.teknowledge.com:80/HPKB/.

note-5

URL IBROW3 is http://www.swi.psy.uva.nl/projects/IBROW3/home.html.


