Mobile Device Security

Adam C. Champion and Dong Xuan
CSE 4471: Information Security

Based on materials from Tom Eston (SecureState), Apple, Android Open Source Project, and William Enck (NCSU)
Organization

• Quick Overview of Mobile Devices
• Mobile Threats and Attacks
• Countermeasures
Overview of Mobile Devices

- Mobile computers:
 - Mainly smartphones, tablets
 - Sensors: GPS, camera, accelerometer, etc.
 - Computation: powerful CPUs (≥ 1 GHz, multi-core)
 - Communication: cellular/4G, Wi-Fi, near field communication (NFC), etc.

- Many connect to cellular networks: billing system

- Cisco: 7 billion mobile devices will have been sold by 2012 [1]
Organization

• Quick Overview of Mobile Devices
• Mobile Threats and Attacks
• Countermeasures
Mobile Threats and Attacks

• Mobile devices make attractive targets:
 – People store much personal info on them: email, calendars, contacts, pictures, etc.
 – Sensitive organizational info too…
 – Can fit in pockets, easily lost/stolen
 – Built-in billing system: SMS/MMS (mobile operator), in-app purchases (credit card), etc.
 • Many new devices have near field communications (NFC), used for contactless payments, etc.
 • Your device becomes your credit card
 – Location privacy issues
• NFC-based billing system vulnerabilities
Mobile Device Loss/Theft

• Many mobile devices lost, stolen each year
 – 113 mobile phones lost/stolen every minute in the U.S. [15]
 – 56% of us misplace our mobile phone or laptop each month [15]
 – Lookout Security found $2.5 billion worth of phones in 2011 via its Android app [16]
 – Symantec placed 50 “lost” smartphones throughout U.S. cities [17]
 • 96% were accessed by finders
 • 80% of finders tried to access “sensitive” data on phone
Device Malware

• iOS malware: very little
• Juniper Networks: Major increase in Android malware from 2010 to 2011 [18]
• Android malware growth keeps increasing ($$$)
• Main categories: [19]
 – Trojans
 – Monitoring apps/spyware
 – Adware
 – Botnets
• We’ll look at notable malware examples
Device Search and Seizure

• *People v. Diaz*: if you’re arrested, police can search your mobile device without warrant [26]
 – Rationale: prevent perpetrators destroying evidence
 – Quite easy to break the law (overcriminalization) [27]
 • Crime severity: murder, treason, etc. vs. unpaid citations
 • “Tens of thousands” of offenses on the books [26]
 – Easy for law enforcement to extract data from mobile devices (forensics) [28]
Location Disclosure

- MAC, Bluetooth Addresses, IMEI, IMSI etc. are globally unique
- Infrastructure based mobile communication
- Peer-t-Peer ad hoc mobile communication
Organization

• Quick Overview of Mobile Devices
• Mobile Threats and Attacks
• Countermeasures
Mobile Access Control

• Very easy for attacker to control a mobile device if he/she has physical access
 – Especially if there’s no way to authenticate user
 – Then device can join botnet, send SMS spam, etc.
• Need access controls for mobile devices
 – Authentication, authorization, accountability
 – Authentication workflow:
 • Request access
 • Supplication (user provides identity, e.g., John Smith)
 • Authentication (system determines user is John)
 • Authorization (system determines what John can/cannot do)
Authentication: Categories

- Authentication generally based on:
 - Something supplicant knows
 - Password/passphrase
 - Unlock pattern
 - Something supplicant has
 - Magnetic key card
 - Smart card
 - Token device
 - Something supplicant is
 - Fingerprint
 - Retina scan
Authentication: Passwords

• Cheapest, easiest form of authentication
• Works well with most applications
• Also the weakest form of access control
 – Lazy users’ passwords: 1234, password, letmein, etc.
 – Can be defeated using dictionary, brute force attacks
• Requires administrative controls to be effective
 – Minimum length/complexity
 – Password aging
 – Limit failed attempts
Authentication: Smart Cards/Security Tokens

- More expensive, harder to implement
- Vulnerability: prone to loss or theft
- Very strong when combined with another form of authentication, e.g., a password
- Does not work well in all applications
 - Try carrying a smart card in addition to a mobile device!
Authentication: Biometrics

• More expensive/harder to implement
• Prone to error:
 – False negatives: not authenticate authorized user
 – False positives: authenticate unauthorized user
• Strong authentication when it works
• Does not work well in all applications
 – Fingerprint readers becoming more common on mobile devices (Atrix 4G)
Authentication: Pattern Lock

- Swipe path of length 4–9 on 3 x 3 grid
- Easy to use, suitable for mobile devices
- Problems: [30]
 - 389,112 possible patterns; (456,976 possible patterns for 4-char case-insensitive alphabetic password!)
 - Attacker can see pattern from finger oils on screen
Authentication: Comparison

<table>
<thead>
<tr>
<th></th>
<th>Passwords</th>
<th>Smart Cards</th>
<th>Biometrics</th>
<th>Pattern Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>Weak</td>
<td>Strong</td>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>Easy</td>
<td>Medium</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>Implementation</td>
<td>Easy</td>
<td>Hard</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>Works for phones</td>
<td>Yes</td>
<td>No</td>
<td>Possible</td>
<td>Yes</td>
</tr>
</tbody>
</table>

– Deeper problem: mobile devices are designed with single-user assumption…
Current smartphone access control focus: 1 user (admin)

Hard to achieve fine-grained mobile device management:
- Control app installation/gaming
- Parental controls
- Lend phone to friend

We design DiffUser, differentiated user access control model [31]
- Different users use smartphone in different contexts
- User classification: admin, “normal,” guest

<table>
<thead>
<tr>
<th>Smartphone Privileges</th>
<th>Admin</th>
<th>Normal</th>
<th>Guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Info</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS</td>
<td>✓</td>
<td>✓</td>
<td>✘</td>
</tr>
<tr>
<td>Contacts</td>
<td>✓</td>
<td>✓</td>
<td>✘</td>
</tr>
<tr>
<td>Resource Access</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WiFi</td>
<td>✓</td>
<td>✓</td>
<td>Limit!</td>
</tr>
<tr>
<td>GPS</td>
<td>✓</td>
<td>✓</td>
<td>Limit!</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>✓</td>
<td>✓</td>
<td>Limit!</td>
</tr>
<tr>
<td>Apps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>App Install</td>
<td>✓</td>
<td>Limit</td>
<td>✘</td>
</tr>
<tr>
<td>Sensitive Apps</td>
<td>✓</td>
<td>Limit</td>
<td>✘</td>
</tr>
</tbody>
</table>

Source: [31], Table 1.
DiffUser (2)

- Implement our system on Android using Java
- Override Android’s “Home” Activity for multi-user authentication, profile configuration

Source: [31], Figure 2. From left to right: “normal” user screen; user login and authentication; user profile configuration.
Mobile Device Information Leakage

- Types of mobile device information sources:
 - Internal to device (e.g., GPS location, IMEI, etc.)
 - External sources (e.g., CNN, Chase Bank, etc.)

- Third-party mobile apps can leak info to external sources [32]
 - Send out device ID (IMEI/EID), contacts, location, etc.
 - Apps ask permission to access such info; users can ignore!
 - Apps can intercept info sent to a source, send to different destination!

- Motives:
 - Monitor employees’ activity using accelerometers (cited in [32])
 - Ads, market research (include user location, behavior, etc.)
 - Malice

- How do we protect against such information leakage?
Information Flow Tracking (IFT)

- IFT tracks each information flow among internal, external sources
 - Each flow is tagged, e.g., “untrusted”
 - Tag propagated as information flows among internal, external sources
 - Sound alarm if data sent to third party

- Challenges
 - Reasonable runtime, space overhead
 - Many information sources
TaintDroid

• Enck et al., OSDI 2010 [32]
• IFT system on Android 2.1
 – System firmware (not app)
 – Modifies Android’s Dalvik VM, tracks info flows across methods, classes, files
 – Tracks the following info:
 • Sensors: GPS, camera, accelerometer, microphone
 • Internal info: contacts, phone #, IMEI, IMSI, Google acct
 • External info: network, SMS
 – Notifies user of info leakage

Source: [33]
D2Taint (1)

• Motivation
 – Mobile device users access many information sources, e.g.
 • Online banks (like Chase)
 • Social networking (like Facebook)
 • News websites (like CNN)
 – Different info sources: different sensitivity levels
 – Applications’ diverse variable access patterns challenge tag propagation
 – Users’ info source access patterns change over time
 – Need to track many information flows with moderate space, runtime overhead
D2Taint (2)

- Differentiated and dynamic tag strategy [34]
 - Information sources partitioned into differentiated classes based on arbitrary criteria
 - Example (criterion=“info sensitivity level”):
 - Classes: “highly sensitive”, “moderately sensitive”, “not sensitive”
 - Sources: Chase → “highly sensitive”; Facebook → “moderately sensitive”; CNN → “not sensitive”
 - Each class’s sources stored in a location info table
 - Source indices (0, 1, …) ↦ source names (chase.com, …)
D2Taint (3)

- D2Taint uses fixed length tag (32 bits)
 - Tag includes segments corresponding to classes
 - Each segment stores *representations* of information sources in its class
 - Representation: info source’s class table index

- Note: source table grows over time
 - Information source representation does *not* uniquely ID source
D2Taint (4)

• D2Taint implemented on Android 2.2, Nexus One smartphones

• Evaluate D2Taint: 84 popular free apps from Google Play
 – 71/84 leak some data to third parties
 • E.g., Android system version, screen resolution
 • Often, third parties are cloud computing services
 • TaintDroid cannot detect external data leakage
 – 1 bit in tag for “network”
 – Cannot track multiple external sources at once
 – 12/84 leak highly sensitive data, e.g., IMEI/EID (detected by both D2Taint, TaintDroid)

• D2Taint has overhead similar to TaintDroid’s
Location Privacy Protection

• Strong regulation
 – Corporate
 – Individual

• Dynamic MAC and Bluetooth addresses?
 – Collision
 – How often to change?

• Proxy-based communications
 – Dummy device as proxy
 – Group communications
Summary

• Mobile devices are increasingly popular
• There are many threats and attacks against mobile devices, e.g., loss/theft, sensitive information leakage, and location privacy compromise
• Mobile access control, information leakage protection, and location privacy protection, etc.
References (1)

References (2)

References (3)

23. libnfc, http://www.libnfc.org

