Cryptography

Modifications by Prof. Dong Xuan
and Adam C. Champion
Learning Objectives
Upon completion of this material, you should be able to:

- Understand the basic cipher methods and cryptographic algorithms
- List and explain the major protocols used for secure communications
Terminology (1)

- **Cryptography:**
 - Book definition: process/study of making and using codes to secure information transmission
 - It’s really: *the practice/study of rendering information unintelligible to everyone except the intended recipient*

- **Cryptanalysis:** study of obtaining plaintext without knowing key and/or algorithm

- **Cryptology:** study of science of encryption, incl. cryptography

- **Steganography:** process of hiding messages (and the existence thereof) in images, text, etc.
 - See Wayner’s book *Disappearing Cryptography* for more info
Terminology (2)

- **Plaintext**: unencrypted message
- **Ciphertext**: encrypted message
- **Cipher, cryptosystem**: encryption method consisting of algorithm, key, and encryption/decryption procedures
- **Key**: secret info used with algorithm to form cipher
- **Kerchhoffs’ principle**: a cryptosystem should be secure if everything but the key is publicly known
 - Security through obscurity doesn’t work
 - “The enemy knows the system” – Claude Shannon
- **Encrypt/encipher**: convert plaintext to ciphertext
- **Decrypt/decipher**: convert ciphertext to plaintext
Terminology (3)

- **Keyspace**: # of values that can be used in a key
 - Ranges of possible and actual values may vary
 - This can greatly affect cipher security

- **Entropy**: # of different *actual* values something can have
 - *Not* keyspace, which specifies total # of *possible* values
 - *Example*: keyspace is # of 16-character passwords with upper- and lowercase letters, numbers, punctuation. If someone always uses 4-character password, entropy is much smaller than keyspace
 - Security problems have originated in seeds of pseudo-random number generators with low entropy

- **Work factor**: amount of work (CPU time, instructions) required to perform cryptanalysis on ciphertext to recover plaintext without knowing key or algorithm

- **Pseudo-random number generator (PRNG)**: algorithm that creates “random” number sequence whose properties are similar to those of “real” random number sequences
Terminology (4)

- **One-way hash function**: converts message to a value (message digest – MD)
 - One-way: can’t determine message from MD
 - Examples: MD5, SHA-1, etc.

- **Hash collision**: two messages produce same MD
 - Aim: given a message and an MD, you should not be able to find another message that hashes to same MD

- **Nonce**: number only used once, helps prevent replay attacks
Cipher Methods (1)

- Plaintext can be encrypted via bit stream or block cipher methods

- **Bit stream:** each plaintext bit transformed into cipher bit one bit at a time

- **Block cipher:** message divided into blocks (e.g., sets of 8- or 16-bit blocks) and each is transformed into encrypted block of cipher bits using algorithm and key
Cipher Methods (2)

- **Substitution cipher**: substitute one value for another
- **Monoalphabetic substitution**: uses only one alphabet, *e.g.*, ROT13, Radio Orphan Annie decoder
- **Polyalphabetic substitution**: more advanced; uses two or more alphabets, *e.g.*, Vigenère cipher
- **Transposition cipher**: rearranges values within a block to create ciphertext
- **Exclusive OR (XOR)**: Boolean algebra function that compares two bits:
 - If they’re identical, result = 0
 - Otherwise, result = 1

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 1 XOR Bit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Cryptographic Algorithms (1)

- Often grouped into two broad categories, *symmetric* and *asymmetric*

- Today’s popular cryptosystems use hybrid combination thereof

- Symmetric and asymmetric algorithms distinguished by types of keys used for encryption and decryption
Cryptographic Algorithms (2)

- Symmetric encryption: uses same “secret key” to encrypt and decrypt message
 - Encryption methods can be extremely efficient, requiring minimal processing
 - Both sender and receiver must possess key
 - If either copy of key is compromised, an intermediate can decrypt and read messages
Rachel at ABC Corp. generates a secret key. She must somehow get it to Alex at XYZ Corp. out of band. Once Alex has it, Rachel can use it to encrypt messages, and Alex can use it to decrypt and read them.

Example of Symmetric Encryption

- The deal is a "go."
- Secret key A encrypts message
- The corresponding ciphertext is transmitted
- $2LW0^M$ $\$AC6\rangle 1!$
- Secret key A decrypts message
- The deal is a "go."
Cryptographic Algorithms (3)

- Data Encryption Standard (DES): one of most popular symmetric encryption cryptosystems
 - 64-bit block size; 56-bit key
 - Adopted by NIST in 1976 as federal standard for encrypting non-classified information

- Triple DES (3DES): created to provide security far beyond DES

- Advanced Encryption Standard (AES): developed to replace both DES and 3DES
Cryptographic Algorithms (4)

- Asymmetric Encryption (public key encryption)
 - Uses two different but related keys; either key can encrypt or decrypt message
 - If Key A encrypts message, only Key B can decrypt
 - Highest value when one key is private key and the other is public key
Alex at XYZ Corp. wants to send a message to Rachel at ABC Corp. Rachel stores her public key where it can be accessed by anyone. Alex retrieves Rachel’s key and uses it to create ciphertext that can be decrypted only by Rachel’s private key, which only she has. To respond, Rachel gets Alex’s public key to encrypt her message.

Figure 8-4 Example of Asymmetric Encryption
Cryptography Tools

- Public Key Infrastructure (PKI): integrated system of software, encryption methodologies, protocols, legal agreements, and third-party services enabling users to communicate securely

- PKI systems based on public key cryptosystems, include digital certificates and certificate authorities (CAs)
Digital Signatures

- Encrypted messages that can be mathematically proven to be authentic
- Created in response to rising need to verify information transferred using electronic systems
- Asymmetric encryption processes used to create digital signatures
Digital Certificates

- Electronic document containing key value and identifying information about entity that controls key

- Digital signature attached to certificate’s container file to certify file is from entity it claims to be from
Digital Certificates

This certificate is intended for the following purpose(s):

- Ensures the identity of a remote computer

Issued to: www.amazon.com

Issued by: Secure Server Certification Authority

Valid from 3/19/2002 to 3/20/2003
Protocols for Secure Communications (1)

- Secure Socket Layer (SSL) protocol: uses public key encryption to secure channel over public Internet

- Secure Hypertext Transfer Protocol (S-HTTP): extended version of Hypertext Transfer Protocol; provides for encryption of individual messages between client and server across Internet

- S-HTTP is the application of SSL over HTTP; allows encryption of information passing between computers through protected and secure virtual connection
Protocols for Secure Communications (2)

- Securing E-mail with S/MIME, PEM, and PGP
 - Secure Multipurpose Internet Mail Extensions (S/MIME): builds on Multipurpose Internet Mail Extensions (MIME) encoding format by adding encryption and authentication
 - Privacy Enhanced Mail (PEM): proposed as standard to function with public key cryptosystems; uses 3DES symmetric key encryption
 - Pretty Good Privacy (PGP): uses IDEA cipher for message encoding
Protocols for Secure Communications (3)

- Securing Web transactions with SET, SSL, and S-HTTP
 - Secure Electronic Transactions (SET): developed by MasterCard and VISA in 1997 to provide protection from electronic payment fraud
 - Uses DES to encrypt credit card information transfers
 - Provides security for both Internet-based credit card transactions and credit card swipe systems in retail stores
Summary

- Cryptography and encryption provide sophisticated approach to security
 - Many security-related tools use embedded encryption technologies
 - Encryption converts a message into a form that is unreadable by the unauthorized
- Many tools are available and can be classified as symmetric or asymmetric, each having advantages and special capabilities