Defending Against DDoS Attacks

CSE 4471: Information Security
Instructor: Dr. Adam C. Champion
Outline

• Review: What is a DDoS attack?

• How to defend against a DDoS attack?
What is a DDoS Attack?

• DoS attacks: Attempt to prevent legitimate users of a service from using it

• Examples of DoS attacks include:
 – Flooding a network
 – Disrupting connections between machines
 – Disrupting a service

• Distributed Denial-of-Service (DDoS) Attacks
 – Many machines involved in attack against one or more victim(s)
What Makes DDoS Attacks Possible?

• Internet was designed with functionality, not security, in mind
• Internet security is highly interdependent
• Internet resources are limited
• Power of many greater than power of a few
Strategies: Defending Against DDoS Attacks

- Ingress Filtering
 - P. Ferguson and D. Senie, RFC 2827 (May 2000); D. McPherson et al., RFC 6959 (May 2013)
 - Block packets with illegitimate source addresses
 - Disadvantage: Overhead makes routing slow
- Identify attack origin(s) – Traceback problem
 - IP spoofing enables attackers to hide their identity
 - Many IP traceback techniques are suggested
- Mitigation during attack
 - Pushback: Tell upstream routers to stop attack traffic
IP Traceback

• Allows victim to identify attackers’ origins (and attack paths)

• Several approaches:
 • ICMP trace messages
 • Probabilistic Packet Marking*,
 • Hash-based IP Traceback, etc.

PPM (1)

• PPM scheme:
 – Probabilistically inscribe local path information
 – Use constant space in the packet header
 – Reconstruct attack path with high probability

Marking at router R

1: // Probability $p \in (0, 1)$
2: for each packet w do
3: $x \leftarrow$ random real number in $[0, 1)$
4: if $x < p$ then
5: $w.head \leftarrow$ IP address of R
6: $w.distance \leftarrow 0$
7: else
8: if $w.distance == 0$ then
9: $w.tail \leftarrow$ IP address of R
10: end if
11: end if
12: end if
13: end for
PPM (2)
PPM (3)

Legitimate user

Attacker

Victim
PPM: An Example

For each “balloon”:
\[w\text{-}distance = h \]

- What happens if all routers set \(x > 0.8 \)?

Balloon E is special: no head, no tail are specified!
w.distance is not set by any router!
PPM Extensions

• What if p is not the same among routers?
• PPM needs 9 bytes to mark info in packet ($w.head + w.tail + w.distance$). Can we develop a new marking scheme that needs fewer bytes?
• PPM assumes all routers are cooperative and run PPM. What would happen if some routers do not run PPM or are even malicious?
Pushback

• Mechanism that allows a router to request adjacent upstream routers to limit the rate of traffic

• How it works:
 – Congested router requests other adjacent routers to limit traffic rate for particular aggregate traffic
 – Router sends pushback message
 – Received routers propagates pushback

• More details:
Conclusion

• What is a DDoS attack?
• Defending a DDoS attack
 – Ingress filtering
 – Trace-back: PPM
 – Push-back