Part 5: Link Layer Technologies

CSE 3461: Introduction to Computer Networking
Reading: Chapter 5, Kurose and Ross
Outline

- PPP
- ATM
- X.25
- Frame Relay
Point to Point Data Link Control

• One sender, one receiver, one link: easier than broadcast link:
 – No Media Access Control
 – No need for explicit MAC addressing
 – e.g., dialup link, ISDN line

• Popular point-to-point DLC protocols:
 – PPP (Point-to-Point protocol)
 – HDLC: High level data link control (Data link used to be considered “high layer” in protocol stack!)
PPP Design Requirements [RFC 1557]

- **Packet framing**: encapsulation of network-layer datagram in data link frame
 - Carry network layer data of any network layer protocol (not just IP) at the same time
 - Ability to demultiplex upwards

- **Bit transparency**: must carry any bit pattern in the data field

- **Error detection** (no correction)

- **Connection liveness**: detect, signal link failure to network layer

- **Network layer address negotiation**: endpoints can learn/configure each other’s network address
PPP Non-Requirements

• No error correction/recovery
• No flow control
• Out-of-order delivery OK
• No need to support multipoint links (e.g., polling)

Error recovery, flow control, data re-ordering all relegated to higher layers!
PPP Data Frame (1)

- **Flag:** delimiter (framing)
- **Address:** does nothing (only one option)
- **Control:** does nothing; in the future possible multiple control fields
- **Protocol:** upper layer protocol to which frame delivered (e.g., PPP-LCP, IP, IPCP, etc.)

<table>
<thead>
<tr>
<th>bit 1</th>
<th>bit 1</th>
<th>bit 1</th>
<th>bit 1</th>
<th>bit 2 or 3</th>
<th>variable length</th>
<th>bit 2 or 4</th>
<th>bit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>01111110</td>
<td>11111111</td>
<td>00000011</td>
<td>protocol</td>
<td>info</td>
<td>check</td>
<td>01111110</td>
<td></td>
</tr>
</tbody>
</table>

- flag
- address
- control
- flag

[The image contains a table with the described fields and their binary representations.]

6
PPP Data Frame (2)

- **Info**: upper layer data being carried
- **Check**: cyclic redundancy check for error detection

![PPP Data Frame Diagram]
Byte Stuffing (1)

• “Data transparency” requirement: data field must be allowed to include flag pattern \texttt{01111110}

 – \textbf{Q:} Is received \texttt{01111110} data or flag?

• \textbf{Sender:} adds (“stuffs”) extra \texttt{01111101} byte after each \texttt{01111110 data} byte

• \textbf{Receiver:}

 – Two \texttt{01111110} bytes in a row: discard first byte, continue data reception

 – Single \texttt{01111110}: flag byte
Byte Stuffing (2)

Flag byte pattern in data to send

Flag byte pattern plus stuffed byte in transmitted data
PPP Data Control Protocol

Before exchanging network-layer data, data link peers must:

• **Configure PPP link** (max. frame length, authentication)

• **Learn/configure network layer information**

 – For IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address
Outline

- PPP
- ATM
- X.25
- Frame Relay
Asynchronous Transfer Mode: ATM

• 1980s/1990s standard for high-speed (155–622 Mbps and higher) *Broadband Integrated Service Digital Network* architecture

• **Goal:** *integrated, end-end transport of carrier’s voice, video, data*

 – Meeting timing/QoS requirements of voice, video (versus Internet best-effort model)

 – “Next generation” telephony: technical roots in telephone world

 – Packet-switching (fixed length packets, called “cells”) using virtual circuits
ATM Architecture

- **Adaptation layer**: only at edge of ATM network
 - data segmentation/reassembly
 - roughly analogous to Internet transport layer
- **ATM layer**: “network” layer
 - cell switching, routing
- **Physical layer**
ATM: Network or Link Layer?

Vision: end-to-end transport: “ATM from desktop to desktop”
- ATM *is* a network technology

Reality: used to connect IP backbone routers
- “IP over ATM”
- ATM as switched link layer, connecting IP routers
ATM Adaptation Layer (AAL) (1)

- ATM Adaptation Layer (AAL): “adapts” upper layers (IP or native ATM applications) to ATM layer below
- AAL present only in end systems, not in switches
- AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells
 – Analogy: TCP segment in many IP packets
ATM Adaption Layer (AAL) (2)

Different versions of AAL layers, depending on ATM service class:

- **AAL1**: for CBR (Constant Bit Rate) services, e.g. circuit emulation
- **AAL2**: for VBR (Variable Bit Rate) services, e.g., MPEG video
- **AAL5**: for data (e.g., IP datagrams)
AAL5 - Simple And Efficient AL (SEAL)

• **AAL5**: low overhead AAL used to carry IP datagrams
 - 4 byte cyclic redundancy check
 - PAD ensures payload multiple of 48 bytes
 - Large AAL5 data unit to be fragmented into 48-byte ATM cells

<table>
<thead>
<tr>
<th>CPCS-PDU payload</th>
<th>PAD</th>
<th>Length</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-65535</td>
<td>0-47</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
ATM Layer

Service: transport cells across ATM network
- Analogous to IP network layer
- Very different services than IP network layer

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Congestion Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>Best effort</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>Constant rate</td>
<td>Yes</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>Guaranteed rate</td>
<td>Yes</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>Guaranteed minimum</td>
<td>No</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>
ATM Layer: Virtual Circuits (1)

- **VC transport**: cells carried on VC from source to dest
 - Call setup, teardown for each call *before* data can flow
 - Each packet carries VC identifier (not destination ID)
 - *Every* switch on source-dest path maintain “state” for each passing connection
 - Link, switch resources (bandwidth, buffers) may be *allocated* to VC to get circuit-like perf.

- **Permanent VCs (PVCs)**
 - Long lasting connections
 - Typically: “permanent” route between to IP routers

- **Switched VCs (SVC)**:
 - Dynamically set up on per-call basis
ATM VCs (2)

• **Advantages of ATM VC approach:**
 – QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)

• **Drawbacks of ATM VC approach:**
 – Inefficient support of datagram traffic
 – One PVC between each source/dest pair) does not scale (N^2 connections needed)
 – SVC introduces call setup latency, processing overhead for short lived connections
ATM Layer: ATM Cell

- 5-byte ATM cell header
- 48-byte payload
 - Why?: small payload \Rightarrow short cell-creation delay for digitized voice
 - Halfway between 32 and 64 (compromise!)
ATM Cell Header

- **VCI**: virtual channel ID
 - Will *change* from link to link thru net
- **PT**: Payload type (e.g. RM cell versus data cell)
- **CLP**: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- **HEC**: Header Error Checksum
 - Cyclic redundancy check
ATM Physical Layer: Sub-Layers

Two pieces (sub-layers) of physical layer:

- **Transmission Convergence Sublayer (TCS):** adapts ATM layer above to PMD sublayer below
- **Physical Medium Dependent:** depends on physical medium being used

TCS Functions:
- Header **checksum** generation: 8 bits CRC
- Cell **delineation**
- With “unstructured” PMD sub-layer, transmission of **idle cells** when no data cells to send
ATM Physical Layer

Physical Medium Dependent (PMD) sublayer

- **SONET/SDH**: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds: OC1 = 51.84 Mbps; OC3 = 155.52 Mbps; OC12 = 622.08 Mbps

- **T1/T3**: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps

- **unstructured**: just cells (busy/idle)
IP-Over-ATM (1)

Classic IP only
- 3 “networks” (e.g., LAN segments)
- MAC (802.3) and IP addresses

- Replace “network” (e.g., LAN segment) with ATM network
- ATM addresses, IP addresses
IP-Over-ATM (2)

Issues:

- IP datagrams into ATM AAL5 PDUs
- From IP addresses to ATM addresses
 - Just like IP addresses to 802.3 MAC addresses!
Datagram Journey in IP-over-ATM Network

• **At Source Host:**
 – IP layer finds mapping between IP, ATM dest address (using ARP)
 – Passes datagram to AAL5
 – AAL5 encapsulates data, segments to cells, passes to ATM layer

• **ATM network:** moves cell along VC to destination

• **At Destination Host:**
 – AAL5 reassembles cells into original datagram
 – If CRC OK, datagram is passed to IP
ARP in ATM Nets

• ATM network needs destination ATM address
 – Just like Ethernet needs destination Ethernet address

• IP/ATM address translation done by ATM ARP (Address Resolution Protocol)
 – ARP server in ATM network performs broadcast of ATM ARP translation request to all connected ATM devices
 – Hosts can register their ATM addresses with server to avoid lookup
Outline

• PPP
• ATM
• X.25
• Frame Relay
X.25 and Frame Relay

Like ATM:

• Wide area network technologies
• Virtual circuit oriented
• Origins in telephony world
• Can be used to carry IP datagrams
 – Can thus be viewed as Link Layers by IP protocol
X.25

- X.25 builds VC between source and destination for each user connection
- **Per-hop control along path**
 - Error control (with retransmissions) on each hop using LAP-B
 - Variant of the HDLC protocol
 - Per-hop flow control using credits
 - Congestion arising at intermediate node propagates to previous node on path
 - Back to source via back pressure
IP versus X.25

• X.25: reliable in-sequence end-end delivery from end-to-end
 – “intelligence in the network”
• IP: unreliable, out-of-sequence end-end delivery
 – “intelligence in the endpoints”
• gigabit routers: limited processing possible
• 2000–: IP wins
Outline

• PPP
• ATM
• X.25
• Frame Relay
Frame Relay (1)

• Designed in late 1980s, widely deployed in the 1990s

• Frame relay service:
 – No error control
 – End-to-end congestion control
Frame Relay (2)

• Designed to interconnect corporate customer LANs
 – Typically permanent VCs: “pipe” carrying aggregate traffic between two routers
 – Switched VCs: as in ATM

• Corporate customer leases FR service from public Frame Relay network (eg, Sprint, AT&T)
Summary: Link Layer Technologies

• PPP
• ATM
• X.25
• Frame Relay