Avoiding Consistency Exceptions
Under Strong Memory Models

Minjia Zhang
Microsoft Research (USA)
minjiaz@microsoft.com

Swarnendu Biswas
University of Texas at Austin (USA)
sbiswas@ices.utexas.edu

Michael D. Bond
Ohio State University (USA)
mikebond@cse.ohio-state.edu

Abstract

Shared-memory languages and systems generally provide weak or undefined semantics for executions with data races. Prior work has proposed memory consistency models that ensure well-defined, easy-to-understand semantics based on region serializability (RS), but the resulting system may throw a consistency exception in the presence of a data race. Consistency exceptions can occur unexpectedly even in well-tested programs, hurting availability and thus limiting the practicality of RS-based memory models.

To our knowledge, this paper is the first to consider the problem of availability for memory consistency models that throw consistency exceptions. We first extend existing approaches that enforce RSx, a memory model based on serializability of synchronization-free regions (SFRs), to avoid region conflicts and thus consistency exceptions. These new approaches demonstrate both the potential for and limitations of avoiding consistency exceptions under RSx. To improve availability further, we introduce (1) a new memory model called RIX based on isolation of SFRs and (2) a new approach called Avalon that provides RIX. We demonstrate two variants of Avalon that offer different performance–availability tradeoffs for RIX.

An evaluation on real Java programs shows that this work’s novel approaches are able to reduce consistency exceptions, thereby improving the applicability of strong memory consistency models. Furthermore, the approaches provide compelling points in the performance–availability tradeoff space for memory consistency enforcement. RIX and Avalon thus represent a promising direction for tackling the challenge of availability under strong consistency models that throw consistency exceptions.

CCS Concepts → Software and its engineering → Runtime environments

Keywords Memory consistency models; data races

1. Introduction

Compilers and architectures for shared-memory parallel programs perform intra-thread optimizations assuming no interactions with concurrent threads. To avoid visibly affecting program semantics, these optimizations are restricted from reordering across synchronization operations (e.g., lock acquire and release). Under these restrictions, code regions between synchronization operations appear to execute atomically—but only for program executions that are free of data races (conflicting accesses to the same variable that are not ordered by synchronization operations) [2, 4]. However, for executions with data races, compiler and hardware optimizations lead to behaviors that are ill-defined in theory and erroneous in practice [2, 4, 18, 22, 26, 28, 38, 41, 47, 66, 75, 78].

To address this semantic hole, which afflicts programs written in widely used shared-memory languages including C++ and Java [20, 61, 78], researchers have proposed memory models that provide well-defined semantics for all program executions [7, 14, 15, 35, 59, 60, 62, 63, 68, 74, 76, 80, 81, 84, 92]. Notable among these models are those that provide fail-stop semantics for data races, throwing a consistency exception for a data race that may violate consistency guarantees [14, 15, 35, 59, 62, 74, 80, 92] (Section 2). Consistency exceptions seem to be an inherent feature of memory models that provide region serializability, as Section 2 explains.

Problem. In today’s systems, data races have undefined behavior, leading to observable errors sporadically (e.g., under a new compiler or a rare thread interleaving). In contrast, in a world where the default is a memory model with fail-stop behavior for data races, programs will have well-defined semantics but might throw consistency exceptions. This situation is analogous to memory errors such as buffer overflows, for which unsafe languages such as C++ give undefined behavior, while memory- and type-safe languages such as Java provide fail-stop semantics.

Even well-tested software has data races that manifest under some production environments, inputs, or thread interleavings [52, 69, 85]—which under fail-stop semantics will lead to unexpected consistency exceptions. Unexpected exceptions hurt an execution’s availability (this paper’s term for the duration a program can execute without throwing exceptions), losing some or all of a program’s work and thus translating into degradation of performance or quality of service (Section 2).

Our approach. To the best of our knowledge, this paper is the first to consider and address the problem of availability in memory consistency models that generate consistency exceptions. Our first step in this paper is to extend enforcement of an existing strong memory model called RSx based on serializability of synchronization-free regions [14, 15, 59], to avoid region conflicts, and thus consistency exceptions, by pausing a thread that is about
to perform a conflicting access. While these extensions improve availability significantly, their efficacy is limited by the need to provide strict serializability.

In an effort to improve availability further, we introduce a new memory model called RIx based on isolation of synchronization-free regions. For an execution with a data race, RIx generates a consistency exception or ensures isolation of executing regions—a guarantee based on snapshot isolation [11, 36, 39, 50, 55, 56, 70] that is not as strong as strict serializability.

To enforce RIx, we introduce a software approach called Avalon. RIx’s semantics permit Avalon to tolerate read–write conflicts safely, allowing the conflicting write’s region to proceed until its end. Interestingly, Avalon provides isolation of regions, or else it deadlocks due to a dependence cycle of waiting on conflicts from true data races. Avalon detects such deadlocks and throws a consistency exception.

RIx not only enables an approach (Avalon) that helps avoid consistency exceptions, but it also allows trading some of these avoidance benefits for better performance. We show that Avalon can optionally detect read–write conflicts imprecisely (risking false conflicts, but not missing true conflicts) without jeopardizing support for RIx. We leverage this idea to introduce a variant of Avalon, called Avalon-I, that represents variables’ last reader information imprecisely, enabling lower run-time costs and complexity than the precise variant, which we call Avalon-P.

Our evaluation on benchmarked versions of large, real programs shows that Avalon-P, Avalon-I, and our extended RSx-based approaches provide significantly better availability, at competitive cost, than approaches from prior work. Avalon-P provides significantly better availability than the extended RSx-based approaches, at comparable cost. Avalon-I’s imprecise conflict detection leads to lower overhead but also lower availability than Avalon-P.

Contributions. This paper makes the following contributions:

- extended designs of RSx-enforcement approaches that provide best-effort avoidance of consistency exceptions;
- a new memory consistency model called RIx;
- Avalon, a run-time approach that enforces RIx, with two versions that offer different availability–performance tradeoffs;
- a study of RIx’s effectiveness at avoiding erroneous behaviors allowed by weak memory models; and
- a performance–availability evaluation that demonstrates new, compelling points in the design space.

2. Background and Motivation

This section motivates the benefits and challenges of memory consistency models that provide fail-stop semantics.

Modern shared-memory languages such as Java and C++ provide variants of the DRF0 memory model, introduced by Adve and Hill in 1990 [4, 20, 61]. DRF0 (and its variants) provide a strong guarantee for well-synchronized, or data-race-free, executions: sequentializability of synchronization-free regions (SFRs) [2, 59]. An SFR is a dynamic sequence of executed instructions bounded by synchronization operations (e.g., lock acquires and releases) with no intervening synchronization operations. Every executed non-synchronization instruction is in exactly one SFR. An execution is region serializable if it is equivalent to some serial execution of regions (i.e., some total order of non-interleaved regions).

However, for executions with data races, DRF0 provides weak or no behavior guarantees [2, 18, 19, 21, 22]. C++’s memory model gives undefined semantics for data races [20]. The Java memory model (JMM) provides weak, complex guarantees for executions with data races, in an effort to preserve memory and type safety [61]. However, the JMM precludes common Java virtual machine (JVM) compiler optimizations [78]. In practice, JVMs perform optimizations that violate the JMM [22, 78].

Despite much effort by researchers and practitioners, data races are difficult to avoid, detect, and fix [1, 14, 23, 24, 29, 35, 37, 38, 40, 48, 64, 65, 67, 71, 73, 77, 86, 87, 96]. Data races can manifest only under certain environments, inputs, and thread interleavings [43, 58, 85, 97]. Data races thus occur unexpectedly in production systems, sometimes with severe consequences [52, 69, 85].

Despite the shortcomings of DRF0-based memory models, languages and systems continue to use them in order to maximize performance. DRF0 permits compilers and hardware to perform uninhibited intra-thread optimizations within SFRs. Any attempt to provide stronger consistency must consider the impact of restricting optimizations.

Sequential consistency. Much work has focused on providing sequential consistency (SC) as the memory consistency model [2, 3, 42, 53, 63, 72, 79, 81, 84]. An execution is SC if its operations appear to interleave in some order that conforms to program order [51].

Enforcing end-to-end SC (i.e., SC with respect to the original program) requires restricting optimizations by both the compiler and hardware. (Enforcing SC in the compiler or hardware alone does not provide end-to-end SC.) SC does not necessarily provide a compelling strength–performance tradeoff. Programmers tend to think at a granularity larger than individual memory accesses, Adve and Boehm argue that “programmers do not reason about correctness of parallel code in terms of interleavings of individual memory accesses” [2]. We find that SC does not eliminate some errors due to data races (Section 8.7).

Region serializability. In contrast, memory consistency based on region serializability [7, 14, 15, 59, 60, 68, 76] requires fewer or no restrictions on compiler and hardware optimizations. Furthermore, region serializability is strictly stronger than SC. We define RS as a property of executions that are SFR serializable:

An execution is RS if it is equivalent to a serialization of SFRs.

RS places no new restrictions on compiler and hardware optimizations, which already respect synchronization boundaries. Prior work introduces a memory model, which we call RSx, that treats data races as fail-stop errors [59]:

RSx is a memory model that either ensures RS or generates a consistency exception—but only if the execution has a data race [14, 15, 59].

Since RSx may or may not throw a consistency exception for an execution with a data race, it permits implementation flexibility: an implementation of RSx does not need to incur the cost and complexity of detecting all data races or RS violations precisely. Prior work provides RSx by detecting region conflicts [14, 15, 59], which occur when one region’s access conflicts with an access performed by another ongoing region.²

Why throw consistency exceptions at all? Why not enforce RS unconditionally without the possibility of exceptions? Some work has enforced RS (without consistency exceptions) [44, 68]. However, enforcing RS efficiently relies on speculative execution,

² Two memory accesses conflict if they are accesses to the same variable by different threads and at least one is a write.
which adds costs and complexity and cannot easily handle “irreversible” operations such as I/O [10, 31, 34, 44, 68, 91, 93]. Furthermore, some programs that make progress under SC cannot make progress under RS [76].

Drawbacks of fail-stop semantics. Although RSx provides strong, well-defined semantics, it runs the risk of generating consistency exceptions. In essence, RSx converts DRF0’s undefined behavior for data races into fail-stop errors, much like how memory- and type-safe languages handle buffer overflows. If consistency exceptions occur unexpectedly and frequently, they may frustrate developers and users more than today’s practical consequences of data races under DRF0.

What happens when a program executing under RSx (or other memory model with fail-stop behavior) generates a consistency exception? The execution could restart from the beginning, or it could resume from a checkpoint. In the case of a server program that handles requests, the execution could abort the current request, relying on the client to resend a request. Consistency exceptions thus degrade performance or quality of service.

Prior work has not considered the issue of availability nor how to reduce exceptions for memory models that generate consistency exceptions, which is fundamental to the usability and adoptability of these memory models.

3. Goals and Overview

This paper’s goals are to address the challenge of availability and to explore the tradeoff between availability, performance, and semantics in memory consistency models.

Section 4 extends existing RSx enforcement approaches to improve availability. Even with these extensions, it seems inherently hard under RSx to avoid consistency exceptions and to achieve high performance. Section 5 introduces a new memory model, called RIs, that allows more flexibility to avoid consistency exceptions and to improve performance. Section 6 presents an approach called Avalon that enforces RIs, including versions of Avalon that provide different tradeoffs between performance and availability.

4. Increasing Availability Under RSx

This section extends two approaches from prior work that enforce RSx to avoid exceptions by waiting at conflicts. These two approaches, FastRCD and Valor [14], detect region conflicts (conflicting accesses in two concurrent regions) at run time and throw a consistency exception.

FastRCD and FastRCD-A. FastRCD (whose design resembles the design of the FastTrack data race detector [40]), detects region conflicts when they occur [14]. Our extended analysis, called FastRCD-A (Available), avoids consistency exceptions by waiting when it detects a region conflict.

At a high level, FastRCD-A detects conflicts by tracking each shared variable’s last writer region and last reader region(s). When FastRCD-A detects a conflict, it waits until the conflict no longer exists, thus avoiding the conflict.

We present FastRCD-A (and Avalon in Section 6) using the following notation:

- \(\text{clock}(T) \) – Returns the current clock \(c \) of thread \(T \).
- \(\text{epoch}(T) \) – Returns the epoch \(c \circ t \), where \(c \) is the current clock of thread \(T \).
- \(\mathcal{W}_x \) – Represents last-writer metadata for variable \(x \), as the epoch \(c \circ t \), which means \(t \) last wrote \(x \) at time \(c \).
- \(\mathcal{R}_x \) – Represents last-reader metadata for \(x \), as a read map from each thread to a clock value (or 0 if not present in the map).

Algorithm 1

REGION BOUNDARY [FastRCD-A]: thread \(T \) reaches region boundary (program synchronization operation)

1. \(\text{incClock}(T) \)

Algorithm 2

WRITE [FastRCD-A]: thread \(T \) writes \(x \)

1. let \(c \circ t \leftarrow \mathcal{W}_x \)
2. if \(c \circ t \neq \text{epoch}(T) \) then \(\triangleright \) First write to \(x \) by this region?
3. if \(t \neq T \land \text{clock}(t) = c \) then \(\triangleright \) Write–write conflict?
4. if deadlocked then
5. throw consistency exception
6. else
7. Retry from line 1
8. for all \(t' \rightarrow c' \) in \(\mathcal{R}_x \) do
9. if \(t'
eq T \land \text{clock}(t') = c' \) then \(\triangleright \) Read–write conflict?
10. if deadlocked then
11. throw consistency exception
12. else
13. Retry from line 1
14. \(\mathcal{W}_x \leftarrow \text{epoch}(T) \) \(\triangleright \) Update write metadata
15. \(\mathcal{R}_x \leftarrow \emptyset \) \(\triangleright \) Clear read metadata

Algorithm 3

READ [FastRCD-A]: thread \(T \) reads \(x \)

1. if \(\text{clock}(T) \neq \mathcal{R}_x[T] \) then \(\triangleright \) First read to \(x \) by this region?
2. let \(c \circ t \leftarrow \mathcal{W}_x \)
3. if \(t
eq T \land \text{clock}(t) = c \) then \(\triangleright \) Write–read conflict?
4. if deadlocked then
5. throw consistency exception
6. else
7. Retry from line 1
8. \(\mathcal{R}_x[T] \leftarrow \text{clock}(T) \) \(\triangleright \) Update read metadata

Algorithm 1 shows how FastRCD-A increments \(\text{clock}(T) \) at region boundaries. Algorithms 2 and 3 show FastRCD-A’s actions at program reads and writes. The first if statement in both algorithms checks whether this region has already written or read this variable, respectively, in which case the algorithm does not need to check for conflicts or update read/write metadata. Otherwise, FastRCD-A checks for write–write and read–write conflicts (lines 3 and 9 in Algorithm 2) and write–read conflicts (line 3 in Algorithm 3) by checking whether the last writer region or reader region(s) are still executing. If FastRCD-A detects a conflict, the current thread \(T \) waits (by retrying from line 1) for the region (executed by \(t \) to finish its executing region. (In contrast, when FastRCD detects a conflict, it throws a consistency exception immediately [14].)

After checking for (and potentially waiting on) conflicts, the analysis at a write or read updates the variable’s write and/or read metadata. An implementation must provide atomicity of instrumentation for each operation, as discussed in Section 7.

FastRCD-A detects waiting-induced cyclic dependencies by maintaining a global region wait-for graph and using an edge-chasing algorithm to find cycles [49]. A detected cycle indicates a deadlock, and FastRCD-A generates a consistency exception.

Valor and Valor-A. As prior work [14] and our evaluation show, FastRCD adds high run-time overhead, which is mainly caused by tracking last-reader metadata in order to detect read–write conflicts exactly. Prior work thus introduces Valor, which elides tracking of \(x \)’s last-reader metadata [14]. Instead, Valor logs each read in a per-thread read log, and infers read–write conflicts lazily at region end. We introduce Valor-A, which extends Valor to wait at detected conflicts instead of throwing a consistency exception. Like FastRCD-A, Valor-A waits at detected write–write and write–read conflicts until the conflict no longer exists or the analysis detects a deadlock.
due to waiting on conflicts. However, Valor-A cannot wait when it infers a read–write conflict: the read and write have both already executed, so it is too late to avoid the conflict.

Valor-A (and Valor) thus throw asynchronous consistency exceptions for read–write conflicts. Asynchronous exceptions are difficult for programs to handle and for developers to debug. Furthermore, asynchronous exceptions leave regions in an inconsistent state. This problem is particularly acute in the context of an unsafe language such as C++, where so-called “zombie” regions can cause corruption that is not feasible in any RS execution [14, 30, 45].

FastRCD-A and Valor-A only perturb thread interleavings, so they do not introduce behaviors that are not already possible in the original program.

Section 8 shows that although FastRCD-A and Valor-A improve availability (i.e., decrease the rate of consistency exceptions) significantly compared with FastRCD and Valor, their effectiveness is limited by the RSX requirements of serializability and precise conflict detection. This insight leads us to introduce a new memory model that is not as strict as serializability but still provides guarantees at the granularity of synchronization-free regions.

5. RIx: A New Strong Memory Model

This section introduces a new memory consistency model called RIx, which is based on providing isolation of regions.

5.1 Isolation of SFRs (RI)

We define isolation of synchronization-free regions (RI) as a property of executions:

An execution is SI if it satisfies two properties: write atomicity and read isolation of SFRs.

Database systems have provided these properties in the context of snapshot isolation (SI) [11, 36, 39, 70]. RI is essentially equivalent to the typical definition of SI, but the database literature typically defines SI operationally, and not all definitions are semantically equivalent. We thus use the new term RI for clarity.

Instead of defining RI precisely, we define conflict RI, a sufficient condition for RI that a dynamic analysis can feasibly check on the fly. The rest of this paper uses conflict RI as its working definition of RI. Conflict RI for RI is analogous to conflict serializability for serializability [13, 88]. The following definitions are closely based on prior work (on SI for database systems) [5, 6].

A multithreaded execution consists of reads and writes executing in regions (SFRs). The following notation describes read and write operations in an execution:

- \(w_i(x) \) — a write to variable \(x \) by region \(R_i \)
- \(r_j(x) \) — a read from \(x \) by region \(R_j \), which sees the value written by region \(R_i \) (\(i = j \) is allowed)

The following definition captures the notion of ordering in a multithreading execution:

Definition (Time-precedes order). The time-precedes order \(\prec_t \) is a partial order over an execution’s operations such that:

1. For every two regions \(R_i \) and \(R_j \), either \(e_i \prec_t s_j \) or \(s_j \prec_t e_i \).

2. For any two regions \(R_i \) and \(R_j \), either \(e_i \prec_t s_j \) or \(s_j \prec_t e_i \).

\(\text{That is, the end of one region is always ordered with start of every other region.} \)

Note that we use time-precedes order only to define conflict RI. To check conflict RI at run time, a dynamic analysis does not need to compute time-precedes order.

Definition (Conflict RI). An execution is conflict RI if the following conditions hold:

1. Two concurrent regions cannot modify the same variable. That is, for any two writes \(w_i(x) \) and \(w_j(x) \) such that \(i \neq j \), either \(e_i \prec_t s_j \) or \(s_j \prec_t e_i \).

2. Every read sees the latest value written by preceding regions. That is, for every \(r_i(x) \) such that \(i \neq j \):

 (a) \(e_j \prec_t s_i \); and
 (b) for any \(w_k(x) \) in the execution such that \(j \neq k \), either \(s_i \prec_t e_k \) or \(e_k \prec_t s_j \).

Note that changing \(s_i \prec_t e_k \) (in part 2b) to \(e_i \prec_t s_k \) yields a definition for conflict serializability [13, 88].

Examples. Figure 1 shows three examples to help understand the differences between RS, RI, and sequential consistency (SC). In each example, suppose that each thread’s operations are in a single SFR that executes concurrently with the other thread’s SFR. Each example thus has one or more data races. If the regions did not have data races, then only RS behaviors would be possible.

Figure 1(a) shows by example that RI is weaker than RS: the reads see values that are not possible under RS. The database literature calls such behaviors write skew; prior work has observed that write skew behaviors are rare in practice [39, 56], and our study of real program errors suggests that such behaviors are rare in shared-memory programs (Section 8.7). (Prior work detects and corrects write skew through dependence graph analysis and “promotion” of reads [27, 56].) Figure 1(b)’s execution violates RI (and thus RS): under RI, the regions cannot appear to execute concurrently because their write sets overlap. While Figure 1(b) shows that SC does not imply (i.e., is not strictly stronger than) RI, Figure 1(c) shows that RI does not imply SC.

Under RI, compilers and hardware can optimize SFRs freely, i.e., they can perform the same optimizations allowed under RSX and DRF0. In contrast, (end-to-end) SC requires restricting compiler and hardware optimizations, e.g., by assuming or inserting memory fences at all memory accesses (Section 2).

Understanding RI. Just as today’s programmers mostly ignore or misunderstand memory models, we do not envision programmers needing to reason about RI if memory models by default employ RI semantics. Note that in our RI-based memory model (introduced next), RI semantics can arise only when there is a data race, which should still be considered an error. Nonetheless, expert programmers and system designers may want to understand RI. Intuitively, RI provides write atomicity and read isolation, i.e., writes in an SFR appear as a single operation, and a region’s reads see writes from a consistent snapshot, never from concurrently executing regions.

\(^3\)If \(i = j \), \(r_i(x) \) sees the value from the latest \(w_i(x) \).
A more relevant question than comprehensibility is how well RI, compared with DRF0 and SC and RS, avoids errors caused by data races. Section 8.7 evaluates this question.

5.2 A Memory Model Based on RI

We introduce a new memory model called RxI based on RI. Similar to RxS (Section 2), under RxI, an execution with a data race may provide RI or throw a consistency exception if the execution has a data race.

RxI is a memory model that guarantees (1) RS for data-race-free executions and (2) RI or a consistency exception for executions with data races.

Note that RxI relaxes semantics from RS to RI only for executions with data races, which under DRF0 have weak or undefined semantics anyway. For data-race-free executions, RxI provides the same semantics as RSx: serializability of SFRs (and SC).

6. Avalon: Runtime Support for RxI

This section introduces Avalon, a novel, software-only approach that provides the RxI memory consistency model.

Overview. Avalon shares some functionality with FastRCD-A (Section 4). Like FastRCD-A, when Avalon detects a write–write or write–read conflict, it waits until the conflict no longer exists, thus avoiding the conflict. However, when Avalon detects a read–write conflict, it allows the writing thread to proceed until the end of its current region, thus tolerating the conflict legally under RxI.

Like FastRCD-A, Avalon detects cycles of waiting dependences and throws a consistency exception. Note that in Avalon, a deadlock must involve at least one write–write or write–read dependence, since Avalon naturally allows regions with mutual read–write dependences to proceed once all of the regions end.

In addition to the notation for FastRCD-A, our presentation of Avalon uses following notation:

T.waitMap – Represents the regions that thread T is waiting on. T.waitMap is a map from a thread t to the latest clock value c of t that executed a read that conflicts with a write in T’s current region (or 0 if not in the map).

Region boundaries. To tolerate read–write conflicts, a thread waits at a region boundary, without starting the next region. Avalon thus extends per-thread clocks to differentiate region execution from waiting at a region boundary. In particular, thread T’s clock represents two execution states of T:

• clock(T) is odd if the region is executing. Note that initially clock(T) is 1.

• clock(T) is even if the region has finished executing but is waiting for read–write conflicts at a region boundary.

Algorithm 4 shows how Avalon maintains this invariant by incrementing clock(T) both before and after a region waits for tolerating any remaining read–write conflicts. While clock(T) is even, the algorithm checks whether read–write conflicts still exist; if the reader region is still executing (i.e., if clock(t) = c), the algorithm waits until the reader region finishes executing, throwing a consistency exception if Avalon detects deadlock.

Avalon can detect read–write conflicts either precisely or imprecisely, without risking spurious consistency exceptions. Section 6.1 presents a precise version of Avalon called Avalon-P (Precise), and Section 6.2 presents an imprecise version called Avalon-I (Imprecise).

<table>
<thead>
<tr>
<th>Algorithm 4 REGION Boundary [Avalon]: thread T reaches region boundary (program synchronization operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: incClock(T) ▷ Last region done; not ready to start next region</td>
</tr>
<tr>
<td>2: for each t → c in T.waitMap do</td>
</tr>
<tr>
<td>3: while clock(t) = c do ▷ Read–write conflict still exists?</td>
</tr>
<tr>
<td>4: if deadlocked then</td>
</tr>
<tr>
<td>5: throw consistency exception</td>
</tr>
<tr>
<td>6: T.waitMap ← 0</td>
</tr>
<tr>
<td>7: incClock(T) ▷ Ready to start next region</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm 5 WRITE [Avalon-P]: thread T writes x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: let c@t ← W_x</td>
</tr>
<tr>
<td>2: if c@t = epoch(T) then ▷ First write to x by this region?</td>
</tr>
<tr>
<td>3: if t = T ∧ clock(t) ≤ c + 1 then ▷ Write–write conflict?</td>
</tr>
<tr>
<td>4: if deadlocked then</td>
</tr>
<tr>
<td>5: throw consistency exception</td>
</tr>
<tr>
<td>6: else</td>
</tr>
<tr>
<td>7: Retry from line 1</td>
</tr>
<tr>
<td>8: for all t’ → c’ in R_x do</td>
</tr>
<tr>
<td>9: if t’ ≠ T ∧ clock(t’) = c’ then ▷ Read–write conflict?</td>
</tr>
<tr>
<td>10: T.waitMap[t’] ← c’</td>
</tr>
<tr>
<td>11: W_x ← epoch(T) ▷ Update write metadata</td>
</tr>
<tr>
<td>12: R_x ← epoch(T) ▷ Clear read metadata</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm 6 READ [Avalon-P]: thread T reads x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if clock(T) ≠ R_x[T] then ▷ First read to x by this region?</td>
</tr>
<tr>
<td>2: let c@t ← W_x</td>
</tr>
<tr>
<td>3: if t ≠ T ∧ clock(t) ≤ c + 1 then ▷ Write–read conflict?</td>
</tr>
<tr>
<td>4: if deadlocked then</td>
</tr>
<tr>
<td>5: throw consistency exception</td>
</tr>
<tr>
<td>6: else</td>
</tr>
<tr>
<td>7: Retry from line 1</td>
</tr>
<tr>
<td>8: R_x[T] ← clock(T) ▷ Update read metadata</td>
</tr>
</tbody>
</table>

6.1 Avalon-P: Detecting Conflicts Precisely

Algorithms 5 and 6 show Avalon-P’s analysis at program writes and reads. Like FastRCD-A, if Avalon-P detects a write–write or write–read conflict, the current thread T waits for the writer region (executed by t) to finish any waiting at its region boundary. In order to take into account the two increments to clock(t) at a region boundary, T checks if the writer thread t’s clock is at least two greater than the variable’s clock c, i.e., clock(t) ≥ c + 2.

In contrast with FastRCD-A, when Avalon-P detects a read–write conflict (line 9 in Algorithm 5), instead of waiting, the current thread T records the conflicting thread t’ and its current clock c’ in T.waitMap.

Examples. To help understand Avalon-P’s algorithm, Figure 2 shows examples of how Avalon enforces RxI. The figure applies to both Avalon-P and Avalon-I, which behave the same for each of the examples. In the figure, concurrent regions access the shared variables x and y. The gray dashed lines (around synchronization operations, e.g., acq(i) and rel(i)) indicate SFR boundaries. R_i and R_j are SFR identifiers, where i and j are per-thread clocks for the respective threads.

In Figure 2(a), T2 tries to read x, which is a region conflict with the previous write to x by T1 in region R_i, because T1 is still executing R_i. T2 handles the region conflict by waiting until T1 finishes its region (R_i), at which point T2 retries its read at time (2) and continues execution safely. In Figure 2(b), T2 waits on the read–write conflict at its region boundary, but T1 is unable to make progress due to a cyclic dependence. In Figure 2(c), a cyclic...
dependence exists, but each region can reach its region boundary, allowing each to proceed. In Figure 2(d), Avalon deadlocks due to a cycle of transitive dependencies involving two variables. Each thread gets stuck waiting. T1 and T3 at accesses, and T2 at a region boundary.

6.2 Avalon-I: Leveraging Approximation for Performance

Tolerating read–write conflicts allows Avalon-P to avoid exceptions encountered by prior work, but tracking each variable’s last readers precisely is expensive (as prior work also finds [14]). Based on this observation, this section describes Avalon-I, a design that over-approximates last readers.

The key insight of having imprecise readers is that a thread can wait to perform a write that is potentially involved in a read–write conflict. Importantly, Avalon-I still provides Rlx: although Avalon-I may wait on a false read–write conflict, any deadlock must include at least one (true) write–read or write–write conflict (this property also holds for Avalon-P), indicating a data race.

In the design of Avalon-P from Section 6.1, each variable x has metadata both for writes (W_x) and reads (R_x). Both are needed for precise tracking of last reader(s). In particular, the read metadata is inflated into a read map when there are multiple concurrent reader regions. Since Avalon-I does not require precise detection of read–write conflicts, it allows for a more efficient design.

Metadata compression. Like Avalon-P, Avalon-I maintains the epoch of the last writer for each shared variable x. Unlike Avalon-P, Avalon-I maintains precise last-reader information only if there exists a single reader; for multiple readers, it abandons precise tracking (so any ongoing region is a potential reader). As a result, Avalon-I represents a variable’s last writer and reader information as a single unit of metadata M_x that always has one of the following values:

$W_{x,\Theta} \rightarrow x$ was last accessed by region $c\Theta$, and that region performed a write to x.

$R_{x,\Theta} \rightarrow x$ was last accessed by region $c\Theta$, and that region performed only reads to x.

$R_{x}\Theta$ — At some point since the last write to x, there were multiple concurrent reader regions of x. Any ongoing region may have read x, but no ongoing region may have written x.

The first write to x in region $c\Theta$ updates M_x to $W_{x,\Theta}$. Similarly, the first read to x in c (if there is no prior write in the same region) updates M_x to $R_{x,\Theta}$. If a second read from a different thread reads the variable while the first read’s region is still ongoing, Avalon-I changes M_x from $R_{x,\Theta}$ to $R_{x}\Theta$. If M_x can be encoded in a single word, a single atomic instruction is sufficient to update it (Section 7).

Avalon-I’s analysis. Algorithms 7 and 8 show the analysis that Avalon-I performs at each program write and read. In Algorithm 7, if the last write to x comes from the same region, the current write can skip the rest of the analysis operations (line 1) since M_x not need to be updated. If the last write is from the same thread T, the write can update M_x with the epoch of the current region (R_x).

In Algorithm 8, if the same region has already read or written x or M_x is $R_{x}\Theta$, T does not need to update M_x (line 1). If the read is the first read to x in a region before any writes to x, the read updates M_x from $W_{x,\Theta}$ to $R_{x,\Theta}$, so that a write from

![Figure 2. Examples showing how Avalon works. (The examples applies to both Avalon-P and Avalon-I.) Dashed lines indicate where Avalon increments its clock. The exact synchronization operations (e.g., acq(m) versus rel(l)) are arbitrary and not pertinent to the examples.](image-url)
Table 1. Runtime characteristics of the evaluated programs, rounded to two significant figures. *Three programs support varying the number of active application threads; by default, this value is equal to the number of cores (32 in our experiments).

<table>
<thead>
<tr>
<th>threads</th>
<th>Memory accesses</th>
<th>Region conflicts</th>
<th>Dyn. SFRs</th>
<th>Avg. accesses per SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Max live</td>
<td>Reads</td>
<td>Writes</td>
</tr>
<tr>
<td>eclipse96</td>
<td>18</td>
<td>12</td>
<td>4,500M</td>
<td>1,400M</td>
</tr>
<tr>
<td>hsqldb6</td>
<td>402</td>
<td>102</td>
<td>250M</td>
<td>31M</td>
</tr>
<tr>
<td>lusearch6</td>
<td>65</td>
<td>65</td>
<td>1,100M</td>
<td>400M</td>
</tr>
<tr>
<td>xalan6</td>
<td>9</td>
<td>9</td>
<td>990M</td>
<td>220M</td>
</tr>
<tr>
<td>avror9a</td>
<td>27</td>
<td>27</td>
<td>900M</td>
<td>440M</td>
</tr>
<tr>
<td>jython9</td>
<td>3</td>
<td>3</td>
<td>720M</td>
<td>230M</td>
</tr>
<tr>
<td>luindex9</td>
<td>2</td>
<td>2</td>
<td>290M</td>
<td>97M</td>
</tr>
<tr>
<td>lusearch9*</td>
<td>32</td>
<td>32</td>
<td>1,100M</td>
<td>350M</td>
</tr>
<tr>
<td>pmd9</td>
<td>5</td>
<td>5</td>
<td>290M</td>
<td>97M</td>
</tr>
<tr>
<td>sunflow9*</td>
<td>64</td>
<td>32</td>
<td>6,700M</td>
<td>720M</td>
</tr>
<tr>
<td>xalan9a</td>
<td>32</td>
<td>32</td>
<td>940M</td>
<td>210M</td>
</tr>
</tbody>
</table>

Table 7. Implementation

We have implemented FastRCD-A, Valor-A, Avalon-P, and Avalon-I in Jikes RVM 3.1.3 [8, 9], a JVM that performs competitively with commercial JVMs [14]. Our FastRCD-A and Valor-A implementations extend publicly available Jikes RVM implementations of FastRCD and Valor [14]. We have made our implementations publicly available on the Jikes RVM Research Archive.

Our implementations, which target IA-32, extend Jikes RVM’s just-in-time compilers to insert instrumentation at synchronization operations and memory operations. The implementations transform the same set of memory operations (field and array element accesses in the application and libraries), demarcate regions in the same way (at lock, monitor, thread, volatile operations, and other synchronization such as atomic accesses), and reuse code as much as possible. Java supports reentrant locks; the implementations demarcate regions at critical sections on reentered locks, but an implementation could instead safely ignore these operations.

We note that all of the implementations apply to existing, unmodified Java programs. The implementations demarcate regions at existing program synchronization operations. They do not require any annotations from programmers. They do not remove or disable any synchronization operations; even under RIx or RSx, programs still need their lock operations to ensure mutual exclusion of critical sections.

Avalon-P and FastRCD-A add two words of per-variable metadata for tracking writes and reads. Each variable’s read metadata can be inflated to a pointer to a read map, and the map’s space overhead is proportional to the number of reader threads. In contrast, Avalon-I uses a single metadata word per variable: 21 bits for the clock, 9 bits for the thread ID, and 2 bits for encoding the state (WrEx vs. RdEx vs. RdSh).

Avalon-I safely resets clocks to 0 or 1 at full-heap garbage collection to avoid overflow (adapting prior work’s optimization [14]).

Instrumentation atomicity. Avalon-P and FastRCD-A use two words or more of per-variable metadata (to support a read map). The instrumentation initially “locks” one of the variable’s metadata words (using an atomic operation and spin loop) and later “unlocks” it (using a store and memory fence) when updating the metadata. The instrumentation performs no synchronization when it performs no metadata updates (for a read or write in the same region).

In contrast, Avalon-I and Valor-A use a single word of shared metadata per variable, so they provide lock-free instrumentation atomicity, using a single atomic operation for updates.

8. Evaluation

This section measures availability, performance, scalability, space usage, and other characteristics for Avalon and competing approaches that provide RSx and RIx.

8.1 Methodology

Benchmarks. Our evaluation uses benchmarked versions of large, real applications: the DaCapo benchmarks with the default workload size, versions 2006-10-MR2 and 9.12-bach (distinguished with names suffixed by 6 and 9) [16]. We omit single-threaded programs and programs that Jikes RVM 3.1.3 cannot execute.

Experimental setup. For each implementation (FastRCD-A, Avalon-P, etc.), we build a high-performance configuration of Jikes RVM that adaptively optimizes the code and uses the default, high-performance, generational garbage collector [17], which adjusts the heap size automatically at run time. Each performance result is the mean of 25 trials. Each reported statistic is the mean from 10 trials of a special statistics-gathering configuration. For each result, we also report a 95% confidence interval.

Platform. The experiments execute on an Intel Xeon E5-4620 machine with four 8-core processors (32 cores total), running Red-Hat Enterprise Linux 6.7, kernel 2.6.32.

Runtime characteristics. Table 1 shows characteristics of the evaluated programs that are independent of the implementation (e.g., Avalon-P vs. FastRCD-A). The Threads columns report both threads created and maximum threads active at any time. Memory accesses are executed program loads and stores of fields and array elements, which all implementations instrument.

The Region conflicts columns show how many of each kind of region conflict occur. Conflicts vary significantly in count and type across programs, but they are generally many orders of magnitude smaller than total memory operations, except for avror9a, which incurs millions of dynamic conflicts. We find that these conflicts are due to 14 static data races (distinct unordered pairs of static program locations).
Comparing with prior work’s FastRCD and Valor, FastRCD-A, Valor-A, Avalon-P, and Avalon-I report substantially fewer consistency exceptions. Compared with FastRCD and Valor, Avalon-P reduces exceptions by up to three orders of magnitude (e.g., eclipse6, hsqldb9, xalan6, pmd9, and xalan9), or eliminates consistency exceptions completely (e.g., lusearch6 and sunflow9).

Avalon’s ability to reduce consistency exceptions comes from two sources: (1) avoiding write–write and write–read conflicts and (2) tolerating read–write conflicts (by exploiting RIx). To analyze the effect of the first feature alone, we can compare FastRCD-A with FastRCD and Valor-A with Valor. Waiting at conflicts is generally effective at reducing consistency exceptions, reducing exceptions significantly for most programs, albeit not as much as for Avalon-P. This evaluation of waiting at conflicts—which to our knowledge is the first such evaluation—suggests that this technique is generally effective at avoiding consistency exceptions while still preserving the consistency model (whether RSx or RIx).

To analyze the effect of the second feature—tolerating read–write conflicts by exploiting RIx’s properties—we can compare Avalon-P with FastRCD-A. As expected, the table shows that Avalon-P generally avoids more consistency exceptions than FastRCD-A. Avalon-P has fewer exceptional regions than FastRCD-A for six programs, and never has more exceptional regions than FastRCD-A (for eclipse6, the difference is not statistically significant).

Relaxed precision

A separate aspect of Avalon is that it permits relaxing precision of conflict detection, potentially improving performance, but at the cost of potentially more consistency exceptions. To evaluate this cost, we compare reported consistency exceptions for Avalon-P and Avalon-I. Unsurprisingly, Avalon-I reports more exceptions than Avalon-P, since Avalon-I introduces waiting at region boundaries for spurious read–write conflicts. This effect is mixed across programs: for six programs, Avalon-I generates more exceptions than Avalon-P (although the increases are often modest), whereas we find no statistically significant difference for the other five programs.

The last two columns of Table 1 report regions executed and average region size (i.e., memory operations executed in each SFR). All programs except sunflow9 perform synchronization at least every 720 memory operations on average.

8.2 Availability

The programs we evaluate have not been developed or debugged under the assumption that data races are (fail-stop) errors. They have data races that frequently manifest as region conflicts. Under an RSx- or RIx-by-default assumption, programmers would fix frequently occurring data races, but other data races would remain. By comparing how many consistency exceptions each implementation throws, we can estimate its relative ability to avoid exceptions if programs had been developed and debugged to mostly avoid consistency exceptions.

Table 2 reports consistency exceptions thrown by all implementations. The implementations do not actually generate real exceptions; rather, they simply report the exception and allow execution to proceed. In practice, a system could handle consistency exceptions by terminating the execution, by restarting the execution, or resuming from a checkpoint (Section 2). Thus, generating a consistency exception is undesirable but not unacceptable, and decreasing the rate of consistency exceptions is desirable.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eclipse6</td>
<td>6.8K ± 10K</td>
<td>260 ± 310</td>
<td>0.2 ± 0.5</td>
<td>0.2 ± 0.3</td>
<td>0.3 ± 0.6</td>
<td>1.2 ± 1.6</td>
</tr>
<tr>
<td>(14K ± 24K)</td>
<td>(1.8K ± 3.5K)</td>
<td>(0.2 ± 0.5)</td>
<td>(0.7 ± 0.9)</td>
<td>(0.3 ± 0.6)</td>
<td>(1.2 ± 1.6)</td>
<td></td>
</tr>
<tr>
<td>hsqldb6</td>
<td>27 ± 2.7</td>
<td>73 ± 2.6</td>
<td>0.8 ± 0.5</td>
<td>0.6 ± 0.3</td>
<td>0.1 ± 0.1</td>
<td>1.0 ± 0.5</td>
</tr>
<tr>
<td>(53 ± 5.6)</td>
<td>(140 ± 5.4)</td>
<td>(0.8 ± 0.5)</td>
<td>(0.6 ± 0.3)</td>
<td>(0.1 ± 0.1)</td>
<td>(1.2 ± 0.6)</td>
<td></td>
</tr>
<tr>
<td>lusearch6</td>
<td>6.1 ± 0.1</td>
<td>0.2 ± 0.2</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>(0.1 ± 0.1)</td>
<td>(0.2 ± 0.2)</td>
<td>(0 ± 0)</td>
<td>(0 ± 0)</td>
<td>(0 ± 0)</td>
<td>(0 ± 0)</td>
<td></td>
</tr>
<tr>
<td>xalan6</td>
<td>48 ± 1.7</td>
<td>53 ± 1.7</td>
<td>12 ± 1.3</td>
<td>25 ± 1.1</td>
<td>5.5 ± 1.4</td>
<td>10 ± 1.3</td>
</tr>
<tr>
<td>(120 ± 5.8)</td>
<td>(93 ± 3.4)</td>
<td>(12 ± 1.3)</td>
<td>(39 ± 1.1)</td>
<td>(5.5 ± 1.5)</td>
<td>(11 ± 1.4)</td>
<td></td>
</tr>
<tr>
<td>avror9</td>
<td>200K ± 3.1K</td>
<td>230K ± 2.6K</td>
<td>38K ± 760</td>
<td>28K ± 400</td>
<td>16K ± 430</td>
<td>18K ± 430</td>
</tr>
<tr>
<td>(610K ± 6.4K)</td>
<td>(670K ± 9.7K)</td>
<td>(39K ± 820)</td>
<td>(36K ± 920)</td>
<td>(24K ± 730)</td>
<td>(27K ± 760)</td>
<td></td>
</tr>
<tr>
<td>jython9</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>(0 ± 0)</td>
<td></td>
</tr>
<tr>
<td>luindex9</td>
<td>63 ± 9.7</td>
<td>62 ± 7.3</td>
<td>62 ± 7.6</td>
<td>13 ± 3.3</td>
<td>20 ± 3.7</td>
<td>19 ± 5.7</td>
</tr>
<tr>
<td>(110 ± 25)</td>
<td>(93 ± 13)</td>
<td>(62 ± 7.6)</td>
<td>(13 ± 3.3)</td>
<td>(21 ± 4.5)</td>
<td>(21 ± 6.6)</td>
<td></td>
</tr>
<tr>
<td>pmd9</td>
<td>450 ± 150</td>
<td>370 ± 150</td>
<td>91 ± 10</td>
<td>71 ± 7.2</td>
<td>52 ± 9.5</td>
<td>77 ± 7.2</td>
</tr>
<tr>
<td>(3.5K ± 520)</td>
<td>(3.5K ± 930)</td>
<td>(93 ± 11)</td>
<td>(170 ± 62)</td>
<td>(110 ± 51)</td>
<td>(120 ± 17)</td>
<td></td>
</tr>
<tr>
<td>sunflow9</td>
<td>6.1 ± 1.8</td>
<td>11 ± 3.6</td>
<td>4.7 ± 3.7</td>
<td>40 ± 3.6</td>
<td>6.3 ± 4.0</td>
<td>16 ± 3.2</td>
</tr>
<tr>
<td>(23 ± 6.3)</td>
<td>(37 ± 14)</td>
<td>(4.7 ± 3.7)</td>
<td>(40 ± 3.6)</td>
<td>(6.3 ± 4.0)</td>
<td>(19 ± 4.5)</td>
<td></td>
</tr>
<tr>
<td>xalan9</td>
<td>330 ± 35</td>
<td>30K ± 490</td>
<td>4.7 ± 3.7</td>
<td>40 ± 3.6</td>
<td>6.3 ± 4.0</td>
<td>16 ± 3.2</td>
</tr>
<tr>
<td>(1.5K ± 220)</td>
<td>(6.2K ± 1.2K)</td>
<td>(4.7 ± 3.7)</td>
<td>(40 ± 3.6)</td>
<td>(6.3 ± 4.0)</td>
<td>(19 ± 4.5)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The number of consistency exceptions reported by implementations that provide RSx and RIx, with 95% confidence intervals. For each program, the first row is dynamic regions that report at least one exception, and the second row (in parentheses) is dynamic exceptions reported. Reported values are rounded to two significant figures (except for values < 1).
In summary, Avalon increases availability significantly over existing approaches that support RSx for all benchmarks. The improvement is particularly significant for applications which exhibit approaches that generate hundreds or thousands consistency exceptions, while Avalon generates a few or no exceptions. Waiting at conflicts and providing RXI (instead of RSx) both contribute to Avalon’s availability improvement over prior work. Relaying Avalon’s precision decreases availability, but perhaps not excessively. Of course, each approach’s suitability is a function of not only availability, but also performance, which we evaluate next.

8.3 Performance

This section measures and compares the performance of the RSx- and RXI-enforcing implementations. Since executions are multi-threaded, performance overheads include not just instrumentation overhead but also time spent on waiting, which differs among approaches that use different waiting conditions. Section 8.5 tries to isolate this cost by varying application thread counts.

Figure 3 shows run-time overhead added over execution on an unmodified JVM. Our results are in agreement with prior work, which shows that FastRCD adds high run-time overhead in order to maintain last readers, while Valor incurs significantly lower overhead by logging reads locally and validating them lazily [14]. FastRCD-A and Valor-A each add modest overhead over FastRCD-A and Valor-A, respectively, by waiting at conflicts.

Avalon-P tracks write and read metadata in the same way as FastRCD and FastRCD-A, so unsurprisingly it incurs similar overhead. However, Avalon-P incurs slightly less overhead than FastRCD-A because Avalon-P avoids waiting at read–write conflicts (instead defers waiting until region end; Section 6). Still, Avalon-P adds 260% overhead on average in order to provide precise conflict detection. In contrast, Avalon-I enables a significantly faster analysis that adds 128% overhead on average, which is competitive with the fastest approach, Valor.

To analyze the performance difference between Avalon-I and Avalon-P, we implemented a configuration (not shown in the figure) that tracks both read and write metadata similarly to Avalon-P (i.e., separate write and read metadata words), but does not track multiple readers precisely, representing multiple readers using a simple “read shared” state. On average this configuration incurs 75% of the overhead that Avalon-P incurs over Avalon-I, suggesting that most but not all of Avalon-I’s performance advantage comes from being able to compress its metadata in a single metadata word and use a lock-free update, leading to significantly cheaper instrumentation.

To isolate Avalon-I’s overhead due to waiting at conflicts (versus instrumentation overhead), we evaluated an Avalon-I configuration, which we call Avalon-I-no-wait (not shown in the figure), that does not wait at conflicts, but instead allows a thread to proceed immediately after detecting a region conflict. Compared with Avalon-I-no-wait, default Avalon-I adds only 9.5% additional overhead (relative to baseline, unmodified execution), suggesting that little of Avalon-I’s overhead is due to waiting at conflicts. This result makes sense because conflicts are orders of magnitude smaller than total memory operations (Table 1). That is, run-time overhead is dominated by detecting memory access conflicts.

All of our exception-avoiding implementations perform close to the state-of-the-art software-only approaches that support RSx. On average, FastRCD-A and Avalon-P’s run-time overheads are within 9% of FastRCD’s overhead. The run-time overheads of Valor-A and Avalon-I are within 24% of Valor’s overhead on average.

8.4 Performance–Availability Tradeoff

In order to evaluate availability and performance together, Figure 4 plots the previous availability and performance results. The x-axis is the geomean of run-time overhead across all programs. The y-axis is availability, which is defined as the geomean of memory accesses performed without interruption by a consistency exception. That is, for each program execution,

\[
\text{availability} = \frac{\text{# memory accesses executed}}{\text{# consistency exceptions} + 1}
\]

Larger values represent better availability. Points closer to the top-left corner represent a better performance–availability tradeoff.

Valor performs best, but provides worse availability than FastRCD-A, Valor-A, Avalon-P, and Avalon-I. Avalon-P has the best availability, but its performance overhead is relatively high. Avalon-I and Valor-A arguably each offer the best tradeoff between availability and performance. Although Valor-A provides a stronger...
model than Avalon-I (RSx vs. RIx), Avalon-I does not have Valor-A’s disadvantage of asynchronous exceptions and safety issues for unsafe languages (Section 4), and Avalon-I incurs significantly lower space overhead than other implementations (Section 8.6).

8.5 Scalability

The implementations that avoid exceptions by waiting at conflicts—FastRCD-A, Valor-A, Avalon-P, and Avalon-I—incorporate not only instrumentation overhead but also overhead from waiting. In an effort to isolate the cost of waiting, this section evaluates scalability across varying numbers of application threads. Three of the evaluated programs support varying the number of application threads (Table 1). Figure 5 compares execution time of three pairs of waiting and non-waiting versions of otherwise-identical implementations. We omit Avalon-P since Avalon-I spends more time waiting at conflicts. We use Avalon-I-no-wait (mentioned in Section 8.3) as a comparison configuration for Avalon-I.

Overall, waiting at conflicts is not detrimental to scalability. For all three benchmarks, the waiting implementations (FastRCD-A, Valor-A, Avalon-I) scale as well as the non-waiting implementations (FastRCD, Valor, Avalon-I-no-wait).

8.6 Space Overhead

The implementations use memory to maintain write and read metadata. Figure 6 shows the space overhead of all implementations that wait at conflicts, relative to unmodified JVM execution. For each execution, we define its space usage as the maximum memory that wait at conflicts, relative to unmodified JVM execution. For data races, the implementations use memory to maintain write and read metadata, it adds high space overhead (110% on average) for per-thread read logs.

Avalon-I adds 58% average space overhead, about half as much as the other approaches. Avalon-I uses less space by maintaining precise reader information and by compressing per-variable metadata into a single word.

8.7 Evaluating RI’s Behavior

Just as most programmers today do not reason about weak memory models, we expect them to be largely oblivious to an RIx-by-default memory model. After all, RI behavior is only possible when there is a data race—which is still an error. Instead, we are interested in what behaviors RI allows in practice for real data races.

Table 3 shows erroneous behaviors due to data races that are possible under Java’s memory model (JMM) [61], and whether other memory models permit them, for the DaCapo programs, SPECjbb2000 [83], and the Java Grande benchmarks [82]. The JMM, SC, and RS columns are from prior work that exposes weak memory errors using adversarial memory [41, 76]. The RI column is based on our manual inspection of and reasoning about these errors. The SC column shows that 2 of 8 errors are actually possible under SC. In contrast, these erroneous behaviors cannot be exposed under RS or RI, according to our manual inspection of, and reasoning about, these errors. We find that RI avoids these errors because they generally involve violations of visibility or atomicity—violations that RI mostly avoids, since it provides write atomicity and read isolation, violating serializability only in cases of write skew (Section 5). This (admittedly limited) empirical study suggests that RI tolerates erroneous behaviors in practice, allowing fewer erroneous behaviors than even SC.

Table 3. Erroneous behaviors possible under the Java memory model, and what errors are allowed by SC, RS, and RI. jbb2000 has two distinct errors, each caused by a different data race.

Figure 5. Comparison of execution time for implementations that can wait at conflicts (FastRCD-A, Valor-A, Avalon-I) and implementations that do not wait (FastRCD, Valor, Avalon-I-no-wait), for 1–32 application threads. The legend applies to all graphs.

Figure 6. Space overhead of relevant implementations.
9. Discussion

This paper shows how to improve availability under RSx, and it introduces RIx and Avalon to increase availability beyond RSx-based approaches. These approaches advance the state of the art but incur run-time costs that are likely to be too high for most production settings (an issue also faced by software approaches that provide RSx [14]). In Section 8.3, we find that virtually all overhead comes from detecting memory access conflicts. In contrast, existing work on custom hardware can efficiently detect memory access conflicts, in order to enforce RSx [15, 59] or other region-serializability-based consistency model [7, 45, 62, 80].

We believe that future work can apply our work’s insights and approaches to hardware and achieve similar benefits. First, future work can extend architecture support for RSx to wait at detected conflicts, either (a) avoiding conflicts or (b) incurring deadlock and generating a consistency exception. Second, future hardware support can target RIx, improving availability and enabling simpler, more efficient designs since conflict detection does not need to be precise.

10. Related Work

To the best of our knowledge, prior work has not considered or addressed the problem of availability for memory consistency models that provide fail-stop semantics. This section compares our work against prior work not already covered in Section 2.

Serializability of bounded regions. Prior work supports a memory model based on serializability of regions smaller than SFRs [7, 60, 62, 76, 80]. Besides being weaker than RSx, bounded region serializability requires restricting compiler optimizations across region boundaries. Our RIx model and Avalon analyses relax RSx in a different way: they retain full SFRs but provide isolation without serializability, in order to improve availability and reduce costs.

Detecting and tolerating data races. Sound and precise data race detectors can provide RSx by throwing a consistency exception on every detected data race [35, 92]. However, state-of-the-art data race detectors slow programs by an order of magnitude or rely on custom hardware [33, 40].

Clean is a data race detector that detects write–write and write–read races but not read–write races [74]. By providing fail-stop semantics at the detected data races, Clean eliminates the most egregious weak memory model behaviors (so-called “out-of-thin-air” violations [22, 61]). Clean and Avalon both relax the requirement of detecting read–write conflicts precisely. While Clean avoids some erroneous behaviors, it does not provide RIx or any guarantee resembling region isolation.

By providing well-defined behavior for data races, Avalon narrows the set of possible thread interleavings and behaviors, which is conceptually related to dynamic approaches that automatically avoid concurrency errors [46, 94, 95].

Avoiding deadlocks. Wang et al. avoid existing deadlocks in lock-based programs by avoiding potentially unsafe interleavings [89, 90]. In contrast, our approaches intentionally risk deadlocks for mutually dependent data races, essentially converting (cycles of) conflicts into deadlocks.

Deterministic execution. Systems that ensure deterministic multithreaded execution have employed mechanisms that are related to those used by FastRCD-A, Valor-A, and Avalon. DMP delays each region’s writes until a point where all regions perform writes at the same time, in order to produce a deterministic outcome [12, 32]. Dthreads exploits existing relaxed memory models in order to perform loads and stores in isolation and merge them at synchronization operations [57]. In contrast, Avalon detects conflicts in order to provide the RIx memory model, and it waits at conflicts in an effort to increase availability.

Region isolation in other contexts. Database management systems commonly support snapshot isolation (SI) as an alternative to strict serializability semantics for transactions [36, 39, 70]. These systems typically implement SI using multi-versioning to track multiple versions of data, based on a globally ordered timestamp that provides a total order for all committed transactions. Maintaining globally ordered transactions and multiple versions of data at the language level would incur high overhead and poor scalability.

Some software transactional memory (STM) systems use SI as the isolation model [50, 55]. In contrast, our work focuses on SI-based semantics for memory consistency models. Furthermore, databases and STMs execute transactions speculatively (i.e., conflicts lead to rollbacks), whereas our work converts data races with ill-defined semantics to well-defined behaviors, and employs SI in an effort to increase availability and reduce costs and complexity.

Burckhardt et al. consider the effects of isolation on program regions [25]. Their work introduces a new task-parallelism-based programming model, while we focus on enforcing the RIx memory model for existing programs written in legacy languages. Their work requires programmers to choose isolation types and specify how to merge on conflicts, whereas our work is fully automatic.

11. Conclusion

Programming languages and runtime systems need a precise and practical memory model definition that balances semantics, performance, and availability. This paper is the first to address the challenge of availability for strong memory consistency models that throw consistency exceptions, which is crucial for their practical adoption.

We introduce FastRCD-A, Valor-A, the RIx memory model, and Avalon, which significantly reduce consistency exceptions compared with prior approaches. Overall, our approaches generate significantly fewer consistency exceptions than prior approaches, while providing competitive performance and scalability. Furthermore, RIx increases availability and enables efficient designs, without exposing erroneous behaviors, according to a study of real errors. Ultimately, our approaches advance the state of the art by providing new and compelling design points in the availability–performance–semantics tradeoff space.

Acknowledgments

We thank Brandon Lucia, Rui Zhang, Man Cao, Jake Roemer, and Aritra Sengupta for helpful discussions and the anonymous reviewers for insightful feedback on the text.

References

