Type Systems

- Pierce Ch. 3, 8, 11, 15
A Simple Language

\[<\dagger> ::= \text{true} \mid \text{false} \mid \text{if} <\dagger> \text{ then } <\dagger> \text{ else } <\dagger> \]
\[\mid 0 \mid \text{succ } <\dagger> \mid \text{pred } <\dagger> \mid \text{iszero } <\dagger> \]

- Simple untyped expressions
 - Natural numbers encoded as \text{succ} \ldots \text{succ} 0
 - E.g. \text{succ succ succ 0} represents 3
- \text{term}: a string from this language
 - To improve readability, we will sometime write parentheses: e.g. \text{iszero (pred (succ 0))}
Semantics (informally)

- A term evaluates to a value
 - Values are terms themselves
 - Boolean constants: true and false
 - Natural numbers: 0, succ 0, succ (succ 0), ...

- Given a program (i.e., a term), the result of “running” this program is a boolean value or a natural number
 - if false then 0 else succ 0 → succ 0
 - iszero (pred (succ 0)) → true
 - Problematic: succ true or if 0 then 0 else 0
Equivalent Ways to Define the Syntax

- Inductive definition: the smallest set S s.t.
 - $\{ \text{true}, \text{false}, 0 \} \subseteq S$
 - if $t_1 \in S$, then $\{ \text{succ } t_1, \text{pred } t_1, \text{iszero } t_1 \} \subseteq S$
 - if $t_1, t_2, t_3 \in S$, then if t_1 then t_2 else $t_3 \in S$
- Same thing, written as inference rules

$$\begin{align*}
\text{true} & \in S \\
\text{false} & \in S \\
0 & \in S \\
\text{axioms (no premises)} \\
\hline
\end{align*}$$

$$\begin{align*}
t_1 & \in S \\
\text{succ } t_1 & \in S \\
\hline
\end{align*}$$

$$\begin{align*}
t_1 & \in S \\
\text{pred } t_1 & \in S \\
\hline
\end{align*}$$

$$\begin{align*}
t_1 & \in S \\
t_2 & \in S \\
t_3 & \in S \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \in S \\
\hline
\end{align*}$$

If we have established the premises (above the line), we can derive the conclusion (below the line)
Why Does This Matter?

- Key property: for any $t \in S$, one of three things must be true:
 - It is a constant (i.e., derived from an axiom)
 - It is of the form $\text{succ } t_1$, $\text{pred } t_1$, or $\text{iszero } t_1$ where t_1 is some smaller term
 - It is of the form $\text{if } t_1 \text{ then } t_2 \text{ else } t_3$ where t_1, t_2, and t_3 are some smaller terms
- The inference rules make this explicit, and make it easy for us to have
 - Inductive definitions of functions over S
 - Inductive proofs of properties of S
Inductive Proofs

- Structural induction - used very often
- Suppose P is a predicate over terms (i.e., a function mapping elements of S to truth values)
 - When P(t) is true, we will just write P(t)
- For each term t, let tᵢ be its immediate subterms. Suppose we can prove that
 - Whenever P(tᵢ) for all tᵢ, we also have P(t)
 - For terms without subterms, P(t) holds
- This means that P(t) for all terms in S
Semantics: Why?

- We need to define the semantics before we can discuss type systems
 - The semantics defines the difference between “good” and “bad” programs
- A type system can help us prove that certain programs are “good”, for all possible inputs
 - Safety (a.k.a. soundness) of a type system: if a program is well-typed, it will not “go wrong”
 - But only for certain bad behaviors: e.g. a type system typically cannot assure the absence of “division by zero” or “array index out of bounds”
Semantics: How?

- **Operational semantics** in the general sense: imagine an abstract machine
 - Some notion of the state of this machine
 - Transition function: given the current state, what is the next state?
 - It is possible that the machine gets “stuck” – there is no valid transition
- The semantics we will define for this simple language is a specific form of “small-step” operational semantics
 - state = term; transition = term simplification
 - Later will discuss “big-step” semantics
Semantics: How?

- Initial state: the term whose meaning we are trying to determine
 - i.e., the expression we are trying to evaluate
- One of two things can happen:
 - We reach a state (i.e. a term) which is a semantic value
 - We get stuck
- All of this depends on what we consider to be the set of semantic values
Semantics (formally)

- The domain of values (a subset of the terms)
 - \(<v> ::= <bv> \mid <nv> \) \textit{values}
 - \(<bv> ::= \text{true} \mid \text{false} \) \textit{boolean values}
 - \(<nv> ::= 0 \mid \text{succ} <nv> \) \textit{numeric values}

- Operational semantics defined by an \textit{evaluation relation} on terms: \(t \rightarrow t' \)
 - \(\rightarrow \) is a binary relation: \(\rightarrow \subseteq S \times S \)
 - \(t \rightarrow t' \) means “\(t \) evaluates to \(t' \) in one step”
 - Thus, “small-step” operational semantics
Evaluation Relation: Booleans

- Relation $\rightarrow \subseteq S \times S$ defined with inference rules
 - Just a way of writing an inductive definition

$$\text{if true then } t_2 \text{ else } t_3 \rightarrow t_2$$

$$\text{if false then } t_2 \text{ else } t_3 \rightarrow t_3$$

$$t_1 \rightarrow t'_1$$

$$\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$$

- These rules get instantiated with concrete terms - to get rule instances
Example

if true then
 (if (if false then false else false) then
 true
 else
 false)
else
 true \rightarrow ? (value i.e. term that is true or false)

Step 1: ... \rightarrow if (if false then false else false) then true else false
Step 2: if false then false else false \rightarrow false
Step 3: if (if false then false else false) then true else false \rightarrow if false then true else false
Step 4: if false then true else false \rightarrow false
More on the Evaluation Relation

- We can generalize to the natural numbers by adding more inference rules
 - Will not go into these details here
- A key issue: what if we reach a term that cannot be evaluated anymore (no inference rule applies), but the term is not a semantic value?
 - Examples: `if 0 then 0 else 0` and `pred false`
 - There is no inference rule that can be used to make “the next step”
 - We get “stuck” - i.e. have a run-time error: the program has reached a meaningless state
Typed Expressions

- **Goal:** without evaluating a term, can we guarantee that it will not get stuck?
 - **Idea:** define *types*, and establish a relationship between terms and types
- **For our simple example:**
 - Type `Bool`, which is the set of all terms that evaluate to a boolean value
 - Type `Nat`, which is the set of all terms that evaluate to a numeric value
- **To determine that a term `t` has type `T` (i.e., `t \in T`), we will only look at the structure of `t` (i.e., will do a compile-time analysis)**
Typing Relation

- Relation: $\subseteq S \times \{\text{Bool, Nat}\}$
 - $t : T$ is the same as $t \in T$

true : Bool false : Bool 0 : Nat

\[
\begin{array}{c}
\text{true} : \text{Bool} \\
\text{false} : \text{Bool} \\
0 : \text{Nat}
\end{array}
\]

\[
\begin{array}{c}
\text{succ} t_1 : \text{Nat} \\
\text{pred} t_1 : \text{Nat} \\
iszero t_1 : \text{Bool}
\end{array}
\]
Example: Typing Derivation

- if (iszero 0) then 0 else (succ 0) : ?

This structure is a derivation tree: the leaves are instances of axioms, the inner nodes are instances of inference rules with premises.
More on the Typing Relation

- A term t is **typable** (or **well typed**) if there is some T such that $t : T$
- In this particular simple type system, each term has at most one type
 - In general, a term may have multiple types (e.g. when the type system has **subtypes**)
- **Progress**: A well-typed term will not be stuck: it either is a value, or it can take a step according to the evaluation rules
- **Preservation**: If a well-typed term takes a step of evaluation, the result is also well typed
More on the Typing Relation

- Safety = Progress + Preservation
 - Safety (a.k.a. soundness) of a type system: if a program is well-typed, it will not “go wrong”
 - For this type system: a well-typed term \(t : T \) will not get stuck
 - And will evaluate to a value of type \(T \)
 - This property does not work in the other direction: a term which is not well typed may or may not get stuck (conservative analysis)
 - if (iszero 0) then 0 else false
 - if true then 0 else false
An Extended Simple Language

\[\langle t \rangle ::= \text{true} \mid \text{false} \mid \text{if} \ \langle t \rangle \ \text{then} \ \langle t \rangle \ \text{else} \ \langle t \rangle \]
\[\mid 0 \mid \text{succ} \ \langle t \rangle \mid \text{pred} \ \langle t \rangle \mid \text{iszero} \ \langle t \rangle \]
\[\mid \{ \langle t \rangle, \langle t \rangle \} \mid \langle t \rangle \ .1 \mid \langle t \rangle \ .2 \]

- Pairs: *pairing* \{ , \} and *projection* .1/.2
 - Need to add *pair values* to the semantics
 - \[\langle v \rangle ::= \langle bv \rangle \mid \langle nv \rangle \mid \{ \langle v \rangle, \langle v \rangle \} \]
 - Generalization to n-tuples is trivial
- For typing: need to add *pair types* \(T_1 \times T_2 \)
 - E.g. \(\text{Bool} \times \text{Nat} \), \(\text{Nat} \times \text{Nat} \), etc.
No surprises here ...

\[\frac{\mathcal{t}_1 : T_1 \quad \mathcal{t}_2 : T_2}{\{ \mathcal{t}_1, \mathcal{t}_2 \} : T_1 \times T_2} \]

\[\frac{\mathcal{t}_1 : T_1 \times T_2}{\mathcal{t}_1.1 : T_1} \quad \frac{\mathcal{t}_1 : T_1 \times T_2}{\mathcal{t}_1.2 : T_2} \]

{\text{if (iszero 0) then 0 else (succ 0),true}}.2 : ?

- \{ ... \} : \text{Nat} \times \text{Bool}
- \{ ... \}.2 : \text{Bool}
Records

\[\langle t \rangle ::= \ldots \mid \{ \ l_1=\langle t \rangle_1, \ l_2=\langle t \rangle_2, \ldots, \ l_n=\langle t \rangle_n \} \mid \langle t \rangle . l \]

- Example: \{ sum=succ 0, overdraft=true \}
- Labels \(l_i \) are from some pre-defined set of labels
 - In any term, all labels must be different
- In the semantics, introduce \textit{record values}
- In the type system, introduce \textit{record types} \{ \(l_1: T_1, \ l_2: T_2, \ldots, \ l_n: T_n \) \}
 - E.g. \{ sum:Nat, overdraft:Bool \}
Typing Relation

- Similar to the handling of tuples

\[
\begin{array}{c}
t_1 : T_1 \\
t_2 : T_2 \\
\vdots \\
t_n : T_n \\
\{ l_1 = t_1, l_2 = t_2, \ldots, l_n = t_n \} : \{ l_1 : T_1, l_2 : T_2, \ldots, l_n : T_n \}
\end{array}
\]

\[
\begin{array}{c}
t_1 : \{ l_1 : T_1, l_2 : T_2, \ldots, l_n : T_n \} \\
\vdash tt_1.l_k: T_k
\end{array}
\]

- \{sum=succ 0, overdraft=true\}.sum : ?
 - \{ ... \} : \{ sum:Nat , overdraft:Bool \}
 - \{ ... \}.sum : Nat
Ordering of Labels

- Consider \{ sum=succ 0 , overdraft=true \} and \{ overdraft=true , sum=succ 0 \}
 - Are they the same value?
- Consider \{ sum:Nat , overdraft:Bool \} and \{ overdraft:Bool , sum:Nat \}
 - Are they the same type?
- In our type system, labels are ordered
 - Similarly to tuples: \{0,true\} is not \{true,0\}
- Will this typecheck in C?
 - struct\{int x;int y;\} a,b; struct\{int y;int x;\} c;
 - a.x = 1; a.y = 2; b = a; c = a;
Lists

\[\langle t \rangle ::= \ldots \mid \text{nil}[\langle T \rangle] \mid \text{cons}[\langle T \rangle] \langle t \rangle \langle t \rangle \]

\[\mid \text{isnil}[\langle T \rangle] \langle t \rangle \mid \text{head}[\langle T \rangle] \langle t \rangle \mid \text{tail}[\langle T \rangle] \langle t \rangle \]

- Example: \text{cons}[\text{Bool}] (\text{isnil}[\text{Nat} \times \text{Bool}]
 \text{nil}[\text{Nat} \times \text{Bool}]) (\text{cons}[\text{Bool}] \text{false} \text{nil}[\text{Bool}])
 - The value is a list of size 2: \text{cons}[\text{Bool}] \text{true}
 (\text{cons}[\text{Bool}] \text{false} \text{nil}[\text{Bool}]) i.e. (true false)
- In the semantics: list values
 - \[\langle v \rangle ::= \ldots \mid \text{nil}[\langle T \rangle] \mid \text{cons}[\langle T \rangle] \langle v \rangle \langle v \rangle \]
- In the type system: list types
 - List \(T \) - e.g. List (List Nat \times Nat)
Typing Relation

\[
\begin{align*}
\text{nil}[T_1] & : \text{List } T_1 \\
\text{cons}[T_1] & : \text{List } T_1 \\
\text{head}[T_1] & : \text{List } T_1 \\
\text{tail}[T_1] & : \text{List } T_1 \\
\text{isnil}[T_1] & : \text{Bool}
\end{align*}
\]

- Example 1: \(\text{cons}[\text{Bool}] \ (\text{isnil}[\text{Nat} \times \text{Bool}] \ \text{nil}[\text{Nat} \times \text{Bool}])\) (\(\text{cons}[\text{Bool}] \ \text{false} \ \text{nil}[\text{Bool}]\))
- Example 2: \(\text{cons}[\text{Bool}] \ \text{false} \ \text{true}\)
- Example 3: \(\text{isnil}[\text{Bool}] \ \text{nil}[\text{Nat} \times \text{Bool}]\)
Let Bindings

<\tau> ::= ... | let id = <\tau> in <\tau>

- Give names to sub-expressions
 - let z=true in cons[Bool] z (cons[Bool] z nil[Bool])
- Semantics: evaluate the first expr, “bind” z to that value, and evaluate the second expr
- Use a type environment Γ (a.k.a. typing context)
 - Sequence of (name,type) pairs
 - Γ, $x:T$ means “Γ appended with the pair (x:T)”
 - Name x should not already be bound by Γ
- Ternary typing relation: $\Gamma \vdash \tau : T$
 - “Term τ has type T under the bindings in Γ"
Typing Relation

\[
\begin{array}{c}
\Gamma \vdash t_1 : T_1 \\
\Gamma, x : T_1 \vdash t_2 : T_2 \\
\hline
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2 \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash x : T \\
\hline
\end{array}
\]

- let z=true in cons[Bool] z (cons[Bool] z nil[Bool]) : ?
- $\emptyset \vdash \text{true} : \text{Bool}$
- $z : \text{Bool} \vdash \text{cons[Bool]} z (\text{cons[Bool]} z \text{ nil[Bool]}) : ?$
- $z : \text{Bool} \vdash z : \text{Bool}$
- $z : \text{Bool} \vdash \text{nil[Bool]} : \text{List Bool}$
- $z : \text{Bool} \vdash \text{cons[Bool]} z \text{ nil[Bool]} : \text{List Bool}$
- $z : \text{Bool} \vdash \text{cons[Bool]} z (\text{cons[Bool]} z \text{ nil[Bool]}) : \text{List Bool}$
- $\emptyset \vdash \text{let } z=\text{true} \text{ in } \text{cons[Bool]} z (\text{cons[Bool]} z \text{ nil[Bool]}) \vdash \text{List Bool}$
 - Note: $\emptyset \vdash t : T$ is typically written simply as $\vdash t : T$
Extended Typing Relation

- Need to include Γ in all rules; e.g.

\[
\Gamma \vdash \text{true} : \text{Bool} \quad \Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : \text{List } T_1 \\
\hline
\Gamma \vdash \text{cons}[T_1] t_1 t_2 : \text{List } T_1
\]

- Γ also needed for functions and function applications (function body should be evaluated under bindings for the function parameters)
 - But, we have no time for this discussion

- In this generalized type system, as before, each term has at most one type, and a well-typed term will not get stuck (safety)
Subtypes

- Subtypes play an important role in many languages (e.g. object-oriented ones)
- S is a subtype of T, written \(S <: T \), if any term of type S can be safely used in any situation where a term of type T is expected
 - Principle of safe substitution
 \[
 \frac{\Gamma \vdash t : S \quad S <: T}{\Gamma \vdash t : T} \quad \text{subsumption rule}
 \]
- Simple interpretation is that the elements of S form a subset of the elements of T
- We will define the subtype relation <: with the help of inference rules
Subtype Relation

\[
\begin{align*}
S & <: S \quad \text{reflexivity} \\
S & <: \text{Top} \quad \text{top type} \\
\end{align*}
\]

\[
\begin{array}{c}
S_1 <: T_1 \\
S_2 <: T_2 \\
\vdots \\
S_n <: T_n \\
\end{array}
\]

\[
\{ l_1 : S_1, l_2 : S_2, \ldots, l_n : S_n \} <: \{ l_1 : T_1, l_2 : T_2, \ldots, l_n : T_n \}
\]

depth subtyping for records

\[
\{ l_1 : T_1, l_2 : T_2, \ldots, l_n : T_n, l_{n+1} : T_{n+1} \} <: \{ l_1 : T_1, l_2 : T_2, \ldots, l_n : T_n \}
\]

width subtyping for records

Example: \{x: \text{Nat}\} is the set of all records that have a field x: Nat, and some other fields. \{x: \text{Nat}, y: \text{Bool}\} is the set of all records that have a field x: Nat, a field y: Bool, and some other fields. Thus, \{x: \text{Nat}, y: \text{Bool}\} <: \{x: \text{Nat}\}
Should the Order of Labels Matter?

\[
\{ k_1:S_1, \ldots, k_n:S_n \} \text{ is a permutation of } \{ l_1:T_1, \ldots, l_n:T_n \} \\
\{ k_1:S_1, \ldots, k_n:S_n \} \lhd \{ l_1:T_1, \ldots, l_n:T_n \}
\]

- The rule says that the order of labels (fields) in a record does not matter: e.g. \{x:Nat,y:Bool\} is a subtype of \{y:Bool,x:Nat\} and vice versa
- Problem: this is bad for run-time performance
 - If we fix the order at compile time, we would know, at compile time, the offset of the field with label \(l_n\) - allows efficient access for \(t.l_n\)
 - But with permutation, at run time need to “search” in memory for the actual location of \(l_n\)
Functions and Subtypes

- **Function types**: $T_1 \rightarrow T_2$
 - For a term of type T_1, the result of applying the function on this term is of type T_2
 - **Subtyping**: contravariant for the parameter, covariant for the result

 \[
 \begin{array}{c}
 T_1 <: S_1 \\
 S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \\
 S_2 <: T_2
 \end{array}
 \]

- Function f of type $S_1 \rightarrow S_2$ accepts an argument of S_1, so it should be OK with an argument of T_1. Returns a value of S_2, so $f(\ldots)$ can be used anywhere where T_2 is expected. So, f is also of type $T_1 \rightarrow T_2$
Tuples and Lists

- n-tuples can be thought of as a special case of records with labels 1, 2, ..., n
 - Essentially, same typing rules
- Lists

\[
\begin{align*}
S_1 & <: T_1 \\
\text{List } S_1 & <: \text{List } T_1
\end{align*}
\]

- Allows the creation of heterogeneous lists: e.g.
 \[
 \text{cons}\{x:\text{Nat}\} \{x=0\} \text{ (cons}\{x:\text{Nat},y:\text{Bool}\} \{x=0,y=\text{true}\} \\
 \text{nil}\{x:\text{Nat},y:\text{Bool}\}])
 \]
- For the inner expression: cons ... : List \{x:\text{Nat},y:\text{Bool}\}
- Subsumption rule: give it type List \{x:\text{Nat}\}
- Only then we can type the outer cons ...
Casting

- \((T)\ t\) in Java and C++

- **Up-cast**: a term is “forced” to a supertype of the type the typechecker would choose for it

\[
\frac{\Gamma \vdash t : T}{\Gamma \vdash (T)\ t : T}
\]

If \(\Gamma \vdash t : S\) and \(S <: T\), use this and the subsumption rule to derive \(\Gamma \vdash (T)\ t : T\)

- **Down-cast**: force a type that cannot be determined statically

 - The programmer says to the typechecker:
 “I know this will be the type; trust me”

 - “trust but verify” e.g. run-time checks in Java
Polymorphism

- Poly = many, morph = form
- A piece of code has multiple types
- Example 1: subtype polymorphism
 - Subsumption rule: a term has multiple types
 - Typical for object-oriented languages
- Example 2: parametric polymorphism
 - E.g. f(x)=x has types Bool→Bool, Nat→Nat, ...
 - Use a type parameter T and type T→T
 - Examples: generics in C++ and Java, ML-style polymorphism in functional languages
- Example 3: ad hoc polymorphism - e.g. overloading
Terminology

- **Statically typed** language: compile-time analyses
 - Prove the absence of certain type-related bad run-time behaviors (*C, C++, Java, ML, Haskell,...*)
 - **Type safety**: all bad behaviors of certain kinds are excluded (e.g. Java, but not *C*)

- **Dynamically typed** language: run-time checks to catch bad behaviors (e.g. Lisp, Scheme, Perl)

- **Language safety**: cannot “break” the fundamental abstractions (type-related and otherwise); e.g. no buffer overflows, seg faults, return address overriding, garbage values due to type errors, etc.
 - *C*: unsafe; *Java*: safe, static+dynamic checking; *Lisp*: safe, dynamic checking