
 PAUL BREULER, JACOB EDELEN, RJ KUCIA, MITCHELL LOVEALL, KEVIN SMEARSOLL, & ALAN THORNBURG

Building

• Snow Day features a building system that

allows players to build walls and simple

structures.

• When the build tool is active, players see

a translucent block(s) in front of them

allowing visualization of alignment. When

the block is moved near surfaces it will

attempt to “snap” to the surface; raycast is

used to determine if snapping is allowed.

• Clicking and dragging the mouse causes

a visual blueprint to be created. The

player can right click to cancel or release

the left mouse button to begin building.

• A priority queue is used to determine the

order of blocks placed by the player.

Lower blocks are given higher priority

thus building the structure from the

ground up.

• Each block has physics to prevent players

from building outside of the map (i.e.

unrealistic building).

Networking

Modular Weapon System

• Weapons are managed by a modular

system which at its base handles

instantiating, displaying and network

synchronization.

• Each weapon plugged into the system is

extended from a base class which handles

states, bullet spawning and basic UI.

• Individual weapons can be created by

simply extending the base class and adding

special considerations for the weapons

properties and special effects.

• Weapon UI is the final component of the

system which can be dropped into the

individual weapon class slot and animated

appropriately

Artificial Intelligence

• Mode based AI which is tailored to each game type

including, Capture the flag, Domination and Team

Deathmatch.

• AI players utilize “brain” classes to control movement and

actions. There is one abstract “brain” class containing

movements and patterns common to all game modes. For

specific game modes this class is extended by child “brain”

classes.

Controlling Actions:

• Each brain contains a number of goal states specific to

a given game mode such as attacking, seeking cover,

and pursuing objects.

• Movement and action scripting was completed with

reusability in mind; as such portions of scripts were

used for multiple states and modes reducing

redundancy.

• Transitions between states are determined by factors

such as events in game and position of the AI relative

to the player(s). Random probabilities are used to

transition states with higher probabilities assigned to

“meaningful” states based on game conditions.

Sensing the Environment:

• Environment sensing is controlled via a simple

algorithm

that generates an arbitrarily sized grid of points around

any given point on the map.

• Generated points are used to test for certain heuristics

such as visual cover from enemies, distance from

enemies, and height advantages.

• A large sparse grid is generated to get a basic layout

of the environment. After which a smaller, denser

sampling grid is created around points of interest using

the same algorithm. As a result the AI is able to

efficiently sample points because only points of

interest are being expanded and closely examined.

Sound

• Each sound event in game has three to eight

variances which are handled by FMOD and

propagated using RPC calls to all clients

ensuring all players hear the same sounds.

