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Design and Evaluation of  an RDMA-aware 

Data Shuffling Operator for Parallel Database Systems
Feilong Liu, Lingyan Yin and Spyros Blanas

An RDMA-aware data shuffling 
operator for parallel database systems
 The endpoint abstraction hides 

RDMA details
 Multiple endpoints avoid thread 

contention

 We design a shuffling operator with multiple endpoints to avoid 
thread contention, accelerate TPC-H queries by 2×

Identify promising design choices

Key contributions

Why is data shuffling important?
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15×

Many queries are 
bottlenecked on the 
network bandwidth

 Shuffling needs to 
fully utilize the 
network bandwidth

Challenges

Isolate the complexity of RDMA
 Manage memory registration
 Anticipate packets may arrive out of order
 Support different implementations

code.osu.edu/pythia
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Isolate the complexity of  RDMA

Propose the endpoint abstraction:
 Hides the complexity of synchronization and memory management in RDMA communication
 One shuffle operator can have one or multiple endpoints
 All functions are thread-safe

The endpoint abstraction hides the complexity of RDMA

Conclusions

Evaluation
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4×

RDMA 4x better 
than MPI

Cluster size

Unreliable Datagram:
• Achieves peak throughput with 

fewer Queue Pairs
• Scales better in larger clusters

SESQ/SR

MESQ/SR SEMQ/SR

MEMQ/SR

2 7 14 161 32 112 224

RDMA-aware 
shuffling improves 
performance by 2x
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2×

MESQ/SR overlaps 
communication and computation

 Two-sided send/receive and unreliable delivery fully utilize the network 
bandwidth in a database system

 We propose the endpoint abstraction to hide RDMA details
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What is data shuffling?

SELECT SUM(R0.v + R1.v) 

FROM R0, R1

WHERE R0.k=R1.k
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Tuples with the same key need to be brought together

No design choice is strictly 
better than the others

Identify promising design choices
 Compare two-sided and one-sided primitives
 Consider both UD and RC transport

Two communication patterns: Repartition & Broadcast
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Key result

Two-sided Send/Receive and unreliable 
delivery fully utilize the network 
bandwidth, accelerate TPC-H by 2×
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Send/Receive works well
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