
0

2

4

6

8

10

12

1 10 100R
ec

ei
ve

 t
h

ro
u

gh
p

u
t

p
er

 n
o

d
e

(G
B

/s
)

Number of Queue Pairs per operator

Reliable Connection Unreliable Datagram

Design and Evaluation of an RDMA-aware

Data Shuffling Operator for Parallel Database Systems
Feilong Liu, Lingyan Yin and Spyros Blanas

An RDMA-aware data shuffling
operator for parallel database systems
 The endpoint abstraction hides

RDMA details
 Multiple endpoints avoid thread

contention

 We design a shuffling operator with multiple endpoints to avoid
thread contention, accelerate TPC-H queries by 2×

Identify promising design choices

Key contributions

Why is data shuffling important?

0

50

100

150

200

Local memory Remote memory

B
an

d
w

id
th

 (
G

B
/s

)

15×

Many queries are
bottlenecked on the
network bandwidth

 Shuffling needs to
fully utilize the
network bandwidth

Challenges

Isolate the complexity of RDMA
 Manage memory registration
 Anticipate packets may arrive out of order
 Support different implementations

code.osu.edu/pythia

RDMA Primitive

Endpoints

Send/Receive

Unreliable
Datagram

Reliable
Connection

Single
Endpoint

Multiple
Endpoints

RDMA transport

Read

Reliable
Connection

Unreliable
Datagram

In-order
delivery Don’t care

Uses fewer
Queue Pairs

Saves
CPU cycles

Send/Receive Read

Saves
CPU cycles

Works with
Unreliable
Datagram

Single
Endpoint

Multiple
Endpoints

Avoids thread
contention

Uses fewer
Queue Pairs

Isolate the complexity of RDMA

Propose the endpoint abstraction:
 Hides the complexity of synchronization and memory management in RDMA communication
 One shuffle operator can have one or multiple endpoints
 All functions are thread-safe

The endpoint abstraction hides the complexity of RDMA

Conclusions

Evaluation

0

1

2

3

4

5

Repartition Broadcast

R
ec

ei
ve

 t
h

ro
u

gh
p

u
t

p
er

 n
o

d
e

(G
B

/s
)

Communication pattern

FDR InfiniBand

MEMQ/SR MEMQ/RD MESQ/SR SEMQ/SR

SEMQ/RD SESQ/SR MPI IPoIB

0

2

4

6

8

10

12

Repartition Broadcast

R
ec

ei
ve

 t
h

ro
u

gh
p

u
t

p
er

 n
o

d
e

(G
B

/s
)

Communication pattern

EDR InfiniBand

4×

RDMA 4x better
than MPI

Cluster size

Unreliable Datagram:
• Achieves peak throughput with

fewer Queue Pairs
• Scales better in larger clusters

SESQ/SR

MESQ/SR SEMQ/SR

MEMQ/SR

2 7 14 161 32 112 224

RDMA-aware
shuffling improves
performance by 2x

0

1

2

3

4

5

6

2 4 8 16

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Cluster size

Q4

0

2

4

6

8

10

12

2 4 8 16

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Cluster size

Q3

0

10

20

30

40

50

2 4 8 16

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Cluster size

Q10

MPI MESQ/SR Local

2×

MESQ/SR overlaps
communication and computation

 Two-sided send/receive and unreliable delivery fully utilize the network
bandwidth in a database system

 We propose the endpoint abstraction to hide RDMA details

MESQ/SR MEMQ/SR

SEMQ/SRSESQ/SR

MEMQ/RD

SEMQ/RD

What is data shuffling?

SELECT SUM(R0.v + R1.v)

FROM R0, R1

WHERE R0.k=R1.k

Agg

Join

Scan

R0

Scan

R1

Agg

Join

Send Send

Receive Receive

Network Network

Scan

R1
Scan

R0

Shuffle 1 Shuffle 2

SQL Query Single node query plan Parallel query plan

Node 0 Node 2Node 1

5
8

A
F

R0
v k

D
A

8
2

R1
k v

9
3

B
E

R0
v k

E
B

4
7

R1
k v

6
1

C
D

R0
v k

C
F

6
9

R1
k v

Tuples with the same key need to be brought together

No design choice is strictly
better than the others

Identify promising design choices
 Compare two-sided and one-sided primitives
 Consider both UD and RC transport

Two communication patterns: Repartition & Broadcast

Node 0 Node 2Node 1

D
A

8
9

R1
k v

6
9

A
B

R0
v k

6
8

C
D

8
8

E
F

E
B

9
7

R1
k v

6
9

A
B

R0
v k

6
8

C
D

8
8

E
F

C
F

6
9

R1
k v

6
9

A
B

R0
v k

6
8

C
D

8
8

E
F

Repartition Broadcast

Key result

Two-sided Send/Receive and unreliable
delivery fully utilize the network
bandwidth, accelerate TPC-H by 2×

Node 0 Node 2Node 1

5
9

A
B

R0
v k

A
B

2
7

R1
k v

6
1

C
D

R0
v k

C
D

6
8

R1
k v

3
8

E
F

R0
v k

E
F

4
9

R1
k v

[A - B] [C - D] [E - F]

GetData()

Release()

Network

GetFree()

Send()

Send endpoint Receiveendpoint JoinScan
GetNext()GetNext()

Send/Receive works well

SHUFFLE

This research was partially supported by the National Science Foundation under grants III-1422977, III-1464381, CNS-1513120 and by a Google Research Faculty Award. The evaluation was conducted in part at the Ohio Supercomputer Center.

