
0

2

4

6

8

10

12

1 10 100R
ec

ei
ve

 t
h

ro
u

gh
p

u
t

p
er

 n
o

d
e

(G
B

/s
)

Number of Queue Pairs per operator

Reliable Connection Unreliable Datagram

Design and Evaluation of an RDMA-aware

Data Shuffling Operator for Parallel Database Systems
Feilong Liu, Lingyan Yin and Spyros Blanas

An RDMA-aware data shuffling
operator for parallel database systems
 The endpoint abstraction hides

RDMA details
 Multiple endpoints avoid thread

contention

 We design a shuffling operator with multiple endpoints to avoid
thread contention, accelerate TPC-H queries by 2×

Identify promising design choices

Key contributions

Why is data shuffling important?

0

50

100

150

200

Local memory Remote memory

B
an

d
w

id
th

 (
G

B
/s

)

15×

Many queries are
bottlenecked on the
network bandwidth

 Shuffling needs to
fully utilize the
network bandwidth

Challenges

Isolate the complexity of RDMA
 Manage memory registration
 Anticipate packets may arrive out of order
 Support different implementations

code.osu.edu/pythia

RDMA Primitive

Endpoints

Send/Receive

Unreliable
Datagram

Reliable
Connection

Single
Endpoint

Multiple
Endpoints

RDMA transport

Read

Reliable
Connection

Unreliable
Datagram

In-order
delivery Don’t care

Uses fewer
Queue Pairs

Saves
CPU cycles

Send/Receive Read

Saves
CPU cycles

Works with
Unreliable
Datagram

Single
Endpoint

Multiple
Endpoints

Avoids thread
contention

Uses fewer
Queue Pairs

Isolate the complexity of RDMA

Propose the endpoint abstraction:
 Hides the complexity of synchronization and memory management in RDMA communication
 One shuffle operator can have one or multiple endpoints
 All functions are thread-safe

The endpoint abstraction hides the complexity of RDMA

Conclusions

Evaluation

0

1

2

3

4

5

Repartition Broadcast

R
ec

ei
ve

 t
h

ro
u

gh
p

u
t

p
er

 n
o

d
e

(G
B

/s
)

Communication pattern

FDR InfiniBand

MEMQ/SR MEMQ/RD MESQ/SR SEMQ/SR

SEMQ/RD SESQ/SR MPI IPoIB

0

2

4

6

8

10

12

Repartition Broadcast

R
ec

ei
ve

 t
h

ro
u

gh
p

u
t

p
er

 n
o

d
e

(G
B

/s
)

Communication pattern

EDR InfiniBand

4×

RDMA 4x better
than MPI

Cluster size

Unreliable Datagram:
• Achieves peak throughput with

fewer Queue Pairs
• Scales better in larger clusters

SESQ/SR

MESQ/SR SEMQ/SR

MEMQ/SR

2 7 14 161 32 112 224

RDMA-aware
shuffling improves
performance by 2x

0

1

2

3

4

5

6

2 4 8 16

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Cluster size

Q4

0

2

4

6

8

10

12

2 4 8 16

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Cluster size

Q3

0

10

20

30

40

50

2 4 8 16

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Cluster size

Q10

MPI MESQ/SR Local

2×

MESQ/SR overlaps
communication and computation

 Two-sided send/receive and unreliable delivery fully utilize the network
bandwidth in a database system

 We propose the endpoint abstraction to hide RDMA details

MESQ/SR MEMQ/SR

SEMQ/SRSESQ/SR

MEMQ/RD

SEMQ/RD

What is data shuffling?

SELECT SUM(R0.v + R1.v)

FROM R0, R1

WHERE R0.k=R1.k

Agg

Join

Scan

R0

Scan

R1

Agg

Join

Send Send

Receive Receive

Network Network

Scan

R1
Scan

R0

Shuffle 1 Shuffle 2

SQL Query Single node query plan Parallel query plan

Node 0 Node 2Node 1

5
8

A
F

R0
v k

D
A

8
2

R1
k v

9
3

B
E

R0
v k

E
B

4
7

R1
k v

6
1

C
D

R0
v k

C
F

6
9

R1
k v

Tuples with the same key need to be brought together

No design choice is strictly
better than the others

Identify promising design choices
 Compare two-sided and one-sided primitives
 Consider both UD and RC transport

Two communication patterns: Repartition & Broadcast

Node 0 Node 2Node 1

D
A

8
9

R1
k v

6
9

A
B

R0
v k

6
8

C
D

8
8

E
F

E
B

9
7

R1
k v

6
9

A
B

R0
v k

6
8

C
D

8
8

E
F

C
F

6
9

R1
k v

6
9

A
B

R0
v k

6
8

C
D

8
8

E
F

Repartition Broadcast

Key result

Two-sided Send/Receive and unreliable
delivery fully utilize the network
bandwidth, accelerate TPC-H by 2×

Node 0 Node 2Node 1

5
9

A
B

R0
v k

A
B

2
7

R1
k v

6
1

C
D

R0
v k

C
D

6
8

R1
k v

3
8

E
F

R0
v k

E
F

4
9

R1
k v

[A - B] [C - D] [E - F]

GetData()

Release()

Network

GetFree()

Send()

Send endpoint Receiveendpoint JoinScan
GetNext()GetNext()

Send/Receive works well

SHUFFLE

This research was partially supported by the National Science Foundation under grants III-1422977, III-1464381, CNS-1513120 and by a Google Research Faculty Award. The evaluation was conducted in part at the Ohio Supercomputer Center.

