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Design and Evaluation of  an RDMA-aware 

Data Shuffling Operator for Parallel Database Systems
Feilong Liu, Lingyan Yin and Spyros Blanas

An RDMA-aware data shuffling 
operator for parallel database systems
 The endpoint abstraction hides 

RDMA details
 Multiple endpoints avoid thread 

contention

 We design a shuffling operator with multiple endpoints to avoid 
thread contention, accelerate TPC-H queries by 2×

Identify promising design choices

Key contributions

Why is data shuffling important?
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15×

Many queries are 
bottlenecked on the 
network bandwidth

 Shuffling needs to 
fully utilize the 
network bandwidth

Challenges

Isolate the complexity of RDMA
 Manage memory registration
 Anticipate packets may arrive out of order
 Support different implementations

code.osu.edu/pythia
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Isolate the complexity of  RDMA

Propose the endpoint abstraction:
 Hides the complexity of synchronization and memory management in RDMA communication
 One shuffle operator can have one or multiple endpoints
 All functions are thread-safe

The endpoint abstraction hides the complexity of RDMA

Conclusions

Evaluation
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4×

RDMA 4x better 
than MPI

Cluster size

Unreliable Datagram:
• Achieves peak throughput with 

fewer Queue Pairs
• Scales better in larger clusters

SESQ/SR

MESQ/SR SEMQ/SR

MEMQ/SR

2 7 14 161 32 112 224

RDMA-aware 
shuffling improves 
performance by 2x
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2×

MESQ/SR overlaps 
communication and computation

 Two-sided send/receive and unreliable delivery fully utilize the network 
bandwidth in a database system

 We propose the endpoint abstraction to hide RDMA details
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What is data shuffling?

SELECT SUM(R0.v + R1.v) 

FROM R0, R1

WHERE R0.k=R1.k
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Tuples with the same key need to be brought together

No design choice is strictly 
better than the others

Identify promising design choices
 Compare two-sided and one-sided primitives
 Consider both UD and RC transport

Two communication patterns: Repartition & Broadcast
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Key result

Two-sided Send/Receive and unreliable 
delivery fully utilize the network 
bandwidth, accelerate TPC-H by 2×
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Send/Receive works well
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