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The problem 

Most DBMSs designed for: 

• Disk-resident data 

• Few CPUs 

$50K server in 2012: 

• 1TB of RAM 

• 40 CPUs 
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What concurrency control scheme 
should be used for a high-performance 

main-memory OLTP system? 

What concurrency control scheme 
should be used for a high-performance 

main-memory OLTP system? 



Contributions 

1. Multi-version optimistic concurrency control 
– Multi-version: readers don’t block writers 

– Optimistic: no waiting on database locks 

– Supports all SQL isolation levels 

2. Efficient mechanisms for implementing  
multi-version and single-version locking 

3. Experimental evaluation: High performance 
(millions of TX/sec) and full serializability 
without workload-specific knowledge 
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Recent related work 

• Concurrency control for shared-nothing DBMSs 

– Open question: Performance in a shared-
everything main memory environment 

• Make existing DBMS storage engine scale: 

– Locking, page latching, B-tree index, logging, … 

• Exploit specific workload property: 

– Partitionable workload 

– Deterministic stored procedures 
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Our approach: 
  

Redesign DBMS storage engine,  
make no assumption about workload 

Our approach: 
  

Redesign DBMS storage engine,  
make no assumption about workload 



Designing a main memory storage engine 

Traditional disk-oriented engine 

• Disk-friendly data structures 
– Pages, B-tree index 

• Absorbs high disk latency by 
frequent context switching 

• Thread spins for latches 

• TX may yield for locks 

• Critical sections are 
thousands of instructions 
long, and limit scalability 

Our main memory prototype 

• Latch-free hash table  
stores individual records 

• Minimizes context switching 
– Usually 1, at most 2 per TX 

• Eliminates latches 

• TX never waits for locks 

• No critical sections 
– Many TXs finish in thousands 

of instructions 
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Multi-version optimistic scheme 
 

• TXs have two unique timestamps: BEGIN, END 

• Read as of BEGIN timestamp 

• Write as of END timestamp 

6 

1 2 3 4 5

Logical time 

R W But not for 
Serializable 
But not for 
Serializable 

Sufficient for 
Read Committed  

Sufficient for 
Read Committed  

BEGIN END 

 
Snapshot Isolation (SI) 



R 

Making SI serializable 

• Read as of BEGIN timestamp 

• Repeat Read as of END timestamp, verify no change 

• Write as of END timestamp 
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R W 
BEGIN END 

1 2 3 4 5

Logical time 

[Bornea et al, ICDE’11] 



What needs to be repeated? 

• Depends on the isolation level 

• Read Committed or SI: No validation needed 

– Versions were committed at BEGIN, will still be 
committed at END 

• Repeatable Read: Read versions again 

– Ensure no versions have disappeared from the view 

• Serializable: Repeat scans with same predicate 

– Ensure no phantoms have appeared in the view 
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Transaction states 
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Committed Committed 

Active Active Validating Validating 

Aborted Aborted 

Get Begin 
Timestamp 

Get End 
Timestamp 

User abort 
or 

WW conflict 

Serializability 
violation 

Log updates, 
wait for I/O 

Committed Committed 

Active Active Validating Validating 

Read only 
transaction 

Terminated Terminated Terminated Terminated 

Postprocessing 



Transaction map 

• Stores transaction state, 
timestamps 

• Globally visible 
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TXID STATE BEGIN END 

5 ACTIV 2 N/A 

TRANSACTION MAP 



Determining version visibility 
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Visibility as of time T is determined by: 
version timestamps and TX state 

Visibility as of time T is determined by: 
version timestamps and TX state 

John John $100 $100 1 1 ∞ ∞ 

timestamp 

8 bytes 

, or transaction ID 

TXID STATE BEGIN END 

5 ACTIV 2 N/A TX5 TX5 
TXID STATE BEGIN END 

5 ACTIV 2 N/A 1 1 TX5 TX5 

TRANSACTION MAP 



Example: Update to $150 
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John John $100 $100 1 1 ∞ ∞ 
TXID STATE BEGIN END 

TRANSACTION MAP 

John John $150 $150 TX5 TX5 ∞ ∞ 

Active Active Validating Validating 

Get Begin 
Timestamp 

Get End 
Timestamp 

Active Active Validating Validating 

Committed Committed Committed Committed 

5 N/A N/A N/A 5 N/A 2 N/A 5 ACTIV 2 N/A 5 ACTIV 2 N/A 5 ACTIV 2 4 5 VALID 2 4 5 COM 2 4 5 COM 2 4 

TX5 TX5 TX5 TX5 

4 4 

TX5 TX5 

4 4 

4 4 4 4 

Log updates, wait for I/O 

Terminated Terminated Terminated Terminated 

Postprocessing 



John John $150 $150 TX5 TX5 ∞ ∞ 

WW conflicts 
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John John $100 $100 1 1 ∞ ∞ 

TX5 updates 
$100 to $150 

TX2 updates 
$100 to $75 

TX5 TX5 TX2 TX2 

CAS CAS 

∞ ∞ TX5 TX5 TX5 TX5 

TX2 chooses 
to abort 

TX2 chooses 
to abort 

8 bytes 

TX5 TX5 TX5 TX5 

First writer wins First writer wins 



WR conflicts 

TX5 State Visible? 

ACTIVE 

VALIDATING 

COMMITTED 

ABORTED 
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John John $150 $150 TX5 TX5 ∞ ∞ 
Q: When is version visible?  

No, version is uncommitted 

Maybe, check TX5 END timestamp 

No, version is garbage 

? Speculate YES now, confirm at end 

A: Depends on TX state 



Commit dependencies 

• Impose constraint on serialization order: 
 Commit B only if A has committed. 

• Implementation: register-and-signal 

– Transform multiple waits on every record access   
to a single wait at end of TX 

– Dependency wait time “added” to log latency 

• Most common: no wait needed, dependency has cleared 

• But: Cascading aborts now possible 
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Commit dependencies 
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Committed Committed 

Active Active Validating Validating 

Aborted Aborted 

Get Begin 
Timestamp 

Get End 
Timestamp 

User abort 
or 

WW conflict 

Serializability 
violation 

Log updates, 
wait for I/O 

Read only 
transaction 

Terminated Terminated 

Postprocessing 
Release dependents 

Wait for 
 dependencies  
to clear, then 



Multi-version optimistic summary 

• TXs never wait during the ACTIVE phase 

• No deadlock detection is needed 

• Lower isolation level = less work 

– Read Committed and SI: No validation at all 
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Multi-version locking 

• Provides lock-like semantics:  
 Once a version is read by T, it will  
 remain visible to T until commit. 

• No centralized lock table 
– Record lock embedded in version’s END timestamp 

• Same context switching overhead: At most 2 per TX 

But: 

• Deadlock detection necessary 

• More write traffic, even readers write to memory 
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Implementation details 

• Independent transaction kernel in C++ 

• Base data structure: latch-free hash table 

– Perfect sizing, perfect hashing 

– Load factor when idle: 1 

19 



Single-version two-phase locking 

• Traditional 2PL, optimized for main memory 

• No central lock manager 

• Lock is pre-allocated in hash table bucket 

– Protects hash bucket, prevents phantoms 

– Multiple-reader, single-writer lock 

– For our experiments, also serves as a record lock 
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Experimental setup 

• 2-socket × 6-core Xeon X5650 with 48GB RAM 

• TXs don’t wait for the log (lazy commit) 

– Log records are populated and written to disk 

• All transactions run under Serializable 
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MV/O Multi-version optimistic 

MV/L Multi-version locking 

1V Single-version two-phase locking 



Scalability 
No contention (10M row table) 
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All methods scale All methods scale 

80% R=10 
20% R=10, W=2 
80% R=10 
20% R=10, W=2 

Similar results for TATP Similar results for TATP 
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Scalability 
Extreme contention (1000 row table) 
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80% R=10 
20% R=10, W=2 
80% R=10 
20% R=10, W=2 

5× 

1V throughput limited 
by lock thrashing 

1V throughput limited 
by lock thrashing 



Effect of long readers  
(10M row table) 
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Active long read TXs All active TXs 
short updaters 
All active TXs 

short updaters 
All active TXs 
long readers 
All active TXs 
long readers 

6 TXs long readers 
18 TXs short updaters 

6 TXs long readers 
18 TXs short updaters 

R=1,000,000 
R=10, W=2 
R=1,000,000 
R=10, W=2 
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Active long read TXs 

1V MV/L MV/OR=1,000,000 
R=10, W=2 
R=1,000,000 
R=10, W=2 

Even if 1 long reader, MV/O 2.3× faster Even if 1 long reader, MV/O 2.3× faster 

2.3× 2.3× 

If all TXs do updates, 1V 1.9× faster If all TXs do updates, 1V 1.9× faster 

25× 

Effect of long readers 
(10M row table) 
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All active TXs 
short updaters 
All active TXs 

short updaters 
All active TXs 
long readers 
All active TXs 
long readers 



Conclusions 

• Single-version 2PL is fragile 

– Great for update-heavy workloads, little contention 

– But: problematic for hotspots, long read TXs 

• Multi-version optimistic scheme is robust 

– Readers don’t block writers, no waiting on locks 

• Locking semantics can be offered efficiently 

• High performance and full serializability 
without workload-specific knowledge 
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