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Abstract—Distributed packet scheduling in a wireless network
is non-trivial due to lack of knowledge of which node has packets
to transmit. This paper describes and evaluates Mozart, a new
and practical approach that encourages collisions rather than
trying to avoid them. Upon receiving multiple collided packets,
the receiver carefully selects the retransmitters, so that all the
packets can be recovered in the fewest number of slots. Our
design enables the nodes to transmit without any backoffs during
this recovery phase. To enable Mozart, we also propose a novel
algorithm for estimating the Received Signal Strength (RSS) of a
packet in presence of high interference. We implement Mozart on
the USRP N210 radio and evaluate its performance on a USRP
testbed. Our experiments show that Mozart’s throughput is up to
3.70x compared to IEEE 802.11. Using real world traces, we show
that on average, Mozart provides a network throughput of 2.55x
and 4.10x when compared to 802.11ec and 802.11, respectively.

I. INTRODUCTION

Previous studies have shown that the throughput achieved
in real wireless networks is often significantly lower than
their capacity [22]. This difference is frequently attributed to
discrepancy between the interference at the transmitter and the
receiver. In wireless networks, it is impossible for transmitters
to precisely estimate the interference at receivers which leads
to hidden and exposed terminal scenarios. It has been shown
[22] that hidden and exposed terminals can cause throughput
loss in 30% and 61% links, respectively. Collisions due to
hidden terminals are especially common in indoor wireless
networks with obstacles [2]. Secondly, IEEE 802.11 protocol
and its derivatives (e.g., 802.11 with RTS-CTS, 802.11ec [16],
ZigZag [6] etc.) require the channel to remain idle when the
nodes are undergoing backoffs. Such idle listening is necessary
in these protocols to avoid collisions and leads to up to 30%
loss of throughput [12].

The above two factors significantly impact the throughput.
Most practical distributed scheduling algorithms in today’s
wireless networks such as the IEEE 802.11 family and IEEE
802.15.4 protocols are based on CSMA (Carrier Sense Mul-
tiple Access). Various improvements to these schemes have
been proposed in recent years. RTS-CTS (IEEE 802.11) based
approaches have been proposed for addressing the hidden
terminal problems. Approaches to reduce the overhead of RTS-
CTS packets [16], channel wastage due to collided packets
[19], and overhead of backoff [20] have been proposed. Several
mechanisms that attempt to salvage bits or entire packets out of
collided transmissions have also been proposed [6], [14], [11],
[8], [15]. However, these algorithms are insufficient (details in
Sec. VII) as they either do not work in multi-collision domains
[6], [8], abandon the bits under collision [11], [19], require
multiple antennas per node [20] or have long critical periods
resulting in lower packet delivery ratio [16].

This paper presents a new cross-layer algorithm called
Mozart, that encourages collisions and hidden terminal trans-
missions in a planned way to enable fast recovery of col-
liding packets via a new approach called Successive Packet

Subtraction (SPS). In Mozart, receivers encourage neighboring
nodes to transmit simultaneously resulting in collision. The
receiver then smartly suppresses transmissions in subsequent
slots based on its estimation of signal strengths from various
senders so as to best apply SPS to recover all the colliding
packets (See Figure 1). SPS allows wireless receivers in a
multi-collision domain network to receive and decode multiple
packets without knowing which node has data to send to which
other node.

Mozart eliminates backoffs before transmission of data
packets. Mozart also embraces hidden terminal transmissions
and therefore implicitly addresses it. Thus, Mozart provides
throughput improvement for both downlink and uplink traffic.
Through theoretical analysis, we show that the critical period
of Mozart is 2µs. This is much shorter than the critical period
of the state-of-the-art schemes that have critical period of
39.4 µs [16]. The shorter critical period ensures higher packet
delivery ratio in Mozart. This paper, makes the following
additional contributions:

• We propose Successive Packet Subtraction (SPS), a new
approach for wireless nodes to simultaneously receive
multiple packets and then decode them one-by-one while
controlling the retransmission pattern. Unlike SIC (Suc-
cessive Interference Cancellation [21]), SPS works even
when all packets have low SINR.

• On receiving collided packets, receivers in Mozart need to
identify the set of transmitters and estimate their received
signal strengths with high precision. Doing both in the
presence of multiple collisions is extremely hard. Existing
techniques to measure signal strength do not work in the
presence of collisions[8]. We present a novel iterative
algorithm for estimating the RSS of multiple colliding
packets. Our results show that even in the presence
of interference from 14 other packets, Mozart is able
to estimate the RSS within 1 dB with 96% accuracy
compared to 21% accuracy of state of the art schemes.

• This paper proposes an algorithm to compute the set
of nodes to be suppressed at the end of each slot such
that the probability of correctly decoding the packets is
maximized across all slots.

• We implement Mozart on a USRP testbed [1]. Our evalua-
tion results show that Mozart’s throughput is up to 3.70x
compared to IEEE 802.11. Our trace-driven evaluations
show that on an average, Mozart provides a throughput
of 2.55x and 4.10x compared to 802.11ec and 802.11,
respectively.

The rest of the paper discusses our algorithms, implemen-
tation and comparison results in detail.

II. MOZART: DETAILED DESCRIPTION

Mozart works by encouraging collisions among transmis-
sions. However, upon collision, the receiving node controls the



2

P3

Time Slot 1 Time Slot 2 Time Slot 3

P1 P1P1

P2 P2

Receiver 

broadcasts 

suppress 

for P3

Receiver 

broadcasts 

suppress 

for P2

Receiver 

broadcasts 

suppress 

for P1

Poll 

transmitted 

by receiver

P4

P4

P4

P4

Receiver 

broadcasts 

Finish

Time Slot 4

Notify 

transmitted 

by one of the 

transmitters

Fig. 1. Collision Recovery Period. Through control messages, the receiver
ensures that the number of transmitters is reduced by 1 from the previous slot.
Data transmissions in the same slot may arrive at different times at the receiver
due to propagation delays and radio’s TX-RX turn-around time. At the end of
the recovery period, the receiver will reconstruct samples for P4 and subtract
it from samples received in slot 3. The remaining samples are then decoded
to obtain P1. Similarly, P2 and P3 are decoded from the samples of slot 2
and slot 1, respectively.

future retransmissions such that it is able to decode the collided
transmissions in a short time. The next subsection explains the
working of Mozart in detail. Section III explains how Mozart
handles various practical challenges.

A. Successive Packet Subtraction (SPS)

In Mozart, packet transmissions and the subsequent decod-
ing takes place in multiple phases (Fig. 1):

1. Notification: If a node B has data for A, then B sends a
notification message to A, indicating that B has outstanding
data for A.
2. Polling: Upon receiving the notification message, A backs
off for a random duration (between 1 and 5 µs as described
in Subsection III-D) and sends a poll message to solicit
transmissions in its neighborhood. After sending the poll, A is
said to be undergoing recovery. However, in Mozart, a node
(say A) can poll only if all the following conditions are true:
(i) It observes (through virtual sensing) that no other polling
node in its neighborhood is recovering; (ii) No other node in
its neighborhood is transmitting data to its receiver; and, (iii)
A’s backoff is over. If any of these condition is not true, A
undergoes a backoff and then attempts to poll again.
3. Data Transmission: Upon receiving a poll from a neigh-
boring node (say A), a node (say B) sends a data packet to
A if both these conditions are true: (i) There is no other node
(except A) in its neighborhood undergoing recovery; and, (ii)
B has data to send to the polling node.
4. Suppress: The polling node may simultaneously receive
data packets from multiple nodes resulting in a collision. From
the received packets, the polling node selects one transmitting
node and transmits suppress to it. Upon receiving suppress,
the node stays silent for the remaining duration of the recovery
period. Other nodes upon overhearing the suppress, re-transmit
the same data packets until they either receive the suppress
or the finish packet from A. Section III-C explains how the
polling node selects the node to whom the suppress is sent.
The receiver also stores the received samples in a buffer for
decoding in the future. Mozart does not have any synchroniza-
tion overhead since synchronization happens implicitly through
the poll and suppress messages transmitted by the receiver.
5. Finish: In each slot one of the transmitting nodes becomes
silent after receiving the suppress from A. So, the number of
colliding packets decreases by one in each slot. Eventually, in
some slot, only one node transmits. At the end of that slot,

the polling node decodes all the packets (Explained in detail
in Section II-A2). Upon successful decoding, A broadcasts
a finish packet. The finish packet serves two purposes: (i)
It indicates successful decoding, thereby acknowledging the
transmitted data, allowing nodes to transmit new data; and,
(ii) Indicates the end of the recovery period, thus allowing
nearby nodes to transmit poll packets or data packets.

By reserving the channel in the neighborhood of the
receiver (using the poll message) as well as by encouraging
collisions among transmitters, Mozart is able to implicitly
handle hidden transmissions. Similarly, before transmitting a
poll packet or a data packet, a node ensures that no other
node in its neighborhood is recovering. This check prevents
its transmissions from interfering with any data packets that
the recovering node in the neighborhood might receive. To
determine if any other node is recovering, nodes use virtual
sensing by monitoring poll/suppress packets and the matching
finish packets. If a node receives a poll packet but not the
corresponding finish packet, it indicates that the other node is
recovering. In case when the node does not receive the match-
ing finish packet, timeout after the last received poll/suppress
packet can be used to indicate the end of recovery. The timeout
duration is set to twice the channel access time as discussed
in Section III-B. If a node receives no packet transmissions
after polling, then it sends a finish and enters a backoff period
before polling again.

1) Packet Structure: To transmit the suppress at the end of
each slot, the receiver needs to determine the id of at least one
transmitter. However, with colliding transmissions, the receiver
cannot decode the transmitter’s ID from the packet’s MAC
header. To that end, Mozart requires that transmitters identify
themselves by sending a Correlatable Symbol Sequence (CSS)
before the preamble. It has been shown [16] that CSSs1 can
be correlated without correcting for frequency or sampling
offsets. Another property of CSSs is that they can be correlated
even under collision. This allows a node to receive a control
message even if its neighboring node is transmitting. Thus,
Mozart allows neighboring nodes to simultaneously transmit,
thereby eliminating the Exposed Terminal Problem. Further,
usage of PN sequences reduces the transmission duration of
the packet considerably as demonstrated before [16].

Mozart uses 5 different packet types: (i) Notify: It consists
of the PN sequence of the receiver; (ii) Poll: It consists
of the PN sequence of the polling node; (iii) Suppress: It
contains the PN sequence of the receiver followed by the PN
sequence of the node being suppressed; (iv) Data packet: This
packet has the PN sequence of the transmitter, PN sequence
of the receiver, preamble, MAC header and the data body;
and, (v) Finish: It contains the PN sequence of the receiver,
followed by PN sequences of the nodes whose transmissions
were successfully decoded. By using PN sequences that are
correlated[16] by the receiver, Mozart significantly reduces the
rate of loss of the control packets due to collisions.

2) Packet Decoding: In Mozart, the receiver decodes all
received packets in the reverse chronological order. Decoding
starts with the last slot in which only one node transmitted.
Figure 1 shows a recovery period in which four nodes send data
in response to A’s poll. Three suppress packets were sent at the

1Also referred to as Pseudo Random Sequences (PN sequences)
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end of the first three slots, and, so in the fourth slot, only one
node transmits. In that slot, P4 is available in the clear and can
simply be decoded. To decode P1, after correcting for different
offsets (details in Section III-F), A recreates samples for P4 as
received in slot 3 and subtracts them from samples received
in slot 3. After subtraction, it is left with only the samples
corresponding to P1 which A decodes. Similarly, to decode
P2, A re-creates samples for both P1 and P4 and subtracts
them from the samples received in slot 2. After subtracting,
it decodes the remaining samples to get P2. This process is
repeated for each slot until A has decoded all the collided
packets. Thus, by carefully selecting the retransmitters, A is
able to decode 4 packets in 4 slots.

SPS allows the receiver to control the retransmission pat-
tern without precisely knowing the complete set of transmitters
in each slot. This is in contrast with a naive approach where
all transmitters transmit their PN sequences in the first slot and
then the receiver schedules different transmitters in a TDMA
fashion. In this naive approach, the receiver may not detect
PN sequences with low SINR (See Section IV) resulting in
their starvation. On the other hand, when using SPS, such
transmitters will be detected in later slots when the number of
colliding packets become small. Thus, the flexible approach of
SPS increases fairness. This approach is also different from
802.11 polling mode where the APs poll all the potential
transmitters. This results in wasted polls and throughput loss
when a transmitter has no data to send in response to a poll. In
contrast to that, receivers in Mozart receive packets from all the
transmitters and decode them by controlling the retransmission
pattern.

B. Challenges towards practical implementation

Although the idea behind Mozart is simple, however, mul-
tiple challenges need to be solved to make Mozart practical:

1. Identifying set of transmitters and estimating their
RSS: To maximize the decoding accuracy, at the end of
each slot, receivers in Mozart need to carefully determine the
transmitter to be suppressed. As explained in Section III-C,
this requires receivers in Mozart to determine the following
additional information: (i) ID of transmitters; and, (ii) SINR
of transmitters. However, determining this information for all
packets in the presence of interference is challenging. Existing
techniques[8] to measure signal strength do not work in the
presence of collisions and require transmitters to transmit one-
by-one, thus constituting a significant overhead.
2. Determining transmitter to suppress: Once the set of
transmitters is determined, the receiver in Mozart needs to
determine which transmitter should be suppressed among all
transmitters such that the decoding accuracy is maximized.
Different transmitters may have different SINR and may trans-
mit at different physical layer data rates. This makes it difficult
to determine which transmitter should be suppressed.
3. Handling heterogeneous data rate and packet sizes: The
channel access time is fixed for all transmitters in Mozart.
However, if some transmitters only have small amount of data
to send, this may lead to channel wastage.

III. PRACTICAL CONSIDERATIONS

This section explains how we handle the aforementioned
challenges. In Subsection III-A, we explain how receivers

in Mozart identify the set of transmitters and estimate their
RSS. Subsection III-B explains how transmitters in Mozart
determine the physical layer data rate to be used. Once the
receiver knows the id of transmitters, their RSS and the
modulation scheme used, the receiver then uses the algorithm
described in Subsection III-C to determine the set of nodes to
be suppressed at the end of each slot. Subsection III-D explains
how compared to existing algorithms, Mozart significantly in-
creases the probability of successful packet decoding. The next
subsection explains how receivers in Mozart handle decoding
errors. Finally, Subsection III-F explains how offset correction
and PN sequence assignment is done in Mozart.

A. Identification and RSS estimation of collided packets

It is beneficial for Mozart to identify the transmitters of all
the collided packets, since with more IDs, it is more likely that
the receiver will find the right set of transmitters to suppress.
Observe that the receiver does not need to determine the source
ID of all the packets. However, more IDs it can determine,
higher are the chances that the receiver will suppress the right
set of transmitters (explained later in Section III-C).

For -8dB SINR, state of the art correlation schemes have
been shown[16] to suffer from as much as 70% false negatives
when 127-symbol Gold code sequence (a type of CSS) is
used. Clearly, this false-negative rate is too high for Mozart
where multiple transmissions may collide resulting in low
SINR. Our identification algorithm is also based on the general
approach of computing the cross correlation, however, there are
significant differences when compared to existing schemes[6],
[19], [16]:

1. Bounding cross correlation by circular padding: To
improve the accuracy of correlation, we harness a property of
Gold codes that guarantees that the circular cross correlation
of two instances of Gold code is bounded [5]. For 127-symbol
sequence Gold codes, the bound is 1/7. Thus, the correlation
works better when Gold codes collide only with other Gold
codes, and not with samples from arbitrary data packets.
Since in Mozart, the nodes do not undergo backoffs before
transmitting data, the PN sequences for the collided packets
are expected to be approximately-synchronized. However, due
to propagation delays and hardware artifacts, it is possible that
the PN sequences do not collide with other PN sequences at the
receiver. Based on the IEEE 802.11 standard[10], the arriving
time for different PN sequences can differ by at most 4µs (2µs
for radio’s turn-around time[16] and 1 µs for propagation delay
in each direction[16]). So the transmitters in Mozart cyclically
pad 2µs symbols of the Gold code before and after the actual
Gold code. The symbols padded before a certain Gold code
instance are the last few symbols of Gold code while the
symbols padded after the end are the first few symbols. This
ensures that the Gold code samples interfere with only the
combination of samples of other Gold codes resulting in low
cross-correlation. Figure 2(b) illustrates the padding process.
2. Improving correlation for low RSS packets through
cancellation: Instead of trying to detect all the collided Gold
codes at the same time, Mozart decodes one Gold code at a
time. Then, it subtracts the samples of the detected Gold code
from the received samples. Figures 2(c) and 2(d) show two
packets with Gold codes and data before subtraction and after
Gold code of P1 was subtracted from the collided samples.
This process is similar to the one that we used during the
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Fig. 2. Iterative algorithm for transmitter identification and RSS estimation.

packet cancellation step (See Section II). This allows Mozart
to detect those packets that have low RSS even if they are
interfered by high RSS packets since after subtracting the high
RSS packet, the correlation value for the lower RSS packet
increases. Subtracting packet 1 reduces the noise for P2 and
thus, helps in improving the SINR of the Gold code in P2 as
shown in Figures 2(c) and 2(d).
3. Iteratively improving the RSS estimation: In the above
two steps, it is possible that due to high interference from
other packets, the computed correlation is not correct result-
ing in inaccurate estimation of RSS. In such a case, even
after subtraction, a part of the packet (residual samples after
subtraction) would still be left in the original samples (albeit
with much lower RSS). To correct the RSS estimate, Mozart
performs correlation and cancellation repeatedly to detect these
copies of the packet. For this, Mozart records the correlation
value and the location (i.e., starting time) for each detected
packet. When Mozart detects some packet again that was
already detected in previous steps, then the power level of
the packet is updated to be the sum of the current and old
correlation values. As Mozart detects the same packet multiple
times, its estimate of the RSS of the packet improves while the
residual signal strength of the packet decreases. For examples,
Mozart detects Gold codes of Packet 1 first in Figure 2(c)
and later in Figure 2 (e) among the residual samples. Upon,
detection for the second time, the receiver estimates the RSS
of the residual Gold code of Packet 1 and adds that estimate to
the previous estimate of RSS of Packet 1. This step is repeated
as long as the correlation value is at least twice the strength
of the residual samples.
Thus, the first technique is used by the transmitter while second
and third techniques are iteratively used by the receiver for
improving the accuracy of identifying the set of transmitters
and estimating their RSS. Apart from this, the receivers in
Mozart need to determine the their modulation and coding
scheme used by each of the transmitters. In our algorithm,
multiple CSSs are assigned to represent different physical layer
data rates. The transmitter of the data packets include the CSS
that corresponds to the data rate used for that particular data
packet.

B. Heterogeneous data rate and packet sizes

Due to varying SNR, different transmitters may select
different physical layer data rates when transmitting to the
same receiver. Since, wireless channels are bidirectional in
nature (shown in [7]), so the transmitters in Mozart use the
received poll packet to estimate the channel to the receiver.

To that end, the transmitters correlate the received poll packet
with the known PN sequence. The peak value of the correlation
indicates the channel quality between the transmitter and the
receiver with higher correlation value indicating better channel
quality. This is similar to estimating the channel quality
through preamble and has been well studied[6] in the context
of improving the accuracy of recreating the samples. However,
the key difference is that here, the transmitter estimates the
channel to the receiver using the received poll packet and
then, transmits the data packet at a rate that is suitable for the
channel’s current condition. Thus, the poll packet transmitted
by receivers in Mozart also allows transmitters to pick the
appropriate physical layer data rate without extra overhead.

During each recovery, Mozart fixes the channel access time
for each slot. Thus, a node with higher data rate may be
able to send more bits compared to a node with lower data
rate. However, if a node does not have enough pending data,
then it will reduce its data rate such that its transmission
still fits in the slot size. This reduced data rate sometimes
allows the receiver to simultaneously decode two transmissions
using Successive Interference Cancellation (SIC) [21]. SIC is
a well known physical layer technique that is used by the
wireless receivers to simultaneously decode two packets where
the packet with the higher noise tolerance is decoded first,
followed by the packet with the lower noise tolerance. Since
in Mozart, multiple transmitters transmit simultaneously, this
increases the probability that the receiver will find a pair
of packets among the received transmissions that satisfy the
requirements for simultaneous decoding.

For the example scenario of Figure 1, let’s say that the
transmitter of P1 has small amount of pending data. Thus, on
receiving the poll, it would transmit P2 at the lowest possible
data as explained above. At the end of first slot, the receiver
observes that P1 has been transmitted at low physical layer
data rate and high power, and thus can be decoded even in
the presence of P3 as noise. So, it will send suppress to
both P1 and P3. When decoding, the receiver decodes P1 and
P3 using SIC and sends a finish packet indicating successful
decoding. Mozart is able to harness SIC benefits since here, the
transmitters proactively reduce their data rate. Thus, the results
described in this paper are not in conflict with [21] where the
authors had argued that SIC has limited applicability when not
applied proactively.

C. Determining set of nodes to suppress

Observe that during reverse chronological decoding, the
residual noise is higher in the earlier slots since more packets
need to be subtracted before actual decoding (e.g. when decod-
ing P3 in Fig.1, the residual noise would come from P1, P2 and
P4). Therefore, to improve the decoding accuracy, receivers
in Mozart suppress transmissions with high noise tolerance
in earlier slots. This approach maximizes the probability of
successful decoding across all the slots of the recovery, thereby
improving the resilience. Further, to minimize the number of
slots, Mozart first checks if it is possible to suppress two nodes
simultaneously as explained in Sec. III-B.

Next, we explain Algorithm 1, that determines the set of
nodes to be suppressed at the end of the current slot. Here, Tij

denotes the noise tolerance (in mW) of the pair of packets Pi

and Pj , which denotes the maximum residual noise level that
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can be present during successful decoding of these two packets.
If a pair of packets has high value of Tij , it implies that it is
possible to decode both the packets using SIC even if residual
noise left after canceling other packets is high. The algorithm
also computes (Line 4) the noise threshold (in mW), τ that
indicates the expected residual noise that will be left after the
receiver has subtracted all packets that were received in this
slot. τ is approximated by dividing sum of RSS (in mW) of
all packets received in this slot by 100 (i.e., 20 dB)2. Then, in
Lines 5-10, all those pairs of packets are added to the set G
that have sufficient noise tolerance. If noise tolerance of Pj is
higher than that of Pi (Line 6-7), then Pj would be decoded
in presence of interference from Pi. Thus, its noise tolerance
would be RSSj

rj
− RSSi where rj is the minimum SINR at

which Pj can be successfully decoded with high probability[8].
On the other hand, noise tolerance of Pi would simply be
RSSi

ri
since Pj would already be subtracted. For successful

simultaneous decoding, we need to ensure that the residual
noise is less than the minimum of these two values (Lines
7-9).

Finally, the algorithm returns the pair that has the highest
noise tolerance (Line 10). However, for some slots, it may not
be possible to do SIC and thus no pair of packets may have the
required tolerance. Then (Lines 12-15), Mozart finds a single
packet that has the highest noise tolerance. It is also possible
that during the recovery period, the receiver does not find any
node with noise tolerance above the expected residual noise.
In that case, the receiver handles the errors as explained in
Subsection III-E.

Algorithm 1: Computes the set of nodes that should be
sent suppress in this slot
1 Input: For each packet Pi received in this slot: its power

level expressed in mW (RSSi) and the minimum SINR level
(ri, expressed as a dimensionless ratio) at which it can be
decoded. ri is contingent upon the physical layer data rate
used to transmit Pi.

2 Output: Set of packets (or corresponding transmitters) that
should be sent suppress in this slot.

3 P← {Set of packets received in this slot}, G← {}
4 τ ← Sum of RSS of all packets in P

100
5 for (Pi, Pj) : Pi, Pj ∈ P do
6 if RSSj

rj
≥ RSSi

ri
then

7 Tij ← min{RSSj

rj
−RSSi,

RSSi
ri
}

8 else Tij ← min{RSSi
ri
−RSSj ,

RSSj

rj
}

9 if Tij > τ then G← G ∪ {(Pi, Pj)}
10 if G ̸= {} then return argmax(Pi,Pj)∈G Tij

11 else
12 Ti ← RSSi

ri
∀ Pi ∈ P

13 S← {Pi : Pi ∈ P ∧ Ti > τ}
14 if S ̸= {} then return argmaxPi∈S Ti

15 else Send finish

D. Near-Zero Critical Period

We define Critical period of a MAC algorithm as the
duration of the interval, before and after the beginning of a
transmission, during which an interfering transmission may

220 dB denotes the cancellation that can be achieved by subtracting the
packet in most cases (See Section IV for detailed experiment results).

corrupt both the transmissions. MAC protocols with longer
critical periods are expected to have a higher collision rate and
thus, lower throughput. The longer critical period also requires
the nodes to spend excessive time in backoff. In Mozart, if a
single receiver receives multiple colliding packets, it can still
decode all those packets by suppressing one transmitter in each
slot. So, intuitively, Mozart should have shorter critical period
compared to existing algorithms. In [4], we formally show
that the critical period of Mozart is 2 µs3. By comparison, the
critical period of some standard protocols are [4]: 152 µs for
802.11 with RTS-CTS and 39.4 µs for 802.11ec.

E. Handling Decoding Errors

While decoding, it is possible that the channel noise
or residual noise may cause a failed checksum resulting in
decoding error. In that case, the receiving node follows one of
the three options: (i) It first requests re-transmission of data for
that slot. For example, in Figure 1, if receiver A is unable to
decode P2 during slot 2, then it will ask P2’s transmitter to re-
transmit. The receiver performs this notification by sending a
special nack message to the transmitter of P2. Upon receiving
the retransmitted data, A can decode P2 and continue to decode
P1 using the slot 1 samples. (ii) However, if P2’s transmitter
is not able to transmit P2 because one of its other neighbors
is undergoing recovery, then A decodes the remaining packets
by simply subtracting the samples of P2 from the earlier slots
(without actually decoding P2). The receiver would decode as
many packets as possible using this scheme. (iii) Finally, if the
receiver decoded only a subset of packets, then it would send
finish with the PN-sequence of only the transmitters whose
packets it was able to decode.

F. Offsets Correction and PN Sequence Assignment

The efficiency of successive packet subtraction in Mozart
depends on the accuracy of re-creating the samples. To increase
the accuracy, the phase, frequency and sampling offsets need
to be compensated [6]. This problem of computing the offsets
in presence of interference has been well studied [14], [6], [7].
In our implementation, after evaluating multiple schemes, we
decided to use the one proposed in ZigZag[6] as it gave the best
results. Mozart also requires that every node in the network be
assigned a PN sequence. Further, no two neighboring nodes
should be assigned the same PN sequence. Magistretti et al.
[16] argue that such an assignment can be either done by APs
or can be done using hash functions. In the experiments and
evaluations of Mozart, the PN sequences were assigned using
the former approach.

IV. EXPERIMENTS

In this section, we describe the results from our experi-
ments performed on the GNU radio platform and a testbed
of Universal Software Radio Peripheral (USRP) N210 version
4 [1] radios. We used WBX daughterboards[1] as the RF
front end. Mozart performs decoding at the sample level, and
thus, is independent of the modulation and coding choice for
transmission. In our experiments, we used BPSK with 1/2
convolutional code. Our re-creation process compensates for
the phase offset, frequency offset and the sampling offset as

3To reduce the probability of two neighboring transmissions from colliding,
we require nodes to backoff for a short duration (5 µs) before sending a poll.
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described in Section III-F. In this section, we also measure the
accuracy of transmitter identification and RSS estimation for
the proposed algorithm (Sec. III-A) as well as the existing state
of the art technique. The frequency used was 1078 MHz and
the physical layer data rate was set to 62.5 Kbps. The rate was
kept low to ensure that the delay between the host computer
and the radio was small compared to the packet duration. Thus,
the relative delay values would approximately match the delay
values from off-the-shelf wireless cards.

In Mozart’s implementation, the receiver stores all the
received samples offline which are later used to compute
the number of successful transmissions and the throughput.
Besides Mozart, we also implemented a version of the IEEE
802.11 protocol. One of the challenges in implementing 802.11
was that USRP has different hardware parameters compared
to the commercial 802.11 cards. For example, due to higher
latency from the radio to the host computer, the packet decod-
ing time was observed to be around 150 µs which prevents the
receiver from sending an ACK within the SIFS duration. So,
using experiments, we re-measured the optimum values of all
802.11 parameters (SIFS, DIFS, slot size, ACK timeout) for
the N210 hardware as per their definitions. For example, we
ensured that slot size was such that if two neighboring nodes
choose consecutive values of backoff, then one of the nodes
will sense the other’s transmission and will not send its own
packet. Due to the aforementioned reasons, the packet size was
kept constant, and thus the receivers had no opportunity to use
SIC to do simultaneous decoding.

A. Testbed Results

Single AP: In this experiment, we use a single N210
node as the AP and vary the number of clients. We place the
client in various positions around the AP to create two types of
topologies: (i) Single collision domain: Where all clients can
hear each other; and, (ii) Hidden Terminal: Where no two
clients can hear each other. The throughput results are shown
in Figure 3 with varying number of clients. Mozart increases
throughput due to fewer collisions and close to zero backoff
as compared to the IEEE 802.11 protocol. When the nodes are
hidden to each other, the throughput gain provided by Mozart
is much higher due to increased collisions in 802.11. With 4
hidden nodes, Mozart provides 2.70x more throughput than
IEEE 802.11 protocol.

Multiple APs: In the next experiment, we set up two N210
nodes as APs and four others as clients. For this experiment,
we placed the two APs in two different rooms (as shown in
Figure 4a). Each of the four clients were placed at different
locations in the three regions so as to create ten different
topologies (hidden, non-hidden, mix etc.). In all the topologies,
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Fig. 5. Detection and RSS Estimation of colliding packets for Mozart and
traditional approach [16] under equal RSS setting (worst case analysis).

the clients associated to the AP with the strongest signal.
Figure 4b shows the CDF of the throughput of clients for
both Mozart and 802.11. Averaging over all topologies, 802.11
provides throughput of 6.9 Kbps per node while Mozart (no
SIC) provides 12.3 Kbps, an increase of 78%.

B. Experimental Analysis of Micro Benchmarks

In this section, we present micro benchmark results from
our experiments. The computed micro benchmarks are also
used as input to our evaluations (Sec. V).

1) Sender Identification and RSS Estimation: We measure
the accuracy of sender identification through multiple experi-
ments. For this (See Figure 5a), we ensured that all the packets
have equal RSS (Equal RSS is the worst case for evaluations
since all transmitters have low SINR in this case). As Figure
5a shows that when 20 packets collide, Mozart identifies 12
more senders compared to the existing approach[16]. The false
positives were observed to be less than 1% for all the schemes.

Next, we studied the accuracy of RSS estimation of Mozart
compared to existing techniques[16]. Figure 5b shows the
probability that the estimated RSS of a packet is within
1dB difference of the actual RSS under different SNR values
(computed without considering other packets as noise). When
15 packets (each having 20 dB SNR) collide, the probability
that Mozart estimates RSS of the collided packets within
1dB of the actual RSS is 0.96 compared to 0.21 for existing
techniques[16], an improvement by a factor of 3.57x.

2) Subtraction Accuracy: In this experiment, we measure
the cancellation accuracy. To quantify the subtraction
accuracy independent of modulation and coding, we define
metric, ∆P that represents the power reduction achieved
through cancellation. ∆P quantifies the achieved reduction
in power after subtracting P from a set of collided
packets. We define ∆P (in dB) = RSS of P (in dBm) −
Residual Power of P left after subtracting P (in dBm). A

high value of ∆P implies that the residual noise is lower and
it increases the decoding probability of the remaining packets.
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Results: Figure 6 shows the variation in cancellation
accuracy (∆P metric) with variation in number of samples
in the packet and the SINR of the packet being subtracted.
The figure shows that for any packet consisting of more than
1600 samples, the cancellation is quite efficient. Figures 6b
presents the Cumulative Distribution Function (CDF) of the
distribution of ∆P for 4000 samples per packet. From Figure
6b, we see that as expected, the SINR for the subtracted packet
decreases, the variation in cancellation accuracy (∆P metric)
increases. The results from our experiments are also fed in the
ns-3 simulator as explained in the next section.

V. COMPARISON RESULTS

To evaluate the performance of Mozart, we conducted
extensive trace-driven ns-3 evaluations. In this section, we
explain our evaluation setup and the results.

To make evaluations more realistic, we first setup a testbed
of 40 nodes (comprised of laptops) and collected the RSS
values between all pairs of nodes. The nodes were distributed
over two floors of our building and spanned multiple rooms.
This RSS data was then fed into the ns-3 simulator. We ran-
domly designated varying number of the nodes as APs while
the remaining nodes were designated as clients. Each client
associated with the AP from which it received the strongest
signal. In the evaluations, TCP connections were established
between each client and its AP. For this, we downloaded the
previously collected traffic traces during SIGCOMM[18] and
computed the pdf distribution of packet sizes and also the pdf
distribution of packet inter-arrival time over all connections.
These two pdf distributions were used to generate both uplink
and downlink traffic. To create network saturation condition,
the number of connections between each client and its associ-
ated AP was set to 20.

Further, the results from the experiments (See Section
IV) were fed into the ns-3 simulator as follows: (i) PN-
Sequence detection accuracy: In the evaluations, we used
the values from Figure 5 for determining if a PN-sequence
can be detected or not; (ii) Residual noise level: The power of
the residual noise was fed from the data collected from experi-
ments (See Figure 6); and, (iii) Imprecise Signal Strength Es-
timates: For Mozart, imprecision in signal strength estimations
could lead to unsuccessful decoding. We fed the imprecision
from our experiments (See Figure 5b), into our evaluations.

Apart from Mozart, we also implemented and evaluated the
following algorithms: (i) Optimal omniscient zero-overhead
slotted TDMA: Here, we assume a central scheduler knows

the interference between all links at all possible data rates. This
scheduler computes the set of links that should be active in a
given slot. For this, at the beginning of the slot, the APs first
collect information about which node has data to send to which
other node. The nodes convey this information using short
PN sequences. The APs forward this information to a central
scheduler that computes the set of active links and sends this
information to APs. This information is then broadcasted back
by the APs (again using short PN sequences). To put the
optimal TDMA in the best light and to eliminate the effect of
the backbone capacity, the APs and the central scheduler were
connected through wired ethernet with unlimited bandwidth
and zero latency. (ii) 802.11ec [16]: 802.11ec reduces the
overhead of RTS-CTS packets by encoding them as CSSs.
(iii) IEEE 802.11 without RTS-CTS. In Mozart, transmitters
picked the best data rate based on channel conditions as
explained in Section III-B. Channel quality information was
also provided to transmitters in Optimal TDMA out-of-band
(i.e. without any overheads.). In all other algorithms, the
transmitters varied their data rate using ARF algorithm [13].

A. Results for bidirectional TCP Traffic

Next, we evaluated the performance of different algorithms
for TCP traffic. When Mozart is used for downlink traffic (AP
to client), then the length of the recovery period was always
1 since the client would receive packet from at most one AP.

1) Throughput: We vary the number of APs in the network
and compute the total throughput over all nodes (Fig. 7a).
On average, Mozart provides 4%, 155% and 310% more
throughput than TDMA, 802.11ec and 802.11 algorithms,
respectively. These differences are primarily because of three
factors:

1. Collisions: From Fig. 7c, we see that in other algorithms
the percentage of transmissions that are acknowledged is sig-
nificantly lower resulting in retransmissions and lower through-
put. In Mozart, some of the transmissions may not be decoded
by the receiver due to error in correlation of the PN-sequence
or because of higher residual noise. However, when the number
of colliding transmissions is low, Mozart decodes all of the
transmissions resulting in ≥ 95% acknowledgment rate. The
high acknowledgment rate also implies that the decoding
accuracy of Mozart exceeds 95%. This can be attributed to
high accuracy of transmitter identification, RSS estimation
and careful selection of the transmitters to be suppressed
(Sec. III-C). Although, 802.11ec reduces the overhead of
control packets, still its critical period (See Section III-D) is
sufficiently large leading to high collision rate. For 802.11 and
802.11ec, with increase in number of APs, the higher SINR
of different links results in higher acknowledgment rate.
2. Backoff: Figure 7d shows the total time spend by nodes in
backoffs between every successful transmission (averaged over
all successful transmissions). Observe that transmitters in other
algorithms spend a significant amount of time in backoffs.
In IEEE 802.11 and its derived protocols, nodes decrement
their backoff counter only if the channel is idle, implying that
the channel resource is wasted in these protocols due to high
backoff. On the other hand, nodes do not experience backoffs
during the recovery phase in Mozart as discussed in Section
III-D.
3. SIC Applicability: In our evaluations, we observed that
on average, Mozart was able to apply SIC in 10.25% of the
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slots. This allows Mozart to have a higher throughput than
Optimal Omniscient TDMA since the TDMA scheduler uses
fixed slot lengths, irrespective of the amount of the data to
be transmitted by the user. Although, receivers in Mozart are
also unaware of the amount of pending data, still the SPS-
based decoding enables them to leverage SIC. This allows the
Mozart receivers to decode multiple packets simultaneously
(Sec. III-B), resulting in higher throughput.

2) Fairness: We use Jain’s Fairness Index to compare the
fairness for different protocols. Fig. 7b shows that with fewer
APs, Mozart provides higher fairness compared to 802.11 and
802.11ec. This long term starvation in IEEE 802.11 and its
derived protocols is consistent with the previous literature [9].
With an increase in the number of APs, the fairness index for
all algorithms is almost equal due to higher SNR of the links.

Other Results including energy consumption and la-
tency: Apart from this, we also evaluated performance
of different algorithms for UDP VoIP traffic using different
metrices (e.g. energy consumption, latency). Due to lack of
space, these results are included in our technical report [4].

VI. DISCUSSION

Here, we discuss how Mozart can be extended to make it
more suitable for real networks.

Co-existence with legacy 802.11 devices: Mozart uses
the NAV feature of IEEE 802.11 to ensure coexistence with
legacy 802.11 devices. Upon overhearing a MAC packet,
the node reads the “Duration” field of the MAC header
and does not initiate any transmissions for that duration. To
ensure coexistence with 802.11, packets in Mozart can be
modified as follows: (i) Before transmitting poll or suppress
PN sequences, the receivers transmit a zero-payload packet
with duration field equal to the duration of one slot; and,
(ii) Similarly, transmitters also transmit a zero-payload packet
before transmitting the data packet. These packets will prevent
802.11 from interfering with Mozart. To give a fair chance
to 802.11, receivers in Mozart also need to undergo certain
amount of backoff before transmitting. We leave the detailed
methodologies of coexistence that ensure fairness for our
future work.

Handling interference from partially overlapped chan-
nels: Partially overlapping channels in WiFi can lead to loss
of throughput as the data packets may not be decodable due
to interference from devices operating on partially overlapped
channel. To handle such interference, the receivers in Mozart
can transmit the poll packet at reduced power level. This will
force the transmitters to use data rates lower than optimal,
thereby enabling successful decoding of packet even in the
presence of interference from partially overlapping channels.
The amount by which the receiver reduces its power level
depends on the interference it experiences from partial overlap-
ping channels. We leave the detailed discussion and analysis
of Mozart’s performance in presence of such interference
for future work. Further, the receivers can also employ the
approaches mentioned before (Sec. III-E) to handle decoding
errors.

Compatibility with MIMO nodes: Mozart is compatible
with wireless nodes with multiple antennas. If a node has N
antenna, then Mozart allows such nodes to receive and decode

N packets per recovery slot. To enable this, the receivers in
Mozart would suppress N packets in each slot, thus reducing
the length of the recovery period by a factor of N .

VII. RELATED WORK

Collisions are known problems for wireless networks. Cur-
rently, carrier sensing (CSMA) is used in WLANs (Wireless
LAN Networks) to avoid collisions. To further reduce the col-
lision probability, various other schemes have been introduced
such as RTS-CTS. However, transmitting RTS-CTS control
packets at low physical layer data rate leads to significant
overheads that become worse at higher data rates such as those
observed in 802.11g or 802.11n networks. Further, RTS-CTS
packets do not prevent collisions when interference range is
higher than the transmission range even though they cause
unnecessary blocking of transmissions [17].

Recently, Magistretti et. al. have proposed 802.11ec [16]
that employs Correlatable Symbol Sequences (CSSs) to replace
the RTS-CTS packets, thereby significantly reducing the over-
head of control packets. However, the transmissions of nodes
may still end up colliding due to the longer critical window
of duration 39.4µs (discussed in Section III-D) resulting in
backoffs and unnecessary retransmissions. When the density
of the clients increases, more collisions will happen because
of increase in simultaneous transmissions, resulting in further
loss of throughput. On the other hand, with a shorter critical
period of 2µs, Mozart has fewer collisions.

Apart from preventing collisions, other protocols have been
proposed that either try to abort the collided transmissions
or salvage the bits that did not undergo a collision. CSMA-
CN [19] proposes to use two antennas at the transmitter for
receiving the collision notifications from the receiver. Partial
Packet Recovery [11] tries to recover bits that did not undergo
collision. However, both CSMA-CN and PPR will abandon the
collided samples, resulting in loss of throughput.

ZigZag [6] tries to utilize the collided information by
employing ZigZag decoding. This reduces the number of
useless retransmissions but the nodes still waste time in
backoffs. Further, in ZigZag collided packets will be wasted
if they are intended for different destinations since one of the
transmitter may receive ack from its intended receiver and may
not retransmit its data packet. In CRMA [15], nodes transmit
the same information on different sub-channels. The receiver
decodes the collided transmissions by solving a set of linear
equations. However, for optimal channel utilization, nodes in
CRMA require good estimation about the network load at other
transmitters as well.

Mozart is a receiver-driven cross-layer algorithm that takes
a different approach where it encourages multiple transmitting
nodes to collide. Receiver-driven protocols have been proposed
before in context of wireless sensor networks [23]. However,
there the main objective was to reduce the energy consumption
instead of maximizing the throughput. Recently proposed,
AutoMAC [8] also encourages collisions among transmissions.
However, AutoMAC implicitly assumes that all nodes are in
a single collision domain. All its analysis, experiments and
traces are also for single collision domain. In multi-collision
domain networks, the receivers may face interference from
transmitters that are transmitting to some other receiver and
thus, can’t be suppressed using Speculative Ack [8]. It is
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Fig. 7. Comparison of different algorithms for TCP traffic.

possible that if two AutoMAC receivers are in the range of
two transmitters such that one receiver can suppress only one
transmitter, then the decoding may take a very large number of
slots. This also makes extending AutoMAC to multi-collision
domain networks non-trivial. Secondly, receivers in AutoMAC
estimate the channel state by requiring transmitters to send
non-overlapping training symbols one-by-one. On the other
hand, Mozart’s receivers can estimate the channel state of
multiple colliding transmitters resulting in lower overhead.

Successive Interference Cancellation (SIC) [21] has been
used before to decode interfering packets in WLANs [6].
Mozart uses SIC only when at least one transmitter has reduced
its physical layer data rate to fit the slot width. Thus, Mozart
is able to derive benefit from SIC and is not in conflict with
existing literature [21].

Symphony [3], an extension of Mozart, has been proposed
recently. Symphony works only in enterprise WLANs where
APs are connected through ethernet backbone. In Symphony,
APs may receive multiple colliding packets. To identify the
set of transmitters and to estimate their RSS, Symphony
makes use of algorithms (PN sequence padding, cancellation,
iterative estimation) proposed in Mozart. Further, in contrast
to Symphony, Mozart does not require APs to be connected
with each other.

VIII. CONCLUSIONS

In this paper, we presented Mozart, a cross-layer algorithm
that takes a new approach of encouraging collisions among
nodes. By doing so, Mozart handles the hidden terminal
collisions as well as reduces the critical period of transmis-
sions. To implement Mozart in practice, we presented novel
algorithms for identifying multiple transmitters as well as
estimating their RSS in presence of interference. USRP-testbed
based evaluations show that, Mozart throughput is up to 3.70x
compared to IEEE 802.11. Evaluations performed using real-
world traces show that Mozart’s throughput is 2.55x and 4.10x
when compared to 802.11ec and 802.11, respectively.
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