1. (Propositional Calculus – 10 points)

Let P, Q, R range over state predicates of some program.
Prove or disprove the following:

a) \(P \lor (P \land Q) \equiv P \)

b) \(P \land (Q \lor R) \equiv (P \lor Q) \land (P \lor R) \)

c) \(\neg(P \equiv Q) \equiv \neg P \equiv \neg Q \)

d) \(P \equiv Q \equiv (P \lor Q) \equiv (P \land Q) \)

2. (More Propositional Calculus – 6 points)
--

a) Prove \(\neg \neg P \equiv P \)

b) Prove the identity of \(\lor \), \(P \lor \text{false} \equiv P \), by transforming its more structured side into its simpler side.

c) Prove \(P \Rightarrow Q \equiv \neg P \lor \neg Q \)

3. (Predicate Calculus – 10 points)

a) Prove \((\forall x : R : P \equiv Q) \Rightarrow ((\forall x : R : P) \equiv (\forall x : R : Q)) \)

b) Prove \(\neg(\exists x : R : P) \equiv (\forall x : R : \neg P) \)

c) Translate the following English statements into predicate logic:
 (i) Every positive integer is smaller than the absolute value of some negative integer. (Use \(\text{abs.i} \) for the absolute value of \(i \))
 (ii) Real number \(i \) is the largest real solution of the equation \(f.i = i + 1 \)
 (iii) No integer is larger than all others.

d) Translate into English the meaning of:
 (i) \((\exists x, y : x \in R \land y \in R : (f.x < 0 \land 0 < f.y) \Rightarrow (\exists z : z \in \text{Reals} : f.z = 0)) \)
 (ii) \((\forall z : z \in \text{Integers} \land \text{even}.z : (\forall w : w \in \text{Integers} \land \text{odd}.w : z \neq w)) \)

4. (Closure) -- 30 points

Let P and Q range over state predicates of a program \(\text{prog} \). Recall that the statements of each action of \(\text{prog} \) are terminating.
Recall that in class we defined:

\[
\text{closed } P \text{ iff } \{P\} \ \text{prog} \ \{P\}
\]
True or False? (Explain your answer.)

a) closed false
b) closed true
c) (closed P or closed Q) implies (closed $(P \lor Q)$)
d) (closed $\neg P$) implies (closed P)
e) (closed $(P \lor Q)$) implies ($\forall s :: \{P\} s \{Q\}$)
f) (exists $s :: \{P\} s \{false\}$) implies (closed $\neg P$)
g) closed $(P \lor Q)$ implies ($\forall s :: \{P\} s \{P \lor Q\}$)
h) closed P and closed Q and $(R \Rightarrow (P \land Q))$ implies closed R
i) closed P and closed Q and closed R
implies closed $(P \land (Q \land R))$

5. (Leads-to) -- 24 points

Let P, Q, and R range over state predicates of a program $prog$.

True or False? (Explain your answer.)

a) $false$ leads-to $P \lor Q$
b) $(P$ leads-to $Q)$ implies ($(P \land Q)$ leads-to Q)
c) $(P$ leads-to $Q)$ implies ($(P \land R)$ leads-to Q)
d) ($(P$ leads-to $Q)$ and $(P$ leads-to $R)$) implies $(P$ leads-to $(Q \land R)$)
e) $(P$ leads-to $Q)$ and ($(Q \lor R)$ leads-to $T)$
implies $(P \lor R)$ leads-to T)
f) P leads-to Q and P leads-to R and closed R
implies $(P$ leads-to $(Q \land R)$)

6. (Variant functions) - 20 points

For each program described below, prove, by exhibiting a variant function, that the desired progress property holds, or show that the progress property does not hold. Assume the semantics of minimal progress: At every step in the computation, if some action is enabled, then some enabled action is executed.
a) Let $x.j$ be an integer for $0 \leq j < N$. For each j in the range $0 < j < N$, consider the program action:

$$x.j < x.(j - 1) \rightarrow x.j, x.(j - 1) := x.(j - 1), x.j$$

The progress property to be verified is:

true leads-to $(\forall j : 0 < j < N : x.j \geq x.(j - 1))$

b) Given are line segments $L.1, L.2, ..., L.N$ in the X-Y plane (assume all $2N$ endpoints are unique) and a program that consists of one action for each pair $(L.j, L.k)$ of line segments:

$L.j$ and $L.k$ intersect \rightarrow swap any one endpoint of $L.j$ with any one endpoint of $L.k$, thus making $L.j$ and $L.k$ nonintersecting

The progress property to be verified is: “the program eventually terminates”

7. (Verifying closure and leads-to)

Consider the program $TRANS$ over the boolean variables b, c, and d:

$$
\begin{align*}
 b \quad \rightarrow & \quad c := true \\
 b \land c \quad \rightarrow & \quad d := true
\end{align*}
$$

Are the following properties true in $TRANS$? (Explain your answer carefully. A formal proof is not necessary.)

(i) closed (¬$b \land c$)
(ii) closed (¬$c \land d$)
(iii) c leads-to d
(iv) b leads-to d

Does the variant function

$(3 - \text{number of variables of } TRANS \text{ that are true})$

suffice to verify the leads-to predicate in part (iii)? in part (iv)?
8. (Distributed load balancing)

Prove either that the desired liveness specification holds
by exhibiting a variant function, or show that it does not hold.

Let \(x.j \) be an integer for each node \(j \) in an undirected graph.
For each pair of neighboring nodes \(j \) and \(k \) in the graph,
consider the program action:

\[
(x.j - x.k) > 1 \quad \rightarrow \quad x.j, x.k := x.j - 1, x.k + 1
\]

The liveness specification to be verified for this set of actions is:

\[
\text{true leads-to (forall j, k: j and k are neighboring nodes:} \quad |x.j-x.k| \leq 1)\]

9. (Verifying Hoare-triples)

Let m, n, and l be integers, and M and N be integer constants. Carefully prove or disprove the following Hoare-triples. (Formal proofs are not necessary, but are encouraged).

(a) \[\{ m = M \} \]
\[m < 0 \rightarrow m := -m \]
\[\{ m = |M| \} \]

(b) \[\{ m > M \} \]
\[m > n \rightarrow m, n := n, m \]
\[\{ m \leq n \} \]

Here are two new rules about Hoare-triples:

Rule of Sequential Assignment:
Let x and y be variables and E and F be expressions whose value are in the domain of x and y, respectively, and let P be a state predicate.

\[\{ (P [y := F]) [x := E] \} \ true \rightarrow x := E ; y := F \ \{ P \} \]

Rule of Guards:
Let $prog$ be a program with two actions $g_1 \rightarrow st_1$ and $g_2 \rightarrow st_2$, and let Q and R be state predicates of $prog$.

\[Q \Rightarrow g_1 \lor g_2 , \]
\[\{ Q \} g_1 \rightarrow st_1 \ \{ R \} , \]
\[\{ Q \} g_2 \rightarrow st_2 \ \{ R \} \]

implies

\[\{ Q \} prog \ \{ R \} \]

Prove or disprove the following Hoare-triples:

(c) \[\{ m = M \land n = N \} \]
\[true \rightarrow n := n + m ; m := n - m ; n := n - m \]
\[\{ m = N \land n = M \} \]

(d) \[\{ true \} \ l \leq m \rightarrow n := m \ \ |
\[m \leq l \rightarrow n := l \ \ \{ n = \max(l, m) \} \]