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Abstract

In this overview pape we motivatethe needfor andresearchissuesarisingfrom a nev model of
dataprocessingln this model,datadoesnot take the form of persistentelations,but ratherarrivesin
multiple, continwus, rapid, time-varying data streams In additionto reviewing pastwork relevart to
datastreansystemandcurrentprgectsin theareathepaperexplorestopicsin streamguel langlages,
new requiranentsandchallengsin quey processingandalgoithmic issues.

1 Introduction

Recenty a new class of data-ntensive apdications hasbecane widely recoqiized applicatiors in which
the datais modelal bestnot as persidgent relations but rather astransientdata streams Examplesof suc
appicationsinclude financialapplcations, network monitaring, seairity, telecanmunicatonsdatamanage
ment,web applicatiors, manubcturing, sen®r networks, andothers. In the datastream model,individual
dataitemsmay berelationaltuples, e.g.,network measureents,call recods, web pagevisits, sersorread
ings, andso on. However, their continuous arrival in multiple, rapid, time-varying possbly unpredictable
andunbaundel streamsappearsto yield somefundamentaly new reseach problems.

In all of the applicatiors cited above, it is not feasibde to simply load the arriving datainto a tradi
tiond datedbasemanagmentsysem(DBMS) andoperae onit there Traditional DBMS’s arenot desighed
for rapid and continuousloadng of individual dataitems,andthey do not diredly suppat the continuous
quenies[84] thataretypical of datastreamapplications. Furthemore,it is recaynized thatboth approxima-
tion [13] andadagptivity [8] arekey ingredierts in execuing queries andperforming otherprocessing(e.g.,
dataanalsis andmining) over rapid datastreans, while traditional DBMS’s focus largely on the oppcsite
goalof precie answercompuedby stalie quely plans

In this paper we corsiderfundamentalmodelsandissuesin developing a geneal-purposeData Stream
ManagemeniSysten{DSMS. We aredeveloping sucha systen at Stanford[82], andwe will touchonsome
of our own work in this pape. However, we alsoattemptto provide a genenl overview of the area along
with its relaedandcurrent work. (Any glaring omissiors are,naturally, our own fault.)

We bggin in Section2 by constderingthedatastreammodelandqueries over streams.In this section we
take asimpleview: streamsareappend-aly relaionswith transienttuples, andqueriesare SQL operding
over theselogical relations. In later sectonswe discusssererd issues thatcomplicatethe modelandquery
language,suchas ordeing, timestamjng, and sliding windows. Section2 also preseis someconaete
examples to ground our discussian.

In Section3 we review recer projects geara spedfically towardsdatastream processing,aswell as
a plethoraof pastresarchin areasrelatal to datastreams: active databaes,continuous queries, filtering
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systems, view managenent, sequece daiabasesandothers. Although muchof this work cleaty hasap-
plications to datastreamprocessing,we hope to show in this paperthat there are mary new probdemsto
addessin realizing acomplee DSMS

Sectiord delvesmoredeepy into theareaof quely processinguncoveringanumbe of importartissies,
including:

¢ Queries thatrequre anunbounded amourt of memoryto evalude predsely, andapprximate query
processirg techriquesto addressthis probem.

¢ Sliding window quey processing(i.e., consdering “recent” portions of the streamsonly), both as
an appraimation techrique andasan option in the query language sincemary applicatiors prefe
sliding-window queries.

e Batch processing samplirg, and syngsis struduresto hardle situationswherethe flow rate of the
input streansmay overwhelmthe query processor

¢ Themeanngandimplement&ion of blocking operdors(e.g.,aggr@ationandsorting) in the presece
of unendng streams

¢ Contiruousqueriesthatareregisteredwhenportionsof thedatastreanshave alread “passedby,” yet
the querieswish to referencestrean history.

Section5 then outlinessomedetals of a quely languageandan archiecture for a DSMS query processor
designedspecfically to addesstheissuesabove.

In Section6 we review algorithmicresuts in datastrean processirg. Ourfocusis primarily onsketching
techrniquesandbuilding summarystructures(syngses. We alsotouchuponsliding window compuations,
presat somenggative resuts, anddiscussa few addtiond algorithmicissues.

We concludein Section7 with someremarks on the evolution of this new field, and a summaryof
diredionsfor further work.

2 TheData Stream Mode

In thedatastreammodel,someor all of theinput datathatareto be opeatedon arenot availablefor random
acces from disk or memaory but rather arrive asone or morecontinuous data streams Datastreansdiffer
from the corventional storedrelation modelin several ways:

e Thedataelementsn the streamarrive online.

e Thesystan hasno contol overthe orde in which data elemetts arrive to be processed gither within
adatastreamor acrcssdatastreans.

e Datastreamsarepotertially unboundedin size.

¢ Oncean elementfrom a datastrean hasbeenprocessedit is discaded or archived — it camot be
retrieved easly unlessit is explicitly storedin memory which typically is smallrelatve to the size of
the datastreams.

Operatig in the datastreammodeldoesnot precludethe preséice of somedatain corventioral stored
relaions. Often, datastrean queries may perfam joins betwea datastreamsand stored relaional data.
For the purposesof this paper, we will assunethatif stored relationsareused, their contentsremainstaic.
Thus,we precludeary potential transa&tion-processingissuesthatmight arisefrom the preseceof updates
to staredrelaionsthatoccu conaurrenty with data streamprocessing
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21 Queries

Queriesover continuous datastreamshave muchin commonwith queries in atradtional datatasemanage
mentsysten. However, therearetwo importart distinctions peculiar to the datastrean model. The first
distinctionis betweerone-imequeliesandconinuous queaies[84]. One-timequeies(aclassthatincludes
traditional DBMS queries)arequeiesthatareevaluatedonceover a point-in-time snaps$ot of the dataset,
with the answemretumedto the user Continwbusqueries, on the otherhand areevaluatedcontinuowsly as
datastreamsontinueto arrive. Continlousqueriesarethemoreinterestirg classof datastreanqueries,and
it is to themthatwe will devote mostof our attentbn. The answerto a cortinuous quely is producedover
time, always reflectirg the strean dataseensofar. Continuousqueryanswersnaybestoredandupdatdas
new data arrives, or they may be produwced asdatastreansthemséves. Sometimesoneor the othermode
is preferred.For example aggregationqueries mayinvolve frequentchargesto answertuples, dictating the
stored apprach,while join queies are monotoric and may produwce rapid, unbowndedanswes, dictating
the streamapprach.

The secoml distinction is betwee predefned queies andad hoc queies. A predefinedquel is one
that is suppied to the datastreammanagemet systen befare ary relevant datahasarrived Predefind
gueilies aregenenrlly continuousqueries, althoughscheluled onetime queies canalsobe predefinel. Ad
hoc queiies, on the other hand areissuedonline afterthe datastreamshave already begun Ad hocqueries
canbeeither one-ime queries or continuows queries. Ad hocqueiiescomplicatethe desgn of adatastream
managenentsystan, both becasethey are not knownin advance for the purpcsesof quey optimization,
idertification of commonsubepressons acros queies, etc., and more importantly becawse the corred
answerto an ad hoc query may requre referencing dataelements that have alread/ arrived on the data
streans (and potertially have already beendiscarded. Ad hoc queties are disaussedin more defail in
Section4.6.

2.2 Motivating Examples

Examplesmotivating a datastream sydem canbe found in mary apdication domairs including finance,
webappications, secuity, networking, andsen®r monitoring.

¢ Traderlot [85] is aweb-asedfinancialseard engne thatevaluaesqueriesover real-ime streaming
financial datasuchasstod tickers andnews feeds. The Traderbd website [85] givessomeexamples
of one-ime andcontinuousqueriesthatarecommony posel by its cusbmers.

¢ Modem searity applications often apply sophisticatedrulesover network paclet streams.For exam-
ple,iPolicy Networkg52] providesanintegratedsecuity platform providing servicessud asfirewall
support andintrusion detedion over multi-gigabit network paclet streams Sucha platform nealsto
perform complec strean processirg including URL-filtering basedon tablelookups,andcorrelation
acrassmultiple network traffic flows.

¢ Large web sitesmonitor web logs (clickstreams) online to enalte applicatiors suchas persmaliza
tion, perfomancemonitaring, andload-balarcing. Someweb sitessened by widely distributedweb
seners(e.g.,Yahoo[95]) mayneedto coordnatemary distributedclickstrean analysese.qg.,to track
heavily accesedwebpagesaspartof ther real-ime perfoomancemonitoling.

e Thereareseveralemeping applicatiorsin theareaof senso monitaring [16, 58] wherealarge numbe
of sersorsaredistributedin the physial world andgeneatestreansof datathatneedto be combine,
monitored,andandyzed



The application domainthat we usefor more detailed examplesis netwok traffic manayement which
involves monitaring network packet header informaton acros a set of routas to obtan information on
traffic flow paterns. Basedon a de<cription of Balu andWidom [10], we delve into this example in some
detal to help illu stratethat continuous queties arise natually in real apgdications and that corventional
DBMS techology doesnot adequatel support such queries.

Consicer the network traffic manag@mentsygem of a large network, e.g.,the backoonenetwork of an
IntemetService Provider (ISP)[30]. Suchsysemsmonitoravariety of cortinuous datastreamghatmaybe
charaterized asunpredidableandarriving at a high rate,including both padet tracesand network petfor-
mancemeasuremats. Typically, curent traffic-maragementools eithe rely on a specidpurposesygem
thatperformsonline processingof simplehandcoded continuousqueries,or they justlog thetraffic dataand
perform periodic offline quey processing.Corverntional DBMS’saredeemednadeaiateto providethekind
of online continuous query processingthatwould be mostbendicial in this doman. A datastrean sydem
thatcoud provide effective online processimg of continuous queties over datastreanswould allow network
opeiatorsto install, modify, or remove appiopriate monitoring quetiesto suppat efficient managmentof
thelSP’s network resaurces

Consicer the following conciete setting. Network paclet traces are being collected from a numberof
links in the network. Thefocusis ontwo specfic links: a custanerlink, C, which conrectsthe network of
acugomerto the ISP’s network, anda badkbonelink, B, which connets two routerswithin the backlone
network of the ISP, Let C and B dende two streans of packet tracescorrepondng to these two links. We
assume,for simplicity, thatthetraces contan justthe five fields of the padket heade thatarelisted below

src. IP addressof paclet sende.

dest: IP addressof paclet destiration

id: ldentificationnumbe givenby sendbr sothatdestnationcanuniquely identify eachpaclket.
len: Lengthof the packet.

time: Timewhenpadet heade wasrecordd.

Consicer first the continuousquery ¢, which compute load on thelink B averaged over one-mirute
intervals, notifying the network opematorwhentheload crosse a spedfied threshold¢. Thefunctionsget -
m nut e andnot i f yoper at or havethenatual interpretatian.

Q1: SELECT noti f yoper at or (sum(len))
FROM B
GROUPBY get m nut e(time)
HAVING sum(len) > ¢

While the functiondity of sucha query may possibly be achevedin a DBMS via the useof triggers,we
arelikely to prefer the useof spedal techriquesfor performancerea®ns. For example,considcer the case
wherethelink B hasavery high throughpu (e.g.,if it wereanopticd link). In thatcase we maychocseto
comput anappoximate answerto (; by employing rancdom samplingon the stream— ataskoutsidethe
reachof standrdtrigger mechaisms.

Thesecod query (), isolatesflows in thebadkbonelink anddeteminesthe amountof traffic geneated
by eat flow. A flow is definedhereasa sequenceof packets grouped in time, and sentfrom a spedfic
souiceto a specificdestnation.



Q2: SELECT flowid, src,dest sum(len) AS flowlen
FROM (SELECT src,dest,len,time
FROM B
ORDERBY time)

GROUPBY src,dest,get f | owi d(src,dest time)
AS flowid

Hereget f | owi d is a userdefinedfunction which takes the souce IP addres, the destiration IP address,
andthetimestanp of a packet, andreturnstheidentifier of the flow to which the padketbelorgs. We assume
thatthe datain theview (or table expression)in the FROM clauseis passedo theget f | owi d functionin
the orderdefinad by the ORDERBY clau.

Obsenre thathanding @ over streamB is particularly chalenging dueto the preenceof GROUPBY
andORDER BY clauses,which leadto “blocking” opemtorsin a queryexecttion plan.

Consicer now thetaskof detemining the fraction of the backlonelink’ s traffic thatcanbe attributedto
the custanernetwork. This query @3, is anexampleof the kind of ad hoc continuousqueiesthatmaybe
registeredduring periods of congestionto detemine whethe the cusomernetwork is thelikely caus.

Qs3: (SELECT court (*)

FROM C,B
WHERE C.src=B.srcandC.dest= B.dest
andC.id=B.id) /

(SELECT court (*) FROM B)

Obsene that Qs joins streans C' and B on their keys to obtaina countof the numbe of commonpaclets.
Sincejoining two streanscoud potentially require unbowndedintermediatestarage(for exampleif thereis
no boundon the delaybetwea a paclet shaving up on the two links), the usermay prefer to compue an
appoximateanswer Oneappraimationtechnguewould beto maintainbounded-memaorysynogsesof the
two streams(seeSection6); altematively, one could exploit aspectsof the applcation semantts to bourd
therequred storaye (e.g.,we may know thatjoining tuplesarevery likely to occurwithin a boundedtime
window).

Our final exampke, @4, is a continuousqueay for monitoting the source-desination pairs in thetop 5
percent in termsof backbonetraffic. For easeof expositon, we emplgy the WITH congruct from SQL-
991[87].

Q4+:WITH LoadAS
(SELECT src,dest,sum(len AS traffic
FROM B
GROUPBY src,dest)
SELECT src,dest traffic
FROM LoadAS L,
WHERE (SELECT  court(*)
FROM LoadAS Ly
WHERE  Ls.traffic < L;.traffic) >
(SELECT  0.95xcount() FROM Load)
ORDERBY traffic



3 Review of Data Stream Projects

We now provide an overview of severd pastandcurrent projeds related to datastrean managment. We
will revisit someof theseprojedsin later sectonswhenwe disausstheissuesthatwe arefadng in building
ageneal-puposedata streammanagemet systen at Stanford

Contiruousqueties were usedin the Tapesty systan [84] for content-basedfiltering over an append-
only datalaseof email and bulletin boardmessags. A restricted subgt of SQL was usal asthe quely
languagein orderto provide guamanteesaboutefficient evaluaion andappend-ony quey resuts. The Alert
system [74] providesa mechansmfor implemerning eventcondtion-action style triggersin a corventional
SQL datéase,by using continuousqueies definedover special appem-only active tables The XFilter
conkent-baedfiltering systen [6] perfams efficient filtering of XML documeis basedon user profiles
expressedascontinuousqueriesin the XPath language[94]. Xylemd67] is a similar content-basedfiltering
system that enable very high throughpu with a restricted query language. The Tribeca stream datalase
manage [83] providesresticted quaying capaility over network packet streams. The Tangram stream
guery processingsysem [68, 69] usesstream processimg techriqguesto analyze large quartities of stored
data.

The OpenCQ[57] and NiagaraCQ [24] sysemssuport corntinuous queriesfor monitaring persigent
datasetsspreal over awide-aeanetwork, e.g.,websitesover the Internet. OpenCQusesa queryprocess-
ing algarithm basedon incrementalview mainterance,while Niagara&CQ addressesscalaility in numbe
of queries by proposingtechnguesfor grouping continuous queries for efficient evaluation. Within the Ni-
agaraCQprojed, Shanmugaswdaran et al. [79] discussthe problem of supporting blocking opematorsin
qguer plansover data streamsandViglas and Naughbn [89] proposerate-basedoptimizaion for queries
over datastreamsanew optimizationmethalology thatis basedn strean-arrival anddataprocessingrates.

TheChronicle datamodel[55] introducedappend-only orderedseqencesof tuples(chronicles), aform
of datastreams. They definal a restricted view definition language and algebra(chronicle algebra) that
opeiatesover chronicles togeherwith tradtional relations. The focusof the work wasto ensue thatviews
definedin chroricle algebra could be maintaired incremenally without storing any of the chronicles. An
algelra anda declaative quey languagefor queying ordeled relations (sequence) was proposedby Se-
shadi, Livny, andRamakrisinan[76, 77, 78]. In mary applicatiors, continuousqueries needto referto the
sequencirg aspecbf streams,particularly in theform of sliding windows over streamsRelatedwork in this
catgory alsoincludeswork on tempoal [80] andtime-seies databaes[31], wherethe ordeiing of tuples
implied by time canbe usedin quenryjing, indexing, andqueryoptimization.

The body of work on materalized views relatesto cortinuous queies, since materalized views are
effectively queiiesthatneedto bereevaluatedor incrementally updatedwhenever the basedatachanges. Of
particularimportanceis work on self-mantenance[15, 45, 71]—ensuing thatenoudh datahasbeensaredto
maintan a view evenwhenthe basedatais unavailable—andthe related problem of data expiration [36]—
detemining whencertin basedata canbe discardedwithout compiomisingthe ability to maintan a view.
Neverthdess,severaldifferencesexist betwee materiaizedviews andcontinuows queries in thedatastream
context: corntinuousqueries may strean ratherthanstore their resuts, they maydealwith append-mly input
data,they may provide appioximateratherthan exactansvers,andtheir processingstratgy may adgt as
charateridics of the datastreans changg.

The Telggraph project[8, 47, 58, 59] shars sometarget apdicationsandbasc techrical ideaswith a
DSMS. Telegraph usesan adaptive query engire (basel on the Eddy conaept [8]) to processqueies effi-
cienty in volatile andunpredictableenvironments(e.g.,autlmomousdatasouresoverthelnternet,or senso
networks). Maddenand Franklin [58] focus on query execution strategies over datastreamsgenentedby
sengrs,andMadden etal. [59] discussadatiive processirg technquesfor multiple continuous queres. The
Tukwila systan [53] alsosuppats adative queryprocessim, in orderto perfoom dynamic dataintegration
over autoromousdatasour@s.



The Aurora project[16] is building a new dataprocessirg systen tagetedexclusvely towards stream
monitaring applicatiors. The core of the Aurora sysgem conssts of a large network of triggers. Each
trigger is a dataflow graphwith eachnodebeing oneamongsevenbuilt-in operdors (or boxesin Aurora’s
termindogy). For ead streammonitoring apdication usingthe Aurorasysem,anapplicationadmiristrator
creatsandaddsoneor moretriggersinto Aurora’s trigger network. Aurora performsboth compile-time
optimization(e.g.,reorceringoperdors,shaedstatefor commonsubepressons)andrun-ime optimization
of thetriggernetwork. As partof runstime optimizaion, Auroradetedsresouceoverload andperfamsload
shedling basel on apdication-speific measuesof quality of senice.

4 Queriesover Data Streams

Queryprocessingin the datastrean model of compugtion comeswith its own unique chalenges. In this
secton,we will outlinewhatwe corsiderto bethe mostinteresting of thesechallenges,anddescibe severd
altemative apprachedor resohing them. Theissuesraisedin this sectbn will framethe disaussia in the
restof the pager.

4.1 Unbounded Memory Requirements

Sincedatastreans are potentially unbaundedin size,the amountof storaye requred to compue an exact
answerto a datastream query may alsogrow without bound. While external memoryalgorithms[91] for
handing datasetslarger thanmain memoryhave beenstuded, suchalgorithmsare not well suited to data
strean applications since they do not suppat continuousqueiies and are typically too slow for real-ime
respmse. The continuousdatastreammodelis mostapgdicable to probemswheretimely quay resporses
areimportant and thereare large volumesof datathat are being continualy producedat a high rate over
time. New datais congantly arriving even asthe old data is being processe¢ the amoun of compuation
time perdaia elemenimustbelow, or elsethelateng of thecompuationwill betoo high andthealgorithm
will not be ableto kegy pacewith the datastream.For this reasm, we areinterestedin algorithmsthat are
ableto confinethemsévesto mainmemorywithout accessg disk.

Arasuetal. [7] took someinitial stepstowardsdistinguishingbetweea queriesthatcanbe ansveredex-
actly using agivenboundedamountof memoryandqueries thatmustbe appioximatedunlessdisk accesses
areallowed.They consder alimited classof quetiesand,for thatclass, provide a complde chaacteization
of thequeiesthatrequre a potentially unboundel amountof memory(proportional to the sizeof the input
datastreans) to answer Their resultshowns that without knowing the size of the input datastreamsijt is
impossble to placealimit onthememoryrequrementdor mostcommonqueiiesinvolving joins, unlessthe
domairs of the attributesinvolved in the queryarerestrided (eithe bas& on known chaiactersticsof the
dataor through theimpostion of quay predcateg. The basicintuition is thatwithout domainrestictions
an unbowndednumbe of attribute values mustbe remembeed, becaisethey might turn out to join with
tuples thatarrive in thefuture. Extendng theseresuts to full geneality remairs anopen reseach probem.

4.2 Approximate Query Answering

As descibedin the previous sectbon, whenwe arelimited to a bourdedamountof memoryit is not always
possdble to produceexactanaversfor datastream queries; however, high-quality appioximateanswes are
oftenaceptabkin lieu of exactanswers Approximationalgaithmsfor prodemsdefined over datastreams
hasbeena fruitful reseach areain the algarithms communty in recen years,as discussedin detail in
Section6. This work hasled to somegeneal techriquesfor data reduwction and synopsis constuction,
including: sketches|5, 35|, rancom samplirg [1, 2, 22], histograms[51, 70], andwaveles[17, 92]. Based
onthes summarizabn techhiques, we have seersomework onappoximatequelry answerirg. For example,



recen work [27, 37] develops histogram-baedtechnguesto provide approiimate answerdor correlated

aggregate queries over datastreamsand Gilbert et al. [40] presenta geneal appioachfor building small-

spa® summarieover datastreansto provide appoximateansversfor mary clasesof aggegatequeries.
However, reseach problensabourd in the areaof appioximatequey answeing, with or without streams.
Eventhebasicnotion of appraimationsremairs to beinvestigatedn detailfor queriesinvolving morethan

simpleaggegation. In the next two subsetions, we will touchupon several appioache to appioximation,

someof which arepecular to the datastreammodelof compuation

4.3 Sliding Windows

Onetechnque for producing an appioximate answerto a datastream quely is to evaluae the query not
over theentire pad history of the datastreams,but rather only over sliding windowsof recen datafrom the
streans. For example,only datafrom the lastweekcoud be corsideral in producing query answerswith
dataolder thanoneweekbeingdiscarded

Imposing sliding windowson datastreamss a naturd methodfor approximation thathasseveralattrac
tive propeties. It is well-definedand easilyundestood the semanits of the appioximation areclear so
thatusersof thesysemcanbe confideri thatthey understam whatis givenupin producingtheapproimate
answer It is deteministic, sothereis no darger that unfortunae randam choiceswill producea badap-
proximation. Mostimportartly, it emphaizesrecent datg which in the majority of realworld applications
is moreimportant andrelevant thanold data:if oneis trying in real-ime to make senseof network traffic
pattens,or phonecall or transa&tion recods, or sciertific senso datg thenin geneal insightsbasel onthe
recen pastwill be moreinformative and uselil thaninsights basel on staledata In fad, for mary sud
applcations,sliding windows canbethought of notasanapproaimation tecmiquereluctantly imposeddue
to the infeasibility of computng over all historical data, but rather aspart of the desred quay sematics
explicitly expressedaspart of the usets query For example queries () and (@4 from Section2.2, which
trackedtraffic on the network backlone,would likely be appliednotto all traffic over all time, but rather to
traffic in therecen past.

Therearea variety of resarchissuesin the useof sliding windowsover datastreams To begin with,
aswe will disaussin Section5.1, thereis the fundamentalissueof how we definetimesampsover the
streansto facilitate theuseof windows. Extendng SQL or relaional algebrato incorporate explicit window
spedfications is nontrivial andwe alsotouch uponthis topic in Sectio 5.1. Theimplementatia of sliding
window queries andtheir impacton quay optimizationis a largely untouchedarea In the cas wherethe
sliding window is large enowgh so that the entire conterns of the window canrot be buffered in memory
therearealsotheaeticd chdlenges in desgning algarithms that cangive appioximateanswes usingonly
the available memory Somerecent resuts in this vein canbefound in [9, 26].

While existing work on sequaiceandtemporaldatabasefhasaddessedmary of theisswesinvolvedin
time-sensitive queries (a classthatincludessliding window queries)in a relaional databae context [76,
77, 78, 80], differences in the datastream computaion modelpose new chdlenges. Researh in tempora
datalased80] is concerna primarily with maintaning a full history of eachdatavalueover time, while in
a datastrean sysemwe areconcened primarily with processingnewn dataelements on-the-fly. Sequene
datalased[76, 77, 78] attemptto produce quey plansthatallow for stream acces, meaningthata single
scanof theinput datais sufficient to evaluae the planandtheamountof memoryrequiredfor planevaludion
is aconshant,independen of the data. This modelassumeshatthe datébasesygemhascontmol over which
seqenceto processtuplesfrom next, e.g.,whenmemging multiple seqenceswhich we canrot assumen a
datastrean sysem.



4.4 Batch Processing, Sampling, and Synopses

Anothe class of technuesfor producing approximateanswes is to give up on processimg every datael-
ementasit arrives, resating to somesort of samplng or batth processing techrique to spea@ up query
executon. We descibe a genenl framavork for thesetechngues. Supposethat a datastreamquery is
answerd using a datastrudure that can be maintaned incrementally The most gereral descrption of
suchadata strudureis thatit suppats two operaions,updat e(t upl e) andconput eAnswer (). The
updat e operaion is invoked to updde the datastrudure aseachnew dataelemen arrives,andthe com
put eAnswer methodprodwcesnew or updatedrestuts to the query Whenprocesing continuousqueries,
thebeg scerariois thatboth opeationsarefastrelaive to the arrival rateof elemeisin the datastreans. In
this caseno specal techriquesarenecesaryto keg up with the data streamandproducetimely answers
aseachdataelementarrives,it is usedto updat the datastructure andthennew resuts arecomputel from
the datastructure,all in lessthanthe average inter-arrival time of the dataelements If oneor both of the
datastructureoperations areslow, however, thenprodicing anexactansver thatis continually up to dateis
not possble. We considerthetwo possble bottlenecls andapprachesor dealng with them.

Batch Processing

The first scenaio is that the updat e opemtion is fastbut the comput eAnswer operdion is slow. In
this case,the naturd solution is to processthe datain batcles. Ratherthan producing a contnually up-
to-dae answver, the dataelements are buffered as they arrive, and the answerto the query is compued
periadically astime permits The querly answermay be corsideral approximatein the sensethatit is not
timely, i.e., it representsthe exact answer at a point in the recert pag rather thanthe exact answerat the
preseit moment. This appoachof appoximation through batch processingis attrective becaiseit does
not caus ary uncertinty abaut the accuacy of the answey sacrficing timelinessinstead. It is alsoa good
appoachwhendatastreans are bursty. An algarithm that cannd keepup with the peakdatastreamrate
may be ableto handk the average strean ratequite comfortably by buffering the streamsvhenther rateis
high andcatcing up during the slow periods. This is theapprachusedin the XJoin algorithm [88].

Sampling

In thesecad scenaio, conmput eAnswer maybefast buttheupdat e operdion is slow — it takeslonge
thantheaverageinter-arrival time of thedataelements. It is futile to attemptto make useof all thedatawhen
computng an answey becawse dataarrivesfaser thanit canbe processed Instead,sometuples mustbe
skippedaltogethe, sothatthe query is evaluatedover a sampleof the datastreanrathe thanovertheentire
datastrean. We obtain an approaimate answey but in somecase one cangive confidexceboundson the
degree of errorintroducedby the sampling process[48]. Unfortunatdy, for mary situatons (including most
guetiesinvolving joins[20, 22]), samplingbasel appoache canrot give reliable approximation guarartees.
Desigring samplirg-basd algoiithmsthat canproduceappoximateanswerdhatareprovably closeto the
exactanswelis animportantandactive areaof resarch.

Synopsis Data Structures

Quite obiously, datastrucureswhereboth theupdat e andthe conput eAnswer opeatiors arefastare
mostdesirdle. For classesof data streamquelies whereno exactdatastructurewith the desied properties
exists, onecanoften desgn an apploximatedatastrucure that maintairs a small syn@sisor sketch of the
dataratherthan an exact representtion, andtherebre is able to keepcompuation per dataelementto a
minimum. Performingdatareduction throuch syngsisdatastructuresasan alternative to batchprocessirg



or samplirg is a fruitful reseach areawith particular relevanceto the data streamcompuation model.
Synopss datastructuresaredisaussedn moredetdl in Section®.

4.5 Blocking Operators

A blocking queryopeator is aqueryoperdor that is unable to prodwethefirst tupleof its output until it has
seerits entireinput. Sortingis anexampleof ablocking operator, asareaggreyationoperdorssuchasSUM,
COUNT, MIN, MAX, andAVG. If onethinks aboutevaluatingcontinuous streamqueries usingatradtional
treeof queryoperdors, wheredatastreans enterat the leavesandfinal queryansversare producedat the
root, thenthe incorporation of blocking operabrs into the query tree posesproblems. Sincecontinuous
datastreamsamay be infinite, a blocking opemator that hasa datastrean asoneof its inputs will never see
its entireinput, andtherebre it will never be ableto produceary outpu. Clearly, blocking operdors are
not very suitabe to the data streamcomputdion model, but aggegatequeries are extremelycommon and
sorted datais easie to work with and can often be processedmnore efficiently thanunsated data. Doing
away with blocking opeiatorsaltogetherwould be probematic, but deaing with themeffectively is one of
themorechdlenging aspets of datastrean compuation

Blocking opematorsthat arethe root of a tree of quely operdors are more tradable than blocking op-
eratas thatareinterior nodes in the tree, prodicing intermediateresuts that are fed to othe operdors for
further processing(for example, the “sort” pha® of a sortimeigejoin, or anaggegateusedin a subqtery).
Whenwe have a blocking aggreyationopeatorat theroot of a quey tree,if the operdor producesa single
value or a small numberof values, then updatesto the answercan be streamedut asthey are produced.
Whenthe answeris larger, however, suchaswhenthe quay answver is a relation that is to be producedin
sorted order, it is morepractical to maintaina datastructure with the up-to-dateanswey sincecontinually
retransmitting the entire ansver would be cumbesome. Neither of these two appioache works well for
blocking operdorsthat produwce intermediateresuts, however. The cental problem is thatthe resuls pro-
ducel by blocking opeatorsmay corntinueto change over time untl all the datahasbeenseen sooperdors
thatarecornsumingthoseresuts cannd male reliable decisbnsbasedon theresuts at anintermedate stage
of quey execuion.

Oneapprachto handing blocking operabrs asinterior nodesin a quay treeis to repacethemwith
non-blocking andogsthatperform approimately the sametask An exampleof this approachis the juggle
opeiator [72], which is a non-blocking version of sort: it aimsto locally reorde a datastreamso that
tuplesthatcomeearlierin the desiedsortordea areproducedbefore tuplesthatcomelater in the sortorder,
althoughsometuplesmaybedeliveredout of orde. An interestingopenproddemis how to extendthis work
to othe typesof blocking operabrs, aswell asto quantify the errar thatis introduced by appro<imating
blocking operdorswith non-blocking ones.

Tucker et al. [86] have proposeda different apprachto blocking opemtors. They suggestaugmeiing
datastreamswith asseribns abaut whatcanandcannd appearin the remairder of the datastrean. These
assetions, which arecalledpurnctuatons areinterleavedwith thedataelemens in the streamsAn example
of thetype of punctuation onemight seein a streamwith anattribute called daynunber is “for all future
tuples, daynumber > 10.” Upon seeingthis puncuation an aggreation operator that was grougng by
dayrumbercould streemoutits ansversfor all daynunber s lessthan10. Similarly, ajoin operdor could
discad all its saved stae relating to previously-seentuples in the joining streamwith daynumber < 10,
redwcing its memoryconsumption

An interesting openproblemis to formdize the relatonship betweenpunctuation andthe memoryre-
guirementsof a query — e.g.,a querythat might otherwiserequire unbaundedmemorycould be proved
to be answerake in boundedmemoryif guaantee abou the preenceof appiopriate punctuation are pro-
vided. Closel relatedis theideaof schrema-level assetions (congraints) on datastreans, which alsomay
helpwith blocking operatorsandotheraspets of datastreamprocessing For example, we may know that
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daynunber s areclusteredor strictly increasing or whenjoining two strean we may know thata kind of
“referentid integrity” existsin thearrival of join attributevalues.In both casesve mayusethesecongraints
to “unblock’ operdorsor redice memoryrequrements

4.6 QueriesReferencing Past Data

In the datastreammodelof compuation, oncea dataelementhasbeenstreamedby;, it cannd berevisited.
This limitation meanghatad hoc queriesthat areissued after somedatahasalrealy beendiscadedmay be
impossble to answeraccuately. Onesimplesolution to this probem is to stipulatethatad hoc queriesare
only allowedto referencefuturedata they areevaluatedasthough the datastreansbeganatthe pointwhen
the querywasissued andary paststrean elemerts areignored (for the purpcsesof thatquery). While this
solution maynot apper very satisfing, it mayturn outto be peifectly acceptable for mary applicatiors.

A moreambitiousapproachto hardling adhocqueries thatreferacepag datais to maintan summaris
of datastreans(in theform of geneal-puposesynosesor aggrgates)thatcanbeusedto give appraximate
answergo future adhocqueries. Takingthis approachreqgures making adecison in advanceabou the best
way to usememaoryresoucesto give goodapprximateanswergo abroadrangeof possble future queries.
The problem is similar in somewaysto problemsin physial datebasedesignsuchasselecion of indexes
and materialzedviews [23]. However, thereis animportant difference: in atradtional databasesystan,
whenanindex or view is lacking, it is possble to go to the undetying relation, albet at anincreasedcost.
In thedatastrean modelof compuation, if theappopriate summarystrudureis not preset, thenno further
recouseis available.

Evenif adhocqueriesaredechkredonly to pertan to future data,therearestill reseach issuesnvolved
in how bestto processthem. In datastrean applications, wheremost quelies are long-ived continuous
guetiesrather thanepheneralonetime queies,the gainsthatcanbe achieved by multi-queryoptimization
canbe significantly greder thanwhatis possble in tradtional datalasesysems. The presewe of ad hoc
gueties trandorms the problem of finding the bestquery planfor a setof queies from an offline probdem
to an online probdem. Ad hoc queries alsoraisethe isswe of adagivity in quey plans. The Eddy query
executon framework [8] introducesthe notion of flexible queryplans thatadag to chargesin dataarrival
ratesor otherdata charaterigics overtime. Extendng thisideato adap thejoint planfor asetof coninuous
guetiesasnew queries areaddedandold ones areremoved remainsanopenreseach area.

5 Proposal for aDSMS

At Stanfordwe have begun the desigh and prototype implementatian of a comprénensve DSMS called
STREAM(for STanford StREamDatA Managej [82]. As disaussedin earlier sectons, in a DSMStradi

tiona one-tmequeiesarereplacedor augnentedwith coninuous queriss, andtechriquessuchassliding
windows, synosis structures, apprximate answersand adagive query processingbecane fundamental
featuesof the systan. Otheraspets of a complkete DBMS alsoneedto be reconsdered, including query
languages storage andbuffer managment,userandapgication interfaces andtransactionsuppat. In this
secton we will focus primaiily on the querly languageandquery processingcompmentsof a DSMS and
only touch uponotherissuesbasel on our initial experiences.

5.1 QueryLanguagefor aDSMS

Any gereral-purpos datamanagenentsystan musthave aflexible andintuitive methodby whichtheuses
of the systen canexpress their queries. In the STREAM project,we have chosa to usea modifiedversian
of SQL asthe queryinterface to the sysem (althoughwe arealsoproviding a meango submitquey plars
diredly). SQL is a well-known languagewith a large use popuation. It is also a dedarative language
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thatgivesthe sysemflexibil ity in seleding the optimalevaluation procedureto producethe desirael answer
Other methodsfor receving queies from usersare possibie; for examplke, the Aurora systemdescrbed

in [16] usesa graphical “boxesandarrons” interfacefor specfying dataflow through the systan. This

interfaceis intuitive andgivesthe usermorecortrol over the exactseriesof stepsby whichthequeay answer
is obtainedthanis provided by a dechlrative quely language.

The main modificaton that we have madeto stardard SQL, in addtion to allowing the FROM claus
to refer to streamsaswell asrelatons, is to exterd the expressvenessof the query languagefor sliding
windows. It is possible to formulate sliding window quetiesin SQL by referring to timestanpsexplicitly,
but it is often quite awkward. SQL-99[14, 81] introducesanaltical functionsthat partidly addessthe
shotcomings of SQL for expressingsliding window queries by allowing the spedfication of moving aver-
agesandotheraggreyationopemtionsover sliding windows. However, the SQL-99syntaxis not sufficiently
expressve for datastreemqueiessinceit cannd beappled to non-aggreationoperdions suchasjoins.

The notion of sliding windows requres at leastan ordeiing on datastream elements. In mary cass,
the arrival orde of the elemens sufficesasan “implicit timestamp” attachedto eachdataelement;how-
ever, sometimest is prefaable to use “explicit timestanps” provided as part of the datastream. For-
mally we say (following [16]) that a datastrean S conskts of a setof (tuple, timeseamp) pairs S =
{(s1,11), (82,%2),-- -, (Sn, %) }. Thetimesampattribute coud be a traditional timestampor it could be a
sequencenumber — all thatis required is that it comesfrom atotally ordered domainwith a distancemet-
ric. Theordeiing inducedby thetimestmpsis usedwhenselecting the dataelementanakingup a sliding
window.

We extend SQL by allowing an optional window specfication to be provided, endosedin bradets,
after a stream(or subquery producing a stream) that is suppled in a querys FROM clause. A window
spedfication corsistsof:

1. anoptional partitioning clause,which parttionsthe data into severd groupsandmaintinsa sepaate
window for eachgroup

2. awindow size, eithe in “physical” units (i.e., the numberof dataelementsin the window) or in
“logical” units (i.e., therange of time coveredby awindow, such as30 day9, and

3. anoptionalfiltering predcate.

As in SQL-99, physical windows are spedfied usingthe ROAS keyword (e.g.,RONS 50 PRECEDI NG),
while logicd windowsarespecified via the RANGE keyword (e.g.,RANGE 15 M NUTES PRECEDI NG).
In lieu of aformal grammaywe preset severd examplesto illustrateour languageextenson.
Theundelying souiceof datafor our exampleswill beastrean of teleghonecall recads,eachwith four
attributes cust oner _i d,t ype, m nut es,andt i mest anp. Thet i mest anp attributeis theordering
attributefor therecads. Suppog auserwantedto compue theaveragecall length but consdering only the
tenmostrecent long-distancecalls placed by eachcustaner. The quey canbe formulatedasfollows:

SELECT AVG(Sminutes)

FROM  CallsS[PARTITION BY S.customeid
ROWS 10 PRECEDING
WHERES.type="Long Distan®’]

wherethe expressionin braesdefinesa sliding window on the streamof calls.

Contrast the previous query to a similar one that compute the averege call lengh corsiderng only
long-distancecallsthatareamongthelast10 calls of all typesplacedby eachcugomer:
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SELECT AVG(Sminutes)

FROM  CallsS[PARTITION BY S.customeid
ROWS 10 PRECEDING]

WHERE S.type='Long Distane’

Thedistinction betweerfiltering prediatesappliedbefare calcuating the sliding window cutoffs andpred
icates applied after windowing motivatesour incluson of an optional WHERE clause within the window
spedfication.

Hereis a slightly more complcatedexamplereturning the averagelengh of the last 1000 teleplone
callsplacedby “Gold” cusbmers:

SELECT AVG(V.minutes)

FROM  (SELECTS.minutes
FROM Calls S, Customersl
WHERES.custoner.id = T.custaner.id
AND T.tier="Gold’)
V [ROWS 1000PRECHING]

Noticethatin this example, the streamof callsmustbejoinedto the Custanersrelaton before applying the
sliding window.

5.2 Timestampsin Streams

In the previous secton, sliding windows are definedwith respet to a timesamp or sequ@&ce numberat-
tribute representirg a tuple’s arrival time. This appioachis unambiguots for tuples thatcomefrom a single
strean, but it is lessclearwhatis meantwhenattemging to apply sliding windows to composie tuples that
arederived from tuplesfrom multiple undetying streamge.g.,windowson the output of a join opetor).
Whatshout thetimestampof atuplein thejoin resut bewhenthetimestanpsof thetuplesthatwerejoined
to form theresut tuple aredifferent? Timestampssuesalsoarisewhena setof distributedstreansmake up
asinglelogical strean, asin thewebmonitoring appication desribedin Section2.2,or in truly distributed
streanssud assen®r networks whencompaimg timestampsacrasstreamelements may berelevant.

In the previoussection we introducedimplicit timestampsin which the sygem addsa specia field
to eachincoming tuple, and explicit timestamps,in which a dataattribute is desighatedasthe timesamp.
Explicit timesampsare usedwhen eachtuple corresponls to a real-world event at a particular time that
is of importanceto the meanirg of the tuple. Implicit timestampg are usedwhen the datasource does
not alrealy include timestampinformation or whenthe exact momentin time asso@tedwith atupleis
not important, but geneal consiceratins suchas “recent” or “old” may be importart. The distinction
betweernimplicit andexplicit timestamgis similarto thatbetwee transactionandvalid timein thetempora
datalaseliterature[80].

Explicit timestampshave thedravbad thattuplesmaynotarrive in the sameorderastheir timestamgg
— tuples with later timestampamay comebefore tuples with earler timestamps. This lack of guaantea
ordering makesit difficult to perfam sliding window compuations that are definedin relation to explicit
timestanps,or ary otherprocessingbasel on order However, aslong asaninput streamis “almost-soted”
by timestamp,exceptfor locd pertubatiors, then out-df-order tuples can easily be corrected with littl e
buffering. It seansreasmableto assumehatevenwhenexplicit timesampsareused tuples will be deliv-
eredin roughy increasingtimestamporder.

Let us now look at how to assignappr@riate timestampsto tuples outpu by binary opeators using
join asan example. Thereare severd possble apprachesthat could be taken; we discusstwo. The first
appoach,which fits bette with implicit timesamps,is to provide no guamlanteesabou the outpu orde of
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tuples from a join opeator, but to simply assume that tuplesthat arrive earlier arelikely to passthrough
thejoin earier; exad ordeiing may depand on implementation andscheluling vagaries. Eachtuple thatis
producedby ajoin operatoris assigmedanimplicit timestmpthatis setto thetime thatit wasproducedby
thejoin opeator This“besteffort” appioachhastheadvantagethatit maximizesimplementation flexibil ity;
it hasthedisadrantage thatit malkesit impossilde to imposeprecisely-defined,detaministic sliding-window
semanits on theresuls of sulgueries.

Thesemndapprach,whichfits with either explicit orimplicit timestampsis to havetheuse specfy as
partof thequay whattimestanpis to beassigredto tuplesresuling from thejoin of multiple streams.One
simplepolicy is that the orderin which the streamsarelisted in the FROM claus of the quey representsa
prioritization of the streans. Thetimestmpfor atuple output by ajoin should bethetimestmpof thejoin-
ing tuple from theinput streamlisted first in the FROM clause. This appioachcanresut in multiple tuples
with the sametimestanp; for the purposeof ordeling the resuts, ties canbe broken usingthe timestanp of
the otherinput strean. For example if thequely is

SELECT *

FROM  S1[ROWS 1000PRECEDING],
S2[ROWS 100PREGEDING]

WHERE S1.A=S2.B

thenthe output tupleswould first be sorted by thetimestanp of S1,andthentieswould bebrokenaccordng
to thetimesampof S2.

The se®nd, stricter appoachto assiguing timestmpsto the resuts of binary operdors can have a
dravbad from animplemenation point of view. If it is desrable for the output from a join to be sorted by
timestanp, the join operdor will needto buffer outpu tuplesuntil it canbe certainthat future input tuples
will not disrupt the ordering of outpu tuples. For example,if S1's timestamphaspriority over S2's anda
recen S1ltuplejoinswith anS2tuple, it is possille thatafuture S2tuplewill join with anolderS1tuplethat
still falls within thecurrentwindow. In thatcasethejoin tuple thatwasproducedsecad belongsbefare the
join tuple thatwasproducedfirst. In a querytreeconssting of multiple joins, the extra latency introduced
for this reasm could propagateup the treein anaddiive fashion. If the inputs to the join opeiatordid not
have sliding windowsat all, thenthe join opefator could never confiderily produceoutputsin sorted ordet

As mentianed earlier, sliding windows have two distinct purpcses: sometmesthey are animportant
partof the querysematics, andothertimesthey areanappoximation schremeto improve quey efficiency
andredwe datavolumesto a managehble size. Whenthe sliding window senesmostly to increasequery
processingefficiencgy, thenthe besteffort apprach,which allows wide latitude over the ordering of tuples,
is usualy accepable.Onthe otherhand,whentheordeiling of tuples plays a sigrificantrole in the meanirg
of thequery, such asfor quely-definad sliding windows,thenthe stricterapprachmaybe prefered,evenat
the cod of lessefficientimplemenation. A genegal-puposedatastreamprocesing systemshoull sugport
bothtypesof sliding windows, andthe quely languageshout allow usesto spedfy oneor the other

In our sysem, we add an extra keyword, RECENT, that redacesPRECEDI NG when a “besteffort”
ordering may be used For example the clauseRONS 10 PRECEDI NG specifiesa window consisting
of the previous 10 tuples, strictly sorted by timestamporde. By compaison, ROAS 10 RECENT also
spedfies a sliding window conssting of 10 recads, but the DSMS s allowed to useits own orderng to
producethesliding window, rather thanbeing congrained to foll ow the timestamp ordering. The RECENT
keyword is only usal with “physical” window sizesspedfied asa numberof recods; “logical” windows
suchasRANGE 3 DAYS PRECEDI NG mustusethe PRECEDI NGkeyword.
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Figurel: A portion of aqueryplanin our DSMS.

5.3 Query Processing Architectureof aDSM S

In this secton, we descibe the quely processingarchiecture of our DSMS Sofar we have focusedon con
tinuous queries only. Whena queryis registered,a quey execution plan is producedthat begins exectting
andcontinuesindefinitely. We have not yet addressedad hoc queriesregisteredafter relevant streans have
begun (Section4.6).

Queryexecuion plansin our systen corsistof operators connetedby queles Operabrscanmaintan
intermediatestatein synogsisdaiastrucures.A portion of anexamplequeryplanis shovn in Figurel, with
onebinaty operdor (Op;) andoneunary operabr (Ops). Thetwo opeiatorsareconnetedby a queue @,
andoperdor Op; hastwo input queues,; and(@,. Also shavn in Figurel aretwo syngsisstrucures
usedby opeiator Op;, Syn; and Syng, oneperinput. For example Op; could be a sliding window join
openator, which maintairs a sliding window synogsisfor eachjoin input (Sectio 4.3). Thesysemmemaory
is partitioneddynamically amongthe synopsesandquetlesin queryplans along with the buffers used for
handing streamscomingover the network anda cactle for disk-resident data. Note that both Aurora[16]
and Eddies[8] usea singe globdly-sharedqueuefor inter-operator dataflow insteadof sepratequeues
betweeroperdorsasin Figurel.

Operataos in our systen are schediled for execution by a cental scheduler. During execution, an op-
erata readsdatafrom its input queues,updaesthe synogsis structures that it maintains,andwrites resuls
to its outpu quetes. (Our opeatorsthusadhee to theupdat e andconput eAnswer modeldiscused
in Section4.4.) The periad of execution of anoperatoris determired dynamically by the schediler andthe
opeiator retums cortrol backto the schediler onceits periodexpires. We areexperimentingwith different
policiesfor schealuling opertorsandfor detemining the period of execuion. The period of execution may
be basedon time, or it may be basel on other quantties, suc asthe numberof tuplesconsumedor pro-
duceal. Both Aurora and Eddieshave chasento perfom fine-grainedscheluling where,in eachstep the
schalulerchoosesatuplefrom the global queueandpasgsit to anopeiatorfor processirg, anappoachthat
our schediler could choo® if appropriae.

We expect continuous queriesandthe data streans on which they opeateto be long-running. During
the lifetime of a continuousquery paramegrs suchas streamdatacharateridics, streamflow rates,and
the numberof concurenty running queties may vary consderaby. To hardle the fluctuations all of our
opeiatorsareadaptive. Sofar we have focused primarily on adapivity to availablememory although other
factas could be corsideral, including usingdisk to increaseemporay storageatthe expen® of latency.
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Our approachto memoryadaptivityis bascally oneof trading accuracy for memory Specificdly, eadh
opeatormaximizestheaccuacy of its output basel onthesizeof its availablememory andhandesdynamic
chargesin the sizeof its available memorygracdully, sinceat run-time memorymay be taken away from
oneopeatorandgivento anaher. As asimpleexample,asliding window join opeiatorasdiscussedabore
may be usedas an approximation to a join over the entire history of input streams. If so, the larger the
windows (stored in available memory), the bette the appioximation. Other examples include duplicate
elimination usinglimited-sizehashtables,andsamplirg usingresevoirs [90]. The Aurorasygem[16] also
proposesadaptivity andappoximations,andusesload-shedling techiques basel on application-specfied
measuesof qudity of senice for gracful degradationin theface of sysemoverload.

Our fundamentalappoachof trading accuacgy for memorybrings up someinterestingproblems:

¢ We first needto understam how different query opeatorscan produceappioximateansversunde
limited memory andhow appioximateresuts behave whenopelatorsarecompogdin queryplars.

e Given a query plan as a tree of operabrs and a cerfain amourt of memory how canthe DSMS
allocatememoryto the operdorsto maximize the accuray of theansverto thequery(i.e., minimize
appoximation)?

¢ Undercharging condtions, how canthe DSMSrealocatememoryamongopeators?

e Suppsewe aregivenagueryratherthana quey plan. How doesthe queryoptimizer efficiently find
the planthat, with the bestmemoryallocation, minimizesappoximation? Shouldplans be modified
whencondtions change?

e Evenfurther, since synopsescoud be shaedamongqueryplans [75], how do we optimdly consder
asetof queries, which maybeweighted by importance?

In addtion to memorymanagment,we are facead the problem of schediling multiple quer plans in
a DSMS. The schaluler nealsto provide rate syrchronizationwithin operdors (suchasstreamjoins) and
alsoacrosspipelined opemtorsin quely plans[8, 89]. Time-varying arrival ratesof datastreansandtime-
varying output ratesof operdorsaddto thecompleity of scheduling. Schedling decisbnsalsoneedto take
into account memoryallocaion acrassoperdors, including managemet of buffersfor incoming streams,
availability of synopseson disk asoppasedto in memory andthe perfomancerequremens of individual
quetes.

Aside from the quely processirg architecture, userandapplication interfacesneedto be reinvestigated
in a DSMS given the dynamic ervironmernt in which it operdes. SystemssuchasAurora[16] andHan-
cock[25] compldely eliminatedechrative quenjing andprovide only proceduralmechaimsmsfor quelying.
In contrast,we will provide adedarative languagefor continuous queiies,similarto SQL but extendedwith
opeitorssuchasthosedisaussedn Section5.1,aswell asamechaismfor diredly sulmitting plansin the
quer algebrathatundelies our language.

We are developing a comprehensve DSMS interface that allows useas and admiristratas to visually
monitor theexecuion of continuousqueries,including memoryusage andapproaimationbehavior We will
alsoprovide away for adminitratas to adjug sysemparametrsasqueliesarerunning, includingmemory
allocationandschealuling policies.

6 Algorithmic Issues

The algarithms community hasbeenfairly active of late in the areaof datastreamstypically motivated
by problemsin datdbasesand networking. The modelof computdion undetying the algorithmic work is
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similar to that in Section2 andcanbe formally statedasfollows: A datastreamalgarithm takesasinputa
seqenceof data itemszy, ..., zy, ... calledthe datastream, wheie the sequaceis scanred only oncein

theincreasing order of the indexes. Thealgorithm is requred to maintainthe value of a function f onthe
prefix of the streamsea sofar.

Themaincomplexity measue is the spa® usedby the algarithm, althoughthetime requiredto process
eachstreamelemaent is alsorelevant. In somecase, the algorithm maintairs a datastrudure which canbe
usedto comput the value of the function f on demam, andthenthe time requred to processeachsud
guery alsobemmesof interest.Henzingeretal. [49] defined a similar modelbut alsoallowedthe algorithm
to make multiple pasesover the streamdata,makingthe numberof passsitself acomplity measureWe
will restiict our attention to algorithmswhich areallowedonly onepass.

We will measurespa® andtime in termsof the paramete N which dendesthe numberof stream
elemensseersofar. Theprimaryperformancegoalis to ensurethatthespaceequredby astreamalgorithm
is “small.” Idealy, one would want the memorybound to be independen of N (which is unbaunded).
However, for mostinteresting problemsit is easyto prove aspacelower bourd thatprecludesthis possibility,
thereby forcing usto sette for bourdsthataremerelysublinearin V. A problemis corsideral to be “well-
solved” if onecandevise analgorithm which requiresat mostO(poly(log N)) spa@ and O(poly(log N))
processingtime perdataelementor query. We will seethatin somecasest is impossble to achieve sud
analgorithm, evenif oneis willing to settlefor appiloximations.

Therestof this secton summarzesthe stateof the art for datastreamalgarithms, atleastasrelevantto
datalases.We will focus primarily on the probemsof creding summarystrucures(syngses)for a data
stream, suchashistogams,wavelet representaion, clusering, anddecison trees in addtion, we will also
touch upon knownlower bourdsfor spa® andtime requrementsof datastreamalgarithms. Most of these
summarystructures have beencorsidera for tradtional datalaseq13]. Thechdlengeis to adap someof
thesetechnguesto the datastreammaodel.

6.1 Random Samples

Randomsamplescanbe usedasa summarystrucure in mary scenarioswherea smallsampe is expected
to captue the essatial characteistics of the dataset[65]. It is perhgsthe easiet form of summarizéion
in a DSMS and other syngsescanbe built from a sampe itself. In fact the join synopsisin the AQUA
systan [2] is nothing but a uniform sampleof the baserelation. Recerly straified samplirg hasbeen
proposedasanaltemative to uniform samplirg to redue errordueto the variarcein dataandalsoto redue
error for group-by queries [1, 19]. To actudly computea randan sampleover a datastreamis relaively
easy Thereservoirsampling algorithm of Vitter [90] makesonepassover the datasetandis well suitedfor
thedatastrean model Thereis alsoanextenson by Chaudhuri, Motwani andNarasaya [22] to the caseof
weightad samplirg.

6.2 Sketching Techniques

In their semina paper Alon, Matiasand Szegedy|[5] introducedthe notion of randamizedsketching which
hasbeenwidely usedever since Sketchirg involves building a summaryof a datastream using a small
amountof memory usingwhichit is possble to estimateheanswerto certan queties (typically, “distanceé
gueiies)overthedataset.

LetS = (z1,...,zn) beasequaceof elementavhereeachz; belongsto thedomainD = {1,...,d}.
Let themultiplicity m; = |{j|z; = i}| denoe thenumbe of occurences of values in the sequencesS. For

k > 0, the kth frequexcy momentF;, of S is defined asFy, = Z?:l mf further, we define F, = max; m;.

"We usepoly to denotea polynomial function.
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The frequengy momentscaptue the statigics of the distribution of values in § — for instance, f is the
numberof distinct valuesin the seqeence, F is the lengh of the sequence,  is the selfjoin size (also
called Gini's index of homogeneity), and E, is the mostfrequent item’s multiplicity. It is notvery difficult
to seethat an exact compuation of these momentsrequireslinear spa@ and so we focus our attertion on
appoximations.

Theproblem of efficiently estimatng the numberof distinct values(k) hasreceivedparticular attertion
in thedatalaseliterature,partculary in thecontext of using single passor rancdom samplirg algorithms|[18,
46]. A sketchingtecmiqueto compue Fy waspresntedearlier by FlajoletandMartin [35]; however, this
hadthe dravbackof requring explicit familiesof hashfunctionswith very strong independencepropeties.
This requirementwas relaxed by Alon, Matias, and Szegedy [5] who preenteda sketdching technque to
estimae Fy within aconsantfacta®. Theirtechrique usedinear hashfunctionsandrequiresonly O(log d)
memory The key contribution of Alon et al. [5] was a sketching technque to estmate £ that usesonly
O(log d+log N) spaceandprovidesarbitrarily smallapproiimation factors. Thistecmique hasfound mary
applicationsin thedatabaeliterature including join sizeestimation[4], estimaing I; hormof vectors[33],
and processingcomplex aggregatequeriesover multiple streams[27, 37]. It remairs an open problemto
comeup with techriquesto maintaincorrelatedaggreyateq37] thathave provable guarantees.

The key idea behind the F;,-sketching technique canbe descrbed asfollows: Everyelemems in the
domainD is hasted uniformly at randan onto a value z € {—1,+1}. Definetherandomvariable X =
>, miz; and return X? asthe estimabr of F,. Obsenre that the estimate canbe compued in a single
passover the dataprovidedwe canefficienly computethe z values. If the hashfunctions have four-way
independecé, it is easyto prove thatthe quartity X2 hasexpectdion equal to F, andvariancelessthan
2F2. Using stardard tricks, we can combineseveral independet estimatorsto accuately and with high
probability obtan anestimateof £. At anintuitive level, we canview thistecmiqueasatug-of-war where
elemens arerandanly assigredto oneof the two sidesof the rope basa on the valuei; the squareof the
dispacemenbf theropecaptuesthe skew F; in the data.

Obsenethatcompuing theself-join sizeof arelation is exacly thesameascomputng & for thevalues
of thejoin attributein therelation. Alon etal. [4] extendedthistechriqueto estimaing thejoin sizebetwea
two distinct relaions A and B, asfollows. Let Y and Z berandam varialdes correponding to A and B,
respetively, similar to therandom variale X above; the mapphg from domainvalues i to z is the same
for both relatons. Then, it canbe proved that the estimate Y Z hasexpectel value equal to |[A X B|
andvariane lessthan2|A X A||B X B|. In orderto getsmall relative error, we can useO(%)
independat estimabrs. Obsene thatfor estimaing joins betwee two relatons, the numbe of estimators
dependson the datadistribution. In a recent paper, Dobraet al. [27] extencked this techrique to estimage
the size of multi-way joins andfor answeriig complex aggregatesqueies over them. They also provide
techriquesto optimally partition the datadomainanduseestimates on eachpattition independatly, soas
to minimize thetota memoryrequirement.

The frequengy momentF, canalso be viewedasthe L, norm of a vecta whosevalue along the ith
dimenson is the multiplicity m;. Thus,the above techngue canbe usal to compue the L, normunde a
updae modelfor vectas, whereeat data element (v, 7) increments(or decrenents)somern; by a quantity
v. On seeirg suc anupdak, we updde the correspording sketch by adding vz to the sum. The sketching
ideacanalsobeextendedto compuethe L; nomm of avecta, asfollows. Let usassuméhateachdimensgon
of the underlying vecta is aninteger, bourdedby M. Conside the unaryrepresenéation of the vector It
has Md bit posiions (elemeits), whered is the dimensim of the underlying vecta. A 1 in the unary

2As discussedn Section6.7, recentlyBar-Yossefet al. [12] and Gibbors and Tirthapura[38] have devisedalgorithmswhich,
undercertainconditions provide arbitrarily smallapprocimationfactorswithout recourseo perfecthashfunctions.

3Hash functionswith four-way indepen@éncecan be obtainedusing standardtechniquesinvolving the use of parity check
matricesof BCH codeg[65].
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representaion derotesthatthe element correpondng to the bit positon is preentonce otherwise, it is not
presat. ThenF;, capuresthe L; nom of thevecta. Thecatchis that givenanelemen r; alongdimenson

1, it is requiredthatwe canefficiently computethe range sumZ _O z; j of the hashvaluescorrespondng

to the pertinentbit postionsthataresetto 1. Feigerbaumetal. [33] shoved how to constructsuchafamily
of range-summald +1-valued hashfunctions with limited (four-way) independeace. Indyk [50] provided
a uniform framework to compue the L, nom (for p € (0,2]) using the so-cdled p-stalde distributions,
improving uponthe previous paper[33] for estimatirg the I; norm,in thatit allowedfor arbitrary addiion

anddeleion updatesin every dimenson. Theability to efficiently computel; and Ly normof thedifference
of two vectorsis cential to somesyngsisstruduresdesignedfor datastreans.

6.3 Histograms

Histogramsare commonlyusedsummarystrucuresto succirctly capure the distribution of valuesin a
dataset(i.e., a column or possilly even a collection of columns in atable). They have been employed
for a multitude of taskssuchasquey sizeestimation,apprximatequey answeriig, anddatamining. We
consderthesummartationof datastreamsusing histograms.Thereareseverd differenttypes of histograms
thathave beenpropasedin theliterature. Somepopuar definitonsare:

¢ V-Optimal Histogram: Theseappoximatethedistribution of asetof valuesu, . . . , v, by apiecewise-
constantfunction ¥(4), soasto minimizethe sumof squaederrar) ", (v; — 'U(z))2.

e Equi-Width Histograms: Thesepartition the domaininto bucketssucd thatthe numberof 4 values
falling into eachbucket is uniform acrcssall buckets. In otherwords they maintan quantilesfor the
underlying datadistribution asthe bucket bourdaries

e End-Biased Histograms. Thesewill maintan exad couns of itemsthatocaur with frequeng above
athresliold, and appraximate the othe courts by an uniform distribution. Maintaining the count of
suchfrequent itemsis relatedto Icebeag queries[32].

We give anoverviewof recent work on compuing suchhistogramsover datastreams

V-Optimal Histograms over Data Streams

Jagadkh et al. [54] shaved how to computeoptimal V-Optimal Histogramsfor a given datasetusing dy-
namicprogramming. Thealgoiithm usesO(N) spa@ andrequiesO(N? B) time,whereN is thesizeof the
datasetand B is the numberof buckets. This is prohibitive for datastreams.Guha,Kouda and Shim[43]
adaped this algorithm to sorteddatastreams Their algaithm congructs an arbitrarily-close V-Optimal
Histogram (i.e., with error arbitrarily close to thatof the optimal histogram),using O (B log N) spaceand
O(B?log N) time perdataelemer.

In arecen paper Gilbert et al. [39], removed the restriction that the data streambe sorted providing
algarithmsbasel on the sketchingtechrigue desribedearlie for compuing I, norms.Theideais to view
eachdaia elementasanupdae to anundetying vecta of length N thatwe aretrying to appraimateusing
the bestB-bucket histogram.Thetime to processa dataelementthetime to recorstrud the histogram,and
the sizeof the sketch areeachbourdedby poly (B, log N,1/¢), wheree is therelatve errorwe arewillin g
to tolerate. Theiralgarithm proceedsby first construcing arobustappoximaton to theundelying “signal.’
A robust appioximation is built by repeaedly addng adyadc intervalof consantvalué which bestrediwces
the approximation error. In orderto find sucha dyadic interval it is necesary to efficienly computethe

A signalthatcorrespondsto a constamvalueover the dyadicinterval andzeroeverywhereelse.
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sketch of the original signal minusthe condant dyadc intervaP. This trarslatesto efficienty compuing
the range sum of p-stable randan variables (usel for compuing the I sketdh, seelndyk [50]) over the
dyadc interval. Gilbert etal. [39] showhow to condruct suchefficiently range-summale p-stalde rancom
varialdes. Fromtherobusthistogamthey cull a histogramof desiedaccuacy andwith B buckets.

Equi-Width Histograms and Quantiles

Equi-width histogramsbasedn histogramsaresummarystrucureswhich charaterize datadistributionsin
amannerthatis lesssersitive to outliers. In traditional datébaseghey areusedby optimizersfor selectvity
estimaion. Paralleldatalasesystensemploy valuerangedataparitioning thatrequresgereratian of quan
tiles or splittersthat partition the datainto approimately equd parts. Recenty, Greenvald andKhanna[41]
presaétedasinge-pasdeterminisic algarithm for efficient compuationof quartiles. Theiralgarithm neec
O(% log eN) spa@ andguaranteesa precison of eN. They employ a novel datastructurethat maintans a
sampleof thevalues seensofar (quantiles), along with arange of possille ranksthatthe samplesantake.
The error assocatedwith eachquantle is the width of this range They periadically meige quantiles with
“similar” errorssolong astheerrorfor thecombnedquantile doesnotexceed e N. Thisalgorithmimproves
uponthe previoussetof resuls by Manku, Rajaggalan andLindsay[61, 62] andChaudhui, Motwani,and
Narasaya[21].

End-Biased Histograms and | ceberg Queries

Many applications maintainsimple aggegates(court) over an attribute to find aggegatevaluesabove a
spedfied threshold Thesequelies are referrad to asicebeg queries[32]. Suchiceberg queiies arisein
mary apgdications,including datamining, datawarehowing, informationretrieval, market baslet andysis,
copy detedion, andclustering. For example, a searchengire might be interestedin gathemg searchterms
thataccouwnt for morethan1% of thequelies. Suchfrequentitem summaris areusefu for applications such
ascachingandanalyzingtrends. Fangetal. [32] gave anefficientalgorithmto computelcebeag queries over
disk-resicentdata. Their algotithm requres multiple pasgswhich is not suitedto the streamimg model. In
arecern paper MankuandMotwani [60] preentedrandbmizedanddeteministic algorithmsfor frequeng
courting andiceberg queries over datastreans. The randomizedalgarithm usesadapive samplirg and
the main ideais that ary item which acmuntsfor an e fraction of the itemsis highly likely to be a part
of a uniform sampleof size%. The deteministic algorithm maintans a sampe of the distinct itemsalong
with their frequeng. Whenever a new item is adde, it is given a bendit of doult by overedimating its
frequeng. If we seeanitem thatalready exists in the sample,its frequeng is incremented. Periodially
itemswith low frequency aredelged. Their algorithmsrequre O(% log(eN)) spacewhereN is thelength
of the datastream,andguaranteethatary elemen is undecounedby at moste N. Thus,thesealgarithms
repat all itemsof court greate thaneN. Moreover, for all itemsrepated,they guaranteethatthe repated
court is lessthanthe actual court, but by no morethan e N.

6.4 Waveets

Waveletsareoften usedasatechiqueto provideasummaryepresentéion of thedata.Waveletscoeficients
areprojectiors of the givensignd (setof datavalueg onto anorthogonalsetof basisvector The choice of
basisvectas determiresthe type of wavelets. Often Haarwavelets are usedin datalasesfor their easeof
compugtion. Waveletcoeficientshave thedesrablepropety thatthesignal recorstrucedfrom thetop few
waveletcodficientsbestappioximates the original signal in termsof the I, nom.

SThatis, asketchfor L, normof thedifferencebetweerthe original signalandthe dyadicinterval with constatvalue.

20



Recentpapers have demorstratal the efficacy of waveletsfor different tasks suchas selectivity estt
mation[63], datacubeappioximation [93] and compuing multi-dimensioral aggegates[92]. This body
of work indicatesthat estimats obtainedfrom wavelets were more accurae thanthoseobtaned from his-
togramswith the sameamountof memory Chakrdarti etal. [17] proposethe useof waveletsfor gereral
purposeapprximatequeryprocessinganddemorstratehow to comput joins, aggegatiors, andselections
entirely in the waveletcoeficient doman.

To exterd this body of work to datastreams,it becomesmportant to devise techriquesfor compuing
wavelets in the streaming model. In a related development,Matias Vitter, and Wang [64] shav how to
dynamically maintan the top wavelet coeficients efficiently asthe undelying data distribution is updated.
Therehasbea recent work in compuing the top wavelet codficientsin the data strean model Thetech
nique of Gilbert et al. [39], to appoximatethe bestdyadic interval that mostreduasthe error, givesrise
to aneasygreedy algorithm to find the bestB-term Haarwaveletrepresentdion. This is becasethe Haar
wavelet basgs congsts of dyadc intervals with congantvalues This improves upon a previous resut by
Gilbert etal. [40]. If the datais presetedin a sortad orde, there is a simple algarithm that maintans the
bestB-termHaarwaveletrepresentaion usingO(B + log N) spacen adeteministic mannef40].

While therehasbeenlot of work on summarystructures it remainsan interestingopen problem to
addesstheissie of global spaceallocation betwea differentsyngpsesvying for thesamespae. It requres
thatwe comeup with aglobd errar metric for the synopseswhich we minimize giventhe (main memory)
spa@ constrairt. Moreover, the allocationwill have to be dynamic asthe underlying datadistribution and
qguery workload chargesovertime.

6.5 Sliding Windows

As disaussedn Section4, sliding windows prewvent stale datafrom influencng analysis andstatigics, and
also sene as a tool for appraimation in face of bourded memory Therehasbeen very littl e work on
extending summariation tecmiques to sliding windows and it remainsa ripe reseach area We briefly
descibe someof therecentwork.

Dataretal. [26] shaved how to maintan simplestatigics over sliding windows,including the sketches
usedfor compuing the L; or Ly norm. Theirtechhiquerequiresamultiplicative spae overheadof O(% logN),
whereN is the lengthof the sliding window ande is the accuray parameter This enaldes the adapation
of the sketching-basedalgorithmsto the sliding windows model. They alsoprovide spacdower boundsfor
various problemsin the sliding windows model. In anotter papger, Babock Datarand Motwani [9] ada
theresevoir samplirg algoiithm to the sliding windows case In ther paper for computng Iceberg queries
over datastreamsManku andMotwani [60] alsopresentechiques to aday their algarithmsto the sliding
window model GuhaandKoudas[42] have adaped their earlie paper[43], to provide a technique for
maintaning V-Optimal Histoggamsover sorteddatastreamsfor the sliding window model however, they
requre the buffering of all theelemensin the sliding window. Thespaerequirements linear in the sizeof
the sliding window (), althoughupdat time per dataelement is amortizel to O((B*/¢?) log® N), where
B is thenumber of bucketsin the histogramande is theacairag/ paramegr.

Someopenprablemsfor sliding windowsare: clusterirg, maintaning top wavelet coeficients,main-
taining staisticslik e variance,andcompuing corrdatedaggegateq37].

6.6 Negative Results

Thereis an emeping setof negative resuts on space-timerequrementsof algoilithms thatopelatein data
strean model. Henzinger, Raghaan, andRajagomlan[49] provided spacelower boundsfor concreteprob-
lemsin the datastream model. Theselower bourds are derived from resuls in communi@tion complex-
ity [56]. To undestandthe conrection obseve that the memoryusedby ary onepassalgoithm for a
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function f, after seeirg a prefix of the data stream, is lower boundedby the oneway communiation re-
quired by two parties trying to compue f wherethefirst party hasaccesdo the sameprefix andthe secom
party hasaccessto the suffix of the strean thatis yet to arrive. Henzirgeretal. usethis apprachto provide
lower boundsfor problemssuchasfrequentitem counting, approximatemedian andsomegragh problems.

Again basedon communi@tion complexity, Alon, Matiasand Szegedy [5] provide almosttight lower
bourdsfor compuing thefrequeny momentsin particularthey provedalowerbound of (V) for estimat
ing F,, the countof the mostfrequentitem, where N is the domainsize. At first glancethis lower bourd
anda similar lower bound in Henzinger et al. [49] may seemto contradict the frequentitem-set courting
resuts of MankuandMotwani[60]. But note thatthe latter pape estimates the countof the mostfrequent
itemonly if it exceedse N. Suchskeweddistributions arecommonin practice, while the lower boundsare
provenfor pathdogical distributions whereitemshave nearuniform frequengy. This senesasareminde
thatwhile it may be possilie to prove strorg spacelower boundsfor streamcomputdions, consteratbns
from apgdicationssometimesnalle usto circumventthe negative resuls.

Saksand Sun[73] provide spacelower boundsfor distance approaimation betweentwo vectors unde
the L, norm,for p > 3, in thedatastreammodel Munro andPatersm [66] shavedthat ary algorithm that
compuesquantilesexadly in p passerequiresQ(N'/?) spa@. Spacdower bourdsfor maintaning simple
statsticslike count sum,min/max andnumbe of distinct valuesunder the sliding windowsmodelcanbe
found in thework of Dataretal. [26].

A geneallower bourd technquefor samplng-baedalgoithmswaspresatedby Bar-Yossé etal. [11].
It is uselul for deriving spa® lower bourds for datastreamalgarithmsthatresat to oblivious samping. It
remainsan interestingopen problem to obtan similar gereral lower bourd techiques for other classes
of algoiithms for the data strean model. We feel that tecmiques basel on commurcation complexity
resuts[56] will prove usdul in this context.

6.7 Miscellaneous

In this sectim, we give a potpourri of algorithmic resuts for datastreams.

Data Mining

Decisim treesare anaher form of syngsis usedfor predction. Domingoset al. [28, 29] have studed
the problem of maintaning decison trees over datastreams. Clusterng is yet anotier way to summariz
data.Consicerthe k-medianformulaton for clustering: Givenn data pointsin ametricspacethe objective
is to chocse k repreentative points, suchthat the sum of the errorsover the n datapoints is minimized.
The“error” for ead datapoint is the distancefrom that point to the nearest of the k chose repreentatve
points. Guhaet al. [44] presateda sinde-passalgorithm for maintaning approaimate k-mediars (cluster
centes) that usesO(N¢) spae for somee < 1 using O(poly(log N)) amortzedtime per dataelement,
to comput a consantfacta appgoximation to the k-median problem. Their algarithm usesa divide-and
conauerapprachwhich works asfoll ows: Clusterng proceedshierarchially, wherea smallnumbe (V)
of the original datapoints are clustaed into k£ centes. Thesek-certers are weighted by the numbe of
points that areclosestto themin thelocal soluion. Whenwe get N* weighted cluster centes by clusterirg
differentsets we cluster theminto higha-level cluster certers,andsoon.

Multiple Streams

Gibbors and Tirthapura [38] consideral the problem of computing simple functions, suchasthe numbe
of distinct elemens, over unions of datastrean. This is usell for applications thatwork in a distributed
environmert, whereit is not feasble to sendall the datato a cental site for processing It is importent to
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notethatsomeof thetechnquespresetedearlier espeially those thatarebasedn sketching, areamenale
to distributed compuation over multiple streans.

Reductions of Streams

In arecent pape, BarYossef, Kumar and Sivakumar[12] introducethe notion of redudionsin streaming
algarithms. In orde for theredwctionsto beefficient, oneneeddo employ list-efiicientstreamingalgarithms.
Theideabehind list-efficient streaming algolithmsis thatinsteadof beingpresatedonedataitematatime,
they areimplicitly presentedwith a list of dataitemsin a succirct form. If the algarithm can efficiently
processthelist in time thatis a function of the sucdnct representation size thenit is saidto belist-efficient.
They develop somelist-efficient algarithms and using the redudion paraligm addessseverd interestirg
probemslike computhg frequency momentg5] (which includesthe special caseof courting the numbe
of distinct elemens) andcourting the numbe of trianglesin agraphpresentedasa strean. They alsoprove
a spacelower bound for the latter prodem. To the bestof our knowledge, besidesthis work andthat of
Henzimgeretal. [49], there hasbeenlittle work on gragh problemsin the streamingmodel Suchalgarithms
will likely bevery usefulfor analyzing large graghical structuressuc asthe webgraph.

Property Testing

Feigenlaumet al. [34] introducedthe conept of streaming property testes and streamirg spotcheders.
Theseare progamsthat make one passover the dataand using small spa@ verify if the datasatidies
certdn property. They shav thatthere are propertiesthat are efficiently testatbe by a streamimg-teger but
not by a samplirg-teger, andothe problemsfor which the corverseis true. They alsopresem an efficient
samplirg-teder for testirg the “groupedress” propaty of a sequencethat use Of/N) sampes, O(v/'N)
spa@ andO(v/N log N) time. A sequéceo,...,oy is saidto be groupedif o; = ojandi < k < j
imply 0; = o, = o, i.e., for eachtype T', all occurencesof T" arein a singe contiguots run. Thus,
growednesis a naturl relaxation of the sortedhessproperty andis a natural propety that onemaydesie
in a massie streamiry dataset. The work discussedhereillustratesthat somepropertiesare efficiently
testdle by sampling algarithms but not streamimg algarithms.

Measuring Sortedness

Measuing the“sortednes” of adatastreamcoud beuseill in someapplicatiors; for example, it is usefulin
detemining the choice of a sortalgarithm for the underlying data.Ajtai etal. [3] have studiedthe prodem
of estimaing the numberof inversiongameasue of sortednes) in apermutaion to within afacta ¢, where
the permuttionis preentedin a datastreammodel. They obtanedanalgorithm usingO(log N log log N)

spa@ and O(log N) time per dataelement. They alsoprove an Q(N) spa@ lower bound for randamized
exactcompuation, thusshowingthatappioximation is esential

7 Conclusion and Future Work

We have isolatied a numberof issues that arise whencorsiderng datamanagenent,query processing,and
algarithmic prodemsin the new seting of continuous datastreams.We proposedsomeinitial solutions,de-
scribedpastandcurrent work related to datastreamsandsugyeste agenearl architecturefor a DataStream
ManagenentSystem(DSMS).At this point let ustake a stepbackandconsidersome‘meta-questions” with
regardto the motivationsandneedfor anew appioach.

¢ Is there moreto effective datastream sysemsthancorventioral datatasetechology with enharced
support for streamingprimitivessuchastriggers,temporalcorstruct, anddataratemanagemet?
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¢ Is therea needfor datalaseresearbersto develop fundamentaland geneal-puposemodes, algo-
rithms, and systensfor datastreans? Perhapst sufficesto build ad hoc solutionsfor eachspedfic
apdication (network managenent,webmonitaring, secuity, finance sensrsetc.).

e Arethereary “kil ler apps” for datastrean sysems?

We beliewe thatall threequesionscanbeanswerd in the affirmative, althoughof courseonly timewill tell.
Assumingpositive answergo the “meta-quesitons” above, we seesereral fundamentalaspets to the
desiq of datastrean sysems,someof which we discussedin detal in this paper Oneimportantgereral
guegion is the interface provided by the DSMS. Our appioachat Stanfordis to extend SQL to sugport
strean-oriented primitives providing a purdy dedarative interfaceasin traditional databasesystemsal-
though we also allow direa submis#on of query plans In cortrast, the Aurora projed [16] providesa
procedural“boxesandarrows”approachasthe primaryinterfacefor the applicationdevelopet

Otherfundamentalssiwesdisaussedn the pape includetimestampingandordering, support for sliding
window queiies, anddealirg effectively with blocking opeiators. A major open queston, abou which we
hadvery little to say is that of dealirg with distributed streams. It doesnot make senseto redirect high-
rate streamsto a centrl location for queryprocessing so it becomesmperatve to pushsomeprocessirg
to the points of arrival of the distributed streans, raising a hostof issuesat every level of a DSMS [58].
Anothe issue we touchedon only briefly in Sectio 4.5 is that of constaints over streans, and how they
canbeexploitedin quely processimg. Finally, mary sysemsquestonsremainopenin queay optimizdion,
congruction of synofses resouce managment,apprximate queryprocesing, andthe developmentof an
appopriate andwell-aceptedberchmarkfor datastreamsystens.

Froma purely theaeticd pergective, perha the mostinteresting openquesion is thatof defining ex-
tensbnsof relational operabrsto hande datastreamconstucts,andto studytheresuling “stream algebra”
and other propertiesof theseextensions Sucha foundatia is surely key to developing a gereral-purpose
well-understad queryprocessorfor datastreams.
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