Interactive Scheduling Algorithms

- Usually preemptive
 - Time is **sliced** into quantum (time intervals)
 - Scheduling decision is also made at the beginning of each quantum

- Performance Criteria
 - Min Response time
 - best proportionality

- Representative algorithms:
 - Priority-based
 - Round-robin
 - Multi Queue & Multi-level Feedback
 - Shortest process time
 - Guaranteed Scheduling
 - Lottery Scheduling
 - Fair Sharing Scheduling

Priority Scheduling

- Each job is assigned a priority.
- FCFS within each priority level.
- Select highest priority job over lower ones.

- Rationale: higher priority jobs are more mission-critical
 - Example: DVD movie player vs. send email

- Problems:
 - May not give the best AWT
 - Starvation
Set Priority

- Two approaches
 - Static (for system with well known and regular application behaviors)
 - Dynamic (otherwise)
- Priority may be based on:
 - Cost to user.
 - Importance of user.
 - Aging
 - Percentage of CPU time used in last X hours.

Round-Robin (RR)

- One of the oldest, simple, commonly used scheduling algorithms
- Select process/thread from ready queue in a round-robin fashion (take turns)

- Problems:
 - Do not consider priority
 - More context switch overhead
Round-robin: Example

<table>
<thead>
<tr>
<th>Process</th>
<th>Duration</th>
<th>Order</th>
<th>Arrival Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P2</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>P3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Suppose time quantum is: 1 unit, P1, P2 & P3 never block

Do it yourself

P1waiting time: 4
P2waiting time: 6
P3 waiting time: 6

The average waiting time (AWT):

\[
\frac{(4+6+6)}{3} = 5.33
\]

Time Quantum

- **Time slice too large**
 - FIFO behavior
 - Poor response time
- **Time slice too small**
 - Too many context switches (overheads)
 - Inefficient CPU utilization
- **Heuristic: (Eliminating preemption)**
 - 70-80% of jobs block within time-slice
- **Typical time-slice**
 - 10 to 100 ms
- **Time spent in system depends on size of job**
Multi-Queue Scheduling

- Hybrid between priority and round-robin
- Processes assigned to one queue
- Scheduling between queues
 - Fixed Priorities
 - Dynamic priorities based on CPU % spent on queue
- Example
 - System processes
 - Interactive programs
 - Background Processes
- Address the starvation problem

Multi-Queue Scheduling: Example

Highest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

lowest priority