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ABSTRACT

We present an algorithm, called SHREC, for constructing isosur-
faces with sharp edges and corners. Algorithm SHREC computes
isosurface vertex locations on sharp features, selects a well-spaced
subset of these vertices, and merges isosurface vertices in the neigh-
borhood of each selected vertex. The resulting isosurfaces have
good representations of sharp features. Algorithm SHREC is sim-
ilar to a previous algorithm, MergeSharp, but improves on Merge-
Sharp by better generation of isosurface vertices, better selections
of vertices on sharp features and better choices in merging. We also
define a function to measure the closeness of the normals between
two surfaces and use this function to evaluate the quality of recon-
structions of surfaces with sharp features.
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Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—

1 INTRODUCTION

Given a regular grid sampling of a scalar field, f : R3 → R, and
a scalar value σ , we are interested in constructing a good mesh
representation of the level set f−1(σ) = {x : f (x) = σ}. Such a
representation is called an isosurface and the scalar value σ is called
an isovalue.

When f is smooth, i.e., when f is continuous and its deriva-
tives are continuous, a number of algorithms do an excellent job
of isosurface construction. However, if the gradient field of f is
discontinuous, then the problem of isosurface construction is more
challenging. If the level set f−1(σ) intersects a gradient discon-

tinuity, then the level set f−1(σ) will have a “sharp corner” (a 0-
dimensional feature) or a “sharp edge” (a 1-dimensional feature)
at that discontinuity. We are interested in constructing isosurfaces
which do a good job of representing those sharp features.

Isosurfaces are represented by piecewise linear or piecewise
smooth meshes, usually composed of triangles or quadrilaterals.
This underlying mesh should model the sharp features of the isosur-
face Σ. A 1-dimensional feature of Σ with dihedral angle α should
be represented by a single, connected sequence of mesh edges with
dihedral angle near α . A 0-dimensional feature of Σ with solid an-
gle α should be represented by a single isosurface vertex with solid
angle near α . On the other hand, mesh edges and vertices repre-
senting smooth, low curvature portions of Σ should have dihedral
angles near 180 degrees and solid angles near 2π .

A number of algorithms have been proposed for constructing iso-
surfaces with sharp features [2, 17, 18, 20, 22, 25, 34, 32, 37]. Un-
fortunately, these algorithms create “notches” along sharp edges,
degenerate, zero area triangles or quadrilaterals, and “folds” in the
mesh with “flipped” triangles. (See Figure 1 for illustrations of
these problems.)

In [1], we described an algorithm, MergeSharp, for construct-
ing isosurfaces with sharp features based on merging grid cubes
around sharp features. By placing a single isosurface vertex in
these merged regions, MergeSharp significantly reduces problems
of “notches”, degenerate mesh polygons and “folds” in the mesh.

While MergeSharp reduced the mesh problems, it did not eliminate
them, with many meshes still having one or two locations with de-
generate mesh polygons or folds in the mesh.

In this paper, we present an algorithm, SHREC, which almost
completely eliminates the mesh problems listed above. The al-
gorithm is based on the MergeSharp paradigm, where grid cubes
around sharp features are merged into a region containing a single
isosurface vertex. However, it differs from MergeSharp by better
generation of isosurface vertices on sharp features, better selection
of isosurface vertices on the sharp features, and more controlled
merging of grid cubes. The algorithm performs measurably better
than MergeSharp or than other algorithms for which we had imple-
mentations.

There is extensive work on construction of surfaces with sharp
features from point cloud data, e.g. [4, 8, 10, 12, 14, 28, 29, 35]
and many other articles. In [28] and [35], the final construction
of the surface mesh is accomplished by Marching Cubes [24] or
some other isosurface reconstruction algorithm. The algorithms in
this and similar papers can be used by algorithms in those papers
to construct a surface mesh that better represents sharp surface fea-
tures than the Marching Cubes isosurface.

In [8, 12] and [29], the final construction of the surface mesh
is accomplished by Voronoi based algorithms described in [8] and
[12]. These algorithms could be applied to isosurface reconstruc-
tion from regular grid scalar data by constructing point clouds from
the grid data and then applying the algorithms to the point clouds.
We compare isosurfaces with sharp features constructed using the
algorithm from [12] with isosurfaces constructed by our algorithm.

Few of the isosurface or point cloud reconstruction papers pro-
vide quantitative analysis of the resulting surfaces. Some provide
a distance measure (Hausdorff or root-mean squared) between the
constructed surface and an ideal surface, but such measures fail to
capture errors in surface normals of the mesh polygons. Instead
of quantitative measures, most papers provide a few images for vi-
sual inspection of the quality of reconstructed features. Needless to
say, the lack of quantitative measures makes it difficult evaluate the
quality of the algorithms results, to compare different algorithms,
or to comprehensively test an algorithm on a large number of data
sets.

In contrast, the Hausdorff metric and variants are excellent quan-
titative measures of the difference between reconstructed and ideal
smooth surfaces. Software tools such as Metro [9] and MESH [3]
are commonly used to measure the quality of surface reconstruc-
tions and provide quantitative evaluations of reported results. How-
ever, these tools completely ignore surface orientation and are not
suitable for evaluating reconstructed features.

In this paper, we present the angular distance as a measure of
the difference between the surface orientation of two meshes. Es-
sentially, the angular distance measures the difference between the
surface normal at a point on one mesh with the surface normals on
nearby points on the other mesh. The angular distance is defined
and discussed in Section 12. We also provide a software tool which
measures the angular distance.

In this paper, we are using the term “feature” to refer to a “sig-
nificant” discontinuity in surface normals, not a region with higher
curvature. Most of the papers on reconstruction from point clouds
don’t distinguish between discontinuities in surface normals and
surface points with high curvature. When isosurfaces are recon-
structed from scalar data on a regular grid, the sampling density is



fixed and it is impossible to determine if the original surface has a
discontinuity in surface normals or very high curvature. Thus, we
assume that features in our ideal surface are points or curves where
the surface normal is discontinuous.

Contributions

The major contribution of our work is an isosurface generation al-
gorithm called SHREC which does measurable better than previ-
ous algorithms in constructing isosurfaces with sharp features. In
particular, SHREC does better at generating and selecting vertices
on sharp features and in avoiding constructing degenerate or small
angle triangles and flipping triangles. A second contribution is a
definition of the angular distance between two surfaces and the ap-
plication of the angular distance to evaluate the quality of surface
reconstruction algorithms.

2 DEFINITIONS

A grid edge, facet or cube is active if it contains at least one vertex
with scalar value greater than or equal to the isovalue and at least
one vertex with scalar value less than the isovalue.

A fold in a mesh is a mesh edge e with dihedral angle near zero,
so that the two mesh triangles incident on e are almost positioned
on top of one another. (See Figure 1(d).)

3 RELATED WORK

The well-known Marching Cubes algorithm [24] by Lorensen and
Cline constructs isosurface patches within active grid cubes. The
isosurface patches align along their common boundaries. Because
Marching Cubes positions vertices only on grid edges, never inside
grid cubes, it does a poor job at representing sharp features on iso-
surfaces.

Dual contouring algorithms construct an isosurface using quadri-
laterals which are dual to active grid edges. The isosurface vertices
are located within the grid cubes, not on grid edges. Gibson [15, 16]
gave the first dual contouring algorithm which she called surface
nets. Because Gibson’s algorithm placed only one isosurface vertex
in each active cube, it produced many isosurface edges contained in
four quadrilaterals. Thus, the resulting isosurface was not a man-
ifold. Nielson [26] modified Gibson’s algorithm to allow multiple
isosurface vertices in active cubes. The number of vertices in a grid
cube c corresponds to the number of isosurface patches in c pro-
duced by the Marching Cubes algorithm.

Nielson’s algorithm eliminates most, but not all, of the non-
manifold problems in dual contouring. A dual contouring algorithm
for constructing an isosurface which is a always a manifold is con-
tained in [36]. The algorithm is essentially Nielson’s algorithm but
the number and connectivity of isosurface vertices in grid cubes is
sometimes modified.

In [23], Lindstrom gave an algorithm for locating a point on a
surface from a set of n tangent planes. The n tangent give a set
of n equations in three unknowns, described by Mx = b where M
is an n× 3 matrix and b is a column vector of length n. Lind-
strom uses the singular valued decomposition (SVD) of M to de-
termine a point close to all the tangent planes. The SVD of M
also indicates whether the point is on a 0-dimensional (corner) or
1-dimensional (edge) surface feature or on a smooth portion of the
surface. Lindstrom’s algorithm is described in more detail in Sec-
tion 6.1. All the papers for isosurface construction with sharp fea-
tures use Lindstrom’s algorithm or some variation to locate points
on sharp features. Most of them also use Lindstrom’s algorithm to
identify sharp features and classify them as 0 or 1 dimensional.

Kobbelt et al. [22] modified the Marching Cubes algorithm to
position vertices inside grid cubes when those grid cubes intersect
sharp features. They called their algorithm Extended Marching

Cubes. In addition to scalar values at regular grid vertices, Ex-
tended Marching Cubes requires a directed distance field represent-
ing the distance along each axis to the modeled surface. It also
requires the surface normals at the intersection of the grid edges
and the surface. Extended Marching Cubes uses the directed dis-
tance field to locate points on the intersection of grid edges and the
isosurface. It uses the surface normals to construct tangent planes
intersecting a grid cube and computes a point on the sharp features
from those tangent planes.

Ju et al. [20, 31] present a dual contouring algorithm for con-
structing isosurfaces with sharp features. Vertices of dual contour-
ing isosurfaces lie inside grid cubes while isosurface quadrilaterals
are dual to grid edges. In addition to scalar values at regular grid
vertices, the algorithm by Ju et al. requires surface normals at the
intersection of the grid edges and the surface. As in [22], the sur-
face normals are used to construct tangent planes intersecting a grid
cube. Ju et al. apply Lindstrom’s algorithm to the tangent planes to
locate an isosurface vertex in each grid cube and determine if the
vertex lies on a sharp 0 or 1 dimensional feature. Variations on [20]
are given in [37, 34].

Ashida and Bandler [2], Ho et al. [18] and Greß and Klein [17]
give algorithms for constructing multiresolution isosurface with
sharp features using oct-trees or kd-trees. The isosurface mesh is
constructed by first constructing polygonal curves representing the
intersection of the isosurface and oct-tree or kd-tree cells, and then
connecting an isosurface vertex with those polygonal curves. As
in [20], isosurface locations are computed from input surface nor-
mals using Lindstrom’s algorithm.

The Dual Marching Cubes1 algorithm by Schaefer and War-
ren [32] constructs a dual mesh which aligns with sharp features and
then extracts the isosurface from that mesh using Marching Cubes.
Vertices of the dual mesh are positioned on sharp features using
Lindstrom’s algorithm. Because the isosurface is extracted using
Marching Cubes, the isosurface will have many ”sliver” triangles
with small angles. Dual Marching Cubes reduces the number of
”sliver” triangles by positioning the vertices of the dual grid to lie
on the isosurface, whenever possible.

With the exception of [18] and [22], none of the reconstruc-
tion papers listed above give any quantitative analysis of the re-
constructed features. Kobbelt et al. [22] give the “approximation
error” of their reconstructions to two original models. Ho et al. [18]
measured the geometric distance between the boundary of the union
of three random tetrahedra and the reconstructed surface produced
by their algorithm. Unfortunately, neither Kobbelt et al. nor Ho
et al. explain exactly what they mean by “approximation error” or
“geometric distance”, but these values are probably the Hausdorff
distance or some distance averaged over the surface. In any case,
they do not measure the correspondence between surface normals.

The algorithms described above produce “sliver” triangles with
very small angles along the 1-dimensional features. A small pertur-
bation of a vertex of such triangles has a large effect on the triangle
normal direction, so the normal direction of such triangles is almost
arbitrary. The triangle angles may be so small that the triangles are
effectively degenerate with zero area.

If grid cube c is on or near a sharp feature, Extended Marching
Cubes and the dual contouring algorithms generate an isosurface
vertex for cube c by computing a point close to a set of the tangent
planes. What happens if the point is not inside c? The problem is
discussed in [31] where various modifications are proposed for in-
creasing the likelihood of generating a location inside c. However,
a sharp edge (1-dimensional feature) may intersect an inactive grid
cube and a sharp corner (0-dimensional feature) may lie in an in-
active grid cube. In such cases, if isosurface vertices are required

1Nielson also calls his dual contouring algorithm “Dual Marching

Cubes” [26], but it is totally different from Schaefer and Warren’s algo-

rithm.



(a) Notch in 1D feature (b) Not clamped to cube (c) Degenerate triangles (d) Folds in mesh

Figure 1: Reconstruction problems. (a) The orange cube generates the vertex in the magenta circle. Clamping the vertex to the orange
cube creates a notch in the 1-dimensional feature. (b) Same mesh as (a) but vertex in the magenta circle is not clamped to the orange cube.
(c) Different view of mesh, vertex and cube in (b). The vertex in the magenta circle is part of a degenerate triangles which lies on the 1D
feature. Vertices in the yellow circles are also part of degenerate triangles which lie on the 1D feature. Note that the mesh is fully triangulated
so that the apparent mesh quadrilaterals are actually mesh triangles adjacent to degenerate triangles. (d) Mesh folds produced by Extended
Marching Cubes near a cube corner. The fold edges are at highlighted in red. The magenta triangle overlaps six other mesh triangles.

to lie within active cubes, the isosurfaces will contain notches or
truncated corners. (See Figure 1(a).)

Zhang et al. in [37] state that the isosurface vertex generated by
cube c may be placed outside cube c. This solves the problem of
notches (Figure 1(b)) or truncated corners, but at the cost of exacer-
bating the problem of sliver and degenerate triangles (Figure 1(c)).
As noted in [31] placing vertices in inactive grid cubes also intro-
duces a new problem of folds in the mesh (Figure 1(d)).

The MergeSharp algorithm by Bhattacharya and Wenger [1, 6]
attacks the problem of sliver triangles, notches, and folds by merg-
ing grid cubes around features so that isosurface vertices on features
are well-separated from each other and from non-feature vertices.
Isosurface vertices are permitted to be placed in inactive grid cubes.

Bhattacharya and Wenger analyzed their algorithm by extract-
ing all “sharp” mesh edges with dihedral angle below a threshold
(140◦), forming a graph (1-skeleton) from those edges and counting
the number of vertices with degrees other than two. For instance,
the 1-skeleton from the sharp mesh edges in the reconstruction of
a cube should have eight vertices with degree three and no ver-
tices with degrees other than two or three. The 1-skeleton from
the sharp mesh edges in the reconstruction of a thickened annulus
should have no vertices with degree other than two. By counting
the difference between the expected and the actual degree counts,
Bhattacharya and Wenger gave a quantitative measure of the per-
formance of their algorithm.

We mention only a few papers from the large literature on sur-
face and feature reconstruction from point sets. Point set data is
inherently noisy, so much of the literature focuses on finding the
true position of points on surfaces. Daniels et al. [10], Fleishman
et al. [14] and Oztireli et al. [28] construct local surface patches
fitted to local sets of points and project points onto these surface
patches. Wang et al. [35] construct approximations of the tangent
planes at the sample points and project points onto these tangent
planes. Avron et al. [4] estimate surface normals at sample points
using convex optimization, and then reposition the points, again us-
ing convex optimization.

The papers cited above focus on correct positioning of surface
points in the presence of sharp features. The actual construction of
the surface mesh is left to preexisting algorithms. For construct-
ing the surface mesh, Oztireli et al. and Wang et al. use Marching
Cubes, Daniels et al. use the advancing front algorithm from [33],
and Avron et al. use the Ball Pivoting algorithm from [5]. (Wang
uses Poisson Surface Reconstruction described in [21] but that al-
gorithm uses a variation of Marching Cubes.) Neither Marching
Cubes nor the Ball Pivoting algorithm is particularly well-adapted
to constructing meshes with good representations of sharp features.
By starting from the sharp features, Schreiner et al. claim that their
advancing front method can do a good job of representing sharp
features.

Two algorithms, one by Dey et al. [12] and one by Salman et
al. [29], first identify and select points on sharp features and then
reconstruct the surface mesh from the selected feature points and
a subset of the smooth points. The algorithms differ in how they
identify points on sharp features. Dey et al. use the graph Lapla-
cian to identify points on sharp features while Salman et al. use an
analysis of the shape of Voronoi cells.

Both algorithms use the “protecting ball” technique from [8] to
construct the surface mesh from the weighted Delaunay triangu-
lation of the selected feature points and a subset of the smooth
points. The meshing algorithm ensures that surface vertices are
well-spaced along feature curves and that surface vertices which
are not on feature curves are suitably far from those curves. The
method requires constructing and updating the weighted Delaunay
triangulation of a set of points. Dey et al.’s algorithm works on non-
manifold surfaces and handles three or more smooth pieces joined
at a single curve.

The papers [4, 12, 14, 28] do not give any quantitative analysis of
the reconstructed surfaces. Salman et al. [29] present the Hausdorff
distance between their reconstruction and the ideal surface. The
Hausdorff distance does not contain information about the match
between surface normals. Daniels et al. [10] report quantitative
results of a data compression algorithm [27] which was modified
using the ideas of their paper. However, they do not report any
quantitative results of their algorithm. Wang et al. [35] report the
difference between normals estimated by their algorithm and the
true surface normals. Their analysis is the closest we found to a
measure of the quality of the feature reconstruction. However, even
this analysis does not measuring the actual reconstructed surface
and its features. It measures an intermediate quantity, the estimated
surface normals, computed by the algorithm.

4 MORE DEFINITIONS

For each active grid edge e, let we = (1 − α)va + αvb where
α = (σ − sa)/(sa− sb) and sa and sb are the scalar values at ver-
tices va and vb. Point we approximates the intersection of e and the
isosurface.

For each active grid cube c, let c.centroid be the centroid of the
points we over all the active edges of c. If the isosurface is smooth
around c and intersects c in a single connected component, then
point c.centroid will lie close to the isosurface.

A grid cube with grid indices (x0,x1,x2) is in column x0, row
x1 and z-plane x2 of the grid. Let c and c′ be grid cubes with grid
indices (x0,x1,x2) and (x′0,x

′
1,x
′
2), respectively. The cube distance

between the cubes is max(|x0− x′0|, |x1− x′1|, |x2− x′2|). The dis-

tance vector between the cubes is (|x0−x′0|, |x1−x′1|, |x2−x′2|).

For a grid cube c, subgrid R3×3×3
c is the 3×3×3 subgrid of 27

grid cubes centered at c. Subgrid R5×5×5
c is the 5×5×5 subgrid of

125 grid cubes centered at c.



Compute isosurface vertex locations

��

Select well-spaced subset of cubes on or near sharp features

��

Merge grid cubes around selected cubes

��

Construct isosurface triangles and quadrilaterals

Figure 2: Algorithm SHREC.

/* Cd = cubes generating vertices on d-dimensional features

*/
1 Sort C0 and C1 by increasing |c.isov−c.centroid|;
2 Mark all cubes as uncovered;
3 foreach cube c of C0 do
4 if (cube c is uncovered) then
5 if (c.isov does not create a large angle triangle with

vertices from previously selected cubes) then
6 Select c;

7 foreach cube c′ sharing a vertex with c do

8 Mark c′ as covered;
9 end

10 end

11 end

12 end
13 Repeat steps 3-12 on C1;

Algorithm 1. Selection of feature cubes in MergeSharp.

5 MERGESHARP

Algorithm SHREC has four parts: computation of isosurface vertex
locations, selection of a well-spaced subset of grid cubes on or near
sharp features, merging of grid cubes around selected cubes and
construction of isosurface triangles and quadrilaterals (Figure 2).
Algorithm MergeSharp from [1] has a similar four parts, but the
first three parts are substantially different in SHREC. To motivate
the description of Algorithm SHREC, we briefly describe the first
three parts of MergeSharp and the associated problems.

In the first part, MergeSharp computes the location of an isosur-
face vertex, c.isov, in or near each active grid cube c. MergeSharp
computes this location using gradients at the vertices of c and cubes
adjacent to c. When cube c is near a sharp feature, the isosurface
vertex will lie on that feature. MergeSharp also identifies whether
the feature is 0-dimensional or 1-dimensional or if the vertex lies
on a smooth region of the isosurface.

Let C0 and C1 be the set of grid cubes whose isosurface ver-
tices lie on 0-dimensional features or 1-dimensional features, re-
spectively. In the second part, MergeSharp selects a well-spaced
subset of C0∪C1. Cubes which generate such vertices are called se-
lected cubes. The vertices in selected cubes will form the sharp fea-
tures in the isosurface mesh. MergeSharp chooses selected cubes as
follows.

Mark all the cubes as “uncovered”. Sort C0 and C1 by increasing
distance of c.isov from c.centroid. Select the next uncovered cube
c in C0 where pc does not form a large angle triangle with vertices in
previously selected cubes. Mark all cubes which share a vertex with
c as covered. After processing list C0, apply the same procedure to

(a) (b)

Figure 3: 2D illustration of vertex and cube selection. (a) Selection
which gives poor cover of the red curve. The curve intersects an
uncovered square. (b) Selection which gives better cover of the red
curve. The curve is far away from any uncovered square.

list C1. Pseudocode is given in Figure 1.

The third part is merging covered cubes with selected cubes.
MergeSharp simply merges each covered cube with the first se-
lected cube which covers it. In the description of MergeSharp
in [1], the selection and merging steps are combined so that a cube
is merged as soon as it is covered, but the outcome of the algorithm
is exactly the same.

There are problems with every one of the first three parts of
MergeSharp. First, MergeSharp uses gradients from c or its im-
mediate neighbors to compute the location of c.isov. As discussed
in [7] computing correct gradients near sharp features is difficult, if
not impossible. Thus, the gradients in c and its neighbors may not
be known. Algorithm SHREC selects gradients from a larger area
than just the immediate neighbors of c.

Second, the isosurface vertex c.isov generated by cube c may
lie outside c. Moreover, if cube c is near a 1-dimensional feature,
point c.isov may lie outside of c even if this 1-dimensional feature
intersects c. In addition, because of curvature, noise and numerical
instability, point c.isov could lie in some cube c′ adjacent to c while
point c′.isov lies inside c.isov. Algorithm SHREC locates c.isov
inside c whenever possible.

Third, the selection step chooses cubes based on the proximity
of c.isov to c.centroid. If a point c.isov is near c.centroid, it prob-
ably is located in cube c and is a good approximation of the vertex
location. While this is reasonable, it ignores the interaction be-
tween selected cubes. MergeSharp does better when 1-dimensional
features are well-covered by the selected and covered cubes. For
instance, the selected squares in Figure 3(b), are packed together
more closely than the ones in Figure 3(a), and their 3×3 regions do
a better job of covering the given curve. Algorithm SHREC selects
cubes so that they are packed closely together.

Finally, the merging step merges cube c with the the first selected
cube adjacent to c. Doing so sometimes distorts triangles, creating
extremely thin triangles and sometimes creating “folds” in the sur-
face mesh. Algorithm SHREC prefers merging cubes which are
facet adjacent over merging edge adjacent or vertex adjacent cubes.
It also avoids merges which creates small thin triangles or creates
folds. It extends the merging by one more cube in certain regions
to ensure good covering of 1D features.

6 GENERATING POINTS ON SHARP FEATURES

As noted in Section 5, when a cube c intersects a 1-dimensional
feature, we would like to choose a point c.isov inside that feature
whenever possible. We would also like that point to be “near” the
center of the intersection of the isosurface and cube c. Finally, if the
1-dimensional feature is near c but does not intersect c, we would
like to choose a point that is “closest” to c.

SHREC uses a number of techniques to compute points in-
side cubes. First, when a cube c is near a 1-dimensional feature,
SHREC computes a line c.Lsharp approximating the feature near c.
SHREC computes the points on c.Lsharp closest to c.centroid and



Compute c.isovLoc for each active cube c.

��

If c.isovLoc is in c′ while c′.isovLoc is in c,
swap c.isovLoc and c′ isovLoc.

��

If c.isovLoc is in c′, then c′ isovLoc← c.isovLoc.

��

If c and c′ are 1D feature cubes intersecting in a grid edge e,
then compute the intersection p of c.Lsharp and a plane
separating c and c′.
c̃.isov← p where c̃ is the cube containing p.

��

If c and c′ are 1D feature cubes intersecting in a grid vertex v,
then compute the intersection p of c.Lsharp and a plane
separating c and c′.
c̃.isov← p where c̃ is the cube containing p.

Figure 4: SHREC algorithm for generating points on sharp features.

c.center. If one of those points is inside c, then SHREC sets c.isov
to that point. Otherwise, SHREC computes the point on c.Lsharp
which is closest to c.center under the L∞ metric. If c.Lsharp inter-
sects c, then that point will lie in c.

Second, SHREC compares isosurface vertex locations computed
by neighboring cubes and swaps or sets isosurface vertex locations
based on those comparisons. Third, SHREC computes isosurface
vertex locations on planes separating cubes intersecting 1D fea-
tures. SHREC stores these isosurface vertex locations in the cubes
containing them.

The second and third steps of the algorithm are outlined in Fig-
ure 4. Details of all three steps follow.

6.1 Computing Isosurface Vertex Locations

At the heart of any algorithm to compute a surface with sharp fea-
tures is an algorithm to compute the locations of mesh vertices on
those features. SHREC uses the algorithm from MergeSharp [1] to
compute an initial vertex location c.isovLoc for each active cube
c. The algorithm computes the vertex locations from gradients at
grid vertices. The MergeSharp algorithm is a variation of the algo-
rithm in [20] for computing vertex locations from surface normals.
Similar algorithms are in [22, 31, 37].

SHREC computes one isosurface vertex location c.isovLoc for
each active grid cube c. The algorithm computes an isosurface ver-
tex location for c by using the gradients at vertices of c and nearby
cubes. A grid vertex v with scalar sv and gradient gv gives a plane

hv = {p : (p−v) ·gv + sv = σ}. (1)

This plane is an “approximation” to the tangent planes to the iso-
surface at isosurface points in the neighborhood of v.

A set of k vertices and gradients gives a set of k equations in
three variables Mp = b where M is a k×3 matrix and b is a column
vector with k rows and the unknown p is a column vector with three
rows. Of course, if M has more than three rows, the system Mp = b
is over-determined and has no exact solution. The least squares
approximation to Mp = b is the solution to MT Mp = MT b.

Let A be the 3×3 matrix MT M and let b′ equal the column vec-
tor MT b. SHREC uses singular valued decomposition (SVD) as
described in [20, 22, 23] to compute an isosurface vertex location
from the equation Ap = b′.

Let σ1, σ2 and σ3 be the singular values of A sorted in decreasing
order. A singular value σi is large, if σi/σ1 ≥ ε for some predefined
parameter ε . There are three possible cases based on the number of
large singular values of A. In the first case A has three large singular
values. In this case, the tangent planes around c have normals in
three or more very distinct directions. The isosurface has some 0-
dimensional feature near cube c. We call a cube c a 0D feature cube
if the matrix A associated with c has three large singular values. The
solution to Ap = b′ approximates the 0-dimensional feature near
cube c.

In the second case, matrix A has only two large singular values.
In this case, the tangent plane normals are close to two different di-
rections. The isosurface has some 1-dimensional feature near cube
c. We call a cube c a 1D feature cube if the matrix A associated
with c has two large singular values.

To compute the 1-dimensional feature near c, we use singular
valued decomposition to remove the small singular value from A.
The singular valued decomposition of A is A =UΣV T where

Σ =





σ1 0 0
0 σ2 0
0 0 σ3



 .

When A has only two large singular values, σ1 and σ2, MergeSharp
replaces Σ by a new diagonal matrix Σ′ with diagonal entries σ1,
σ2, 0. Let A′ equal UΣ′V T . Matrix A′ has rank two. The solution
to A′p = b′ is a set of points on a line c.Lsharp. Line c.Lsharp
represents a line tangent to the 1-dimensional feature.

In the last case, matrix A has only one large singular value. In
this case, the tangent plane normals are close to a single direction.
The isosurface is smooth around cube c. Replace Σ by a new diag-
onal matrix Σ′ with diagonal entries σ1, 0, 0. Let A′ equal UΣ′V T .
Matrix A′ has rank one. The solution to A′p = b′ is a set of points
on a plane. That plane represents a tangent plane to the isosurface
in cube c.

In the case that A has only one or two large singular values, the
solution to A′p= b′ is a line or plane. As suggested in [31], SHREC
selects the point on the line or plane that is closest to c.centroid.

More precisely, SHREC defines the diagonal matrix Σ+ with di-
agonal entries:

1/σ1,1/σ2,1/σ3, if A has three singular values,
1/σ1,1/σ2,0, if A has two singular values,
1/σ1,0,0, if A has one singular value.

The point

φc(q) = q+V Σ+UT (b′−Aq) (2)

is the point on {p : A′p = b′} closest to q. SHREC selects point
φc(c.centroid) on the line or plane {p : A′p = b′}.

The number of large singular values of A determines whether the
computed isosurface vertex location lies on a 0-dimensional fea-
ture, a 1-dimensional feature, or a smooth portion of the isosurface.
This information is used in subsequent steps in the SHREC algo-
rithm.

When A′p = b′ is a line, the direction of that line is given by
the equation (I−V Σ+UT )w for any vector w which is not in the

kernel of (I−V Σ+UT )w. Substituting (1,0,0), (0,1,0) and (0,0,1)
for w and using (I−V Σ+UT )w with largest magnitude gives the
direction. The direction and point φc(centroid) defines the line
c.Lsharp.

Instead of using A = MT M, we could have used the singular
value decomposition of M. Using M is preferable for numerical



(a) (b)

Figure 5: Green line is c.Lsharp. Black cube vertex has scalar
value above the isovalue. (a) Red point is point on c.Lsharp closest
to c.centroid (yellow). Green line c.Lsharp intersects cube c but
red point is outside cube c. Blue points are the intersection points
of the isosurface and the cube edges, computed using linear inter-
polation. (b) Red point is point on c.Lsharp closest to c.center
(yellow). Green line c.Lsharp intersects cube c but red point is
outside cube c.

stability, since the condition number of A is the square of the condi-
tion number of M. However, because we remove small eigenvalues,
the numerical stability is not an issue. We use the singular value de-
composition of the 3×3 matrix A because it is simpler and faster to
compute than the singular valued decomposition of the k×3 matrix
M.

6.2 Computing Vertex Locations on 1-Dimensional Fea-
tures

Consider a 1D feature cube c. By definition, cube c is near some
1-dimensional feature. That 1D feature is approximated by the line
c.Lsharp. The location c.isovLoc of the isosurface vertex associ-
ated with c should be on c.Lsharp. However, that condition still
gives one degree of freedom in selecting the location of c.isovLoc.
One obvious additional condition is that if c.Lsharp intersects c,
then c.isovLoc should be in c. An additional condition is that if
c.Lsharp does not intersect c, then c.isovLoc should be “close to”
c under some suitably defined metric.

Algorithm SHREC computes three different possible isosurface
vertex locations. First, Algorithm SHREC computes the point
p0

c = φc(c.centroid) (Equation 2), the point on c.Lsharp which
is closest to c.centroid. The idea is that c.centroid is a good ap-
proximation for the intersection of c and the isosurface, and so one
should choose a point near c.centroid. If p0

c lies in c, then SHREC

sets c.isovLoc to p0
c .

In most cases, if line c.Lsharp intersects cube c. then the point
p0

c will lie in c. However, if line c.Lsharp is “near” some facet or

edge of c, then it is possible for c.Lsharp to intersect c but p0
c to lie

outside c. (See Figure 5(a).)

If p0
c lies outside c, then SHREC computes p1

c = φc(c.center),
the point on c.Lsharp which lies closest to the center c.center of
cube c. If p1

c is in c while p0
c is not, SHREC sets c.isovLoc to p1

c .

Unfortunately, it is possible that both p0
c and p1

c are not in c even
though c.Lsharp intersects c. (See Figure 5(b).) As a final step,
SHREC computes a point p2

c on c.Lsharp which is closest to the
center c.center of c under the L∞ metric. If c.Lsharp intersects c,
then this point is guaranteed to lie in c. Details for computing p2

c

are in Appendix A. If p2
c is in c while p1

c and p2
c are not, SHREC

sets c.isovLoc to p2
c .

Instead of computing p0
c , p1

c and p2
c , we could compute and use

only p2
c . However, the computations of p0

c and p1
c and p2

c are much

faster, and their locations are preferable to p2
c when they are con-

tained in cube c. Algorithm MergeSharp computes only φ0
c .

(a) (b)

Figure 6: (a) Two grids cubes sharing an edge e. (b) The two other
cubes (yellow) which also contain e.

(a) (b)

Figure 7: (a) Two grids cubes sharing a vertex v. (b) The six other
cubes (yellow) which also contain v.

6.3 Swapping Locations

Many of the problems in Algorithm SHREC (and MergeSharp) oc-
cur when isosurface vertex location c.isovLoc lies outside of cube
c. Thus, it is always preferable that c.isovLoc be in c. This is not
always possible since the sharp features near c may not intersect c.
However, in cases where a sharp feature intersects c, we would like
c.isovLoc to be in c.

The computation of a sharp feature near c depends upon gradi-
ents in the neighborhood of c. The set of such gradients changes
for each cube c. Because of the inaccuracy in computing sharp fea-
tures, it is possible that c.isovLoc is in a cube c′ adjacent to c while
c′.isovLoc is not contained in c. In some cases, location c.isovLoc
is in c′ while c′.isovLoc is in c. In those cases, we simply swap
c.isovLoc and c′.isovLoc. In other cases, location c′.isovLoc lies
in some third cube c′′. In that case, we simply set c′.isovLoc to
c.isovLoc.

The setting of isosurface vertex locations from adjacent cubes
increases the number of cubes c containing their associated vertex
locations c.isovLoc. Note that if the initial location c.isovLoc lies
in c, then we never change c.isovLoc.

6.4 Locations on Planes

Consider two grid cubes, c and c′, which intersect in an edge e
but not in any facet. (See Figure 6.) Two other grid cubes, c̃ and
c̃′ share edge e. A 1-dimensional feature which passes through c
and c′ must intersect either c̃ or c̃′. (In the exceptional case, the
1-dimensional feature passes through e, in which case it intersects
both c̃ and c̃′.) Since the 1D feature intersects either c̃ and c̃′, either
c̃.isovLoc should be in c̃ or c̃′.isovLoc should be in c̃′. However,
because of inaccuracies in computing points on 1D features, neither
condition may hold.

To ensure that either c̃.isovLoc lies in c̃ or c̃′.isovLoc lies in
c̃′, Algorithm SHREC computes the plane h containing e and per-
pendicular to the line from c.center to c′.center. SHREC then
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(a) Configuration (2,0) (b) Configuration (3,0)

(c) Configuration (2,1) (d) Configuration (3,1)

Figure 8: Tightly packed 2D configurations of selected squares. Se-
lected squares and 3×3 subgrid around each square. Line segments
with endpoints on the two selected squares (e.g., the green line seg-
ments) are contained within the union of the two 3×3 subgrids.

computes the intersection of the line c.Lsharp and plane h. This
intersections point, pI , lies in either c̃ or c̃′. If pI lies in c̃ and
c̃.isovLoc is not in c̃, SHREC sets c̃.isovLoc to pI . If pI lies in c̃′

and c̃′.isovLoc is not in c̃′, SHREC sets c̃′.isovLoc to pI .

Next, consider the case of two grid cubes, c and c′, which inter-
sect in a vertex v but not in any edge. (See Figure 7.) Six other grid
cubes share vertex v with c and c′. A 1-dimensional feature which
passes through c and c′ must intersect one of these six other grid
cubes. (In the exceptional case, the 1D feature passes through v, in
which case all six.) Since the 1D feature intersects one of the six
grid cubes, point c̃.isovLoc should lie in c̃ for one of the six grid
cubes c̃. Again because of inaccuracies in computing points on 1D
features, point c̃.isovLoc may not be in c̃ for any of the six grid
cubes c̃.

To ensure that pc̃ lies in c̃ for one of the six grid cubes, Algorithm
SHREC computes the plane h containing v and perpendicular to
the line from c.center to c′.center. SHREC then computes the
intersection of the line c.Lsharp and plane h. This intersections
point, pI , lies in at least one of the six grid cubes. If pI lies in cube
c̃ and c̃.isovLoc is not in c̃, SHREC sets c̃.isovLoc to pI .

The computation in this section ensures “continuity” in the cubes
which intersect a 1-dimensional feature If a 1-dimensional feature
intersects a cube c, then the 1-dimensional feature should intersect
two cubes c′ and c′′ which share a facet with c. SHREC’s compu-
tation of line-plane intersections described above, ensures that if c′

and c′′ are active cubes, then c′ will contain c′.isovLoc and c′′ will
contain c′′.isovLoc.

7 SELECTING 0D AND 1D FEATURE CUBES

Algorithm SHREC selects a well-spaced subset of the 0D and 1D
feature cubes and merges isosurface vertices in adjacent cubes with
the vertices generated by the selected cubes. To ensure that the
isosurface vertices on sharp features are well-spaced, SHREC never
selects two cubes which have a common vertex. Whenever SHREC
selects a cube c, any adjacent cube sharing a vertex with c is marked
as “covered” by c. SHREC never selects a covered cube.

SHREC follows a MergeSharp rule in never selecting a cube c
if c.isov creates a large angle triangle (Algorithm 1, step 5) with
vertices from previously selected cubes. SHREC does not select
cube c if c.isov creates such a triangle with angle 140◦ or greater.

As noted in Section 5, SHREC does better when selected cubes

(a) Configuration (3,2) (b) Configuration (2,2)

Figure 9: Problematic 2D configurations of selected squares. Se-
lected squares and 3×3 subgrid around each square. (a) The green
line segment is not contained within the union of the two 3×3 sub-
grids. (b) The green line segment intersects the boundary of the
union of the two 3×3 subgrids.

(a) Configuration (4,2) (b) Additional cube

Figure 10: (a) Configuration (4,2) has space between the 3×3 sub-
grids around each selected square. (b) Additional cube (magenta)
which packs tightly with two other squares.

are packed “tightly” together. (See also Figure 3.) In particular,
SHREC tries to avoid certain configurations of nearby cubes.

Consider cubes c and c′ with grid indices (x0,x1,x2) and
(x′0,x

′
1,x
′
2), respectively. (A cube with grid indices (x0,x1,x2) is in

column x0, row x1 and z-plane x2 of the grid.) The distance vector
between the cubes is (|x0−x′0|, |x1−x′1|, |x2−x′2|). Two grid cubes
are in configuration (a0,a1,a2) if the distance vector between the
cubes is some permutation of (a0,a1,a2). Figures 8, 9, 10 and 11,
contain examples of 2D and 3D configurations of grid cubes.

We can get some insight into 3D configurations of grid cubes by
considering the 2D configurations of grid squares. Figure 8 con-
tains configurations (2,0), (3,0), (2,1) and (3,1) of grid squares.
The 3×3 subgrids around the selected squares are “tightly packed”
so that any line segment with endpoints in the selected squares is
contained within the union of the two 3×3 subgrids.

Figure 9 contains configurations (3,2) and (2,2) of grid squares.
With configuration (3,2), some line segments with endpoints in the
selected squares are not contained within the union of the 3× 3
subgrids. Configuration (2,2) is somewhat better, since all line seg-
ments with endpoints in the selected squares are contained within
the union of the 3×3 subgrids. Unfortunately, they are only barely
contained. The green line segment in Figure 9(b) intersects the
boundary of the 3×3 subgrid. Slightly curving the segment could
mean that it no longer was contained in the union.

Note that if selected squares are suitably far apart, then addi-
tional squares can be selected between them. For instance, a ma-
genta square can be selected between the two colored squares in
Figure 10(a) and the 3×3 subgrids will fit together tightly.

Some examples of tightly packed 3D configurations of cubes are
given in Figure 11. Any line segment with endpoints in the two
selected cubes c and c′ will be well contained within the union of
the two 3×3×3 subgrids, R3×3×3

c and R3×3×3
c′ , around c and c′.

Figure 12 contains three problematic configurations, (3,2,0),
(3,2,1) and (3,2,2), of selected cubes. Line segments with end-
points in the two selected cubes c and c′ may contain points outside

R3×3×3
c ∪R3×3×3

c′ . SHREC attempts to avoid selecting cubes with
these configurations.



(a) Configuration (2,0,0) (b) Configuration (3,0,0) (c) Configuration (2,1,0) (d) Configuration (3,1,0)

(e) 3×3×3 regions. (f) 3×3×3 regions. (g) 3×3×3 regions. (h) 3×3×3 regions.
Configuration (2,0,0) Configuration (3,0,0) Configuration (2,1,0) Configuration (3,1,0)

Figure 11: Tightly packed 3D configurations of selected cubes.

(a) Configuration (3,2,0) (b) Configuration (3,2,1) (c) Configuration (3,2,2)

(d) 3×3×3 regions. (e) 3×3×3 regions. (f) 3×3×3 regions.
Configuration (3,2,0) Configuration (3,2,1) Configuration (3,2,2)

Figure 12: Problematic 3D configurations of selected cubes.

If two selected cubes, c and c′, are in configuration (2,2,0),
(2,2,1) or (2,2,2), then a line segment with endpoints in c and

c′ could intersect the boundary of R3×3×3
c ∪R3×3×3

c′ . Such configu-
rations are undesirable. Unfortunately, we found that avoiding such
configurations is too restrictive.

Consider two cubes, c and c′′ in a (3,2,0), (3,2,1) or (3,2,2)
configuration. If a third selected cube c′ lies between c and c′′,
then the 1-dimensional feature will pass from c to c′ to c′′. The
selection of c′ “blocks” the problematic interaction of c and c′′. If
cubes c and c′ are selected, then SHREC will permit the selection
of c′′, even though c and c′′ have a configuration (3,2,∗). Figure 13
contains an example of two cubes in a (3,2,2) configuration and a
third cube between them.

More formally, let c, c′ and c′′ be grid cubes with grid indices
(x0,x1,x2), (x

′
0,x
′
1,x
′
2) and (x′′0 ,x

′′
1 ,x
′′
2), respectively. Cube c′ sep-

arates c from c′′ if x′i ∈ [xi,x
′′
i ] for i = 0,1,2 and xi < x′i < x′′i or

xi > x′i > x′′i for some i. SHREC avoids selecting cube c′′ if some
already selected cube c forms a (3,2,0) or (3,2,1) or (3,2,2) con-
figuration with c′′ and no already selected cube separates c from
c′′.

Figure 14 contains an outline of the algorithm for selecting 0D
and 1D feature cubes. SHREC first selects 0D feature cubes. When
the 0-dimensional feature is inside an active cube, SHREC selects
the active cube containing the feature point. When the feature point
is not in an active cube, SHREC selects the active cube “closest” to
the feature point by choosing the cube c whose center has minimum
L∞ distance to the feature point.

SHREC next selects 1D feature cubes which are “near” the se-
lected 0D feature cubes, i.e., they are contained in an 7× 7× 7
subgrid around each selected 0D feature cube. Selecting 1D feature
cubes near 0D feature cubes poses special challenges since there are
multiple 1-dimensional features ending at a 0-dimensional feature.
Selecting a cube which is near two such 1-dimensional features.
can obscure one of the edges.

Let c be a selected 0D feature cube and let c′ be a 1D feature
cube which is in a (2,0,0), (2,1,0) or (2,1,1) configuration with
c. Let c′′ be any cube sharing an edge or facet with c′ which is
contained in the 5× 5× 5 subgrid but is not covered by c. If c′′ is
active and a 1D feature cube, then SHREC does not select cube c′.

Once 1D feature cubes near 0D feature cubes are selected,



Figure 13: Problematic interaction of red and blue cubes in config-
uration (3,2,2) is blocked by magenta cube.

Select 0D feature cubes

��

Select 1D features cubes in 7×7×7 subgrids
around selected 0D feature cubes

��

Select 1D feature cubes whose indices are congruent

to (0,0,0) mod 6.

��

Select 1D feature cubes whose indices are congruent

to permutations of (k,0,0) mod 6.

��

Select 1D feature cubes whose indices are congruent

to permutations of (ka,kb,0) mod 6.

��

Select 1D feature cubes whose indices are congruent

to permutations of (ka,kb,kc) mod 6.

Figure 14: SHREC algorithm for selecting 0D and 1D feature
cubes.

SHREC could iterate by selecting uncovered 1D feature cubes near
already selected cubes. If no uncovered 1D feature cubes was near a
selected cube, SHREC could select an arbitrary uncovered 1D fea-
ture cube and extend the set of selected cubes from that cube. By
not selecting a cube c′′ if it forms a (3,2,0), (3,2,1) or (3,2,2) with
an already selected cube c (and is not separated by a selected cube
from c,) SHREC would produce a tight packing of selected cubes.

The algorithm outlined in the previous paragraph would produce
a good set of selected cubes but it is highly sequential. One of
the best aspects of the Marching Cubes and dual contouring algo-
rithms is their local, distributed, parallelizable nature. Sequentially
extending the set of selected cubes would totally destroy that aspect
of the algorithms. Instead of selecting cubes using the sequential
algorithm given above, SHREC divides the regular grid into over-
lapping 6× 6× 6 subgrids, selects cubes from the boundaries of
those subgrids and then from their interior. The algorithm is com-
pletely local and easily distributed and parallelizable.

Each grid cube has an index (x0,x1,x2). SHREC processes the
grid cubes by reducing the indices modulo six to (x0 mod 6,x1 mod
6,x2 mod 6) (Figure 15(a)). SHREC first selects 1D feature cubes
with indices congruent to (0,0,0) modulo six. SHREC next selects
1D feature cubes with indices congruent modulo six to (±1,0,0)
or (0,±1,0) (0,0,±1). (Figure 15(b)). SHREC then selects 1D
feature cubes with indices congruent modulo six to (±2,0,0) or
(0,±2,0) (0,0,±2). Finally, SHREC selects 1D feature cubes
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Figure 15: 2D illustration of order of cube selection based on cube
indices mod 6. (a) Green squares are (0,0) mod 6. (b) Blue squares
are (k,0) mod 6 or (0,k) mod 6 for k = 1, . . . ,5. Squares marked 1
are selected first, then squares marked 2 and then squares marked
3. (c) Yellow squares are (ka,kb) mod 6 for ka = 1, . . . ,5 and kb =
1, . . . ,5. Squares marked 1 are selected first, then squares marked
2, then 3, 4 and 5.

with indices congruent modulo six to (3,0,0) or (0,3,0) (0,0,3).
SHREC does not select a 1D feature cube c if some already selected
cube c′ forms configuration (3,2,0), (3,2,1) or (3,2,2) with c and
no already selected cube separates c from c′′.

SHREC next selects 1D feature cubes which are some permu-
tation of (ka,kb,0) modulo six, starting first with permutations
of (±1,±1,0) and ending with permutations of (3,3,0). (Fig-
ure 15(c)). Finally, SHREC selects 1D feature cubes which are per-
mutations (ka,kb,kc) modulo six, starting first with permutations of
(±1,±1,±1) and ending with (3,3,3).

It is possible that the selection of two 1D feature cubes c and c′′ at
distance five apart can force the selection of an edge cube c′ which
has a (3,2,1) or (3,2,2) configuration with either c or c′′. This
happens if the distance vector between c and c′′ is (5,3,2). Thus,
in addition to avoiding (3,2,∗) configurations, SHREC also avoids
selecting two cubes, c and c′′, which form a (5,3,2) configuration.
Of course, if c and c′′ are separated by some other selected cube,
then they can both be selected.

While the above rules select a set of cubes which almost com-
pletely cover the 1-dimensional features of a surface, it is possi-
ble that the configuration restrictions leave a few areas uncovered.
Therefore, SHREC repeats the selection process to select any re-
maining uncovered 1D feature cubes but drops the configuration
restrictions.

8 MERGING POINTS WITH FEATURES POINTS

Algorithm MergeSharp merges neighbors of a selected cube c with
c when c is selected. This merging step sometimes created ex-
tremely thin triangles and sometimes flips triangle orientations.
SHREC is much more careful about its cube merging. SHREC also
extends the merging to some cubes in a 5× 5× 5 subgrid around
each selected cube. Note that SHREC actually merges the isosur-
face vertices generated by the cubes, not the cubes themselves.

SHREC relies upon some angle tests to determine permissible
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(a) (b)

Figure 16: (a) Isosurface in yellow square is connected to three
selected cubes. Yellow square should merge with the middle green
square, not with either of the blue squares. (b) Merging the red
vertex with either of the yellow vertices will cause the yellow edge
to be contained in four polygons.

merging. Before performing such tests, SHREC maps the grid
and the computed isosurface locations c.isovLoc to the regular grid
composed of unit cubes.

8.1 Ordered Merging

SHREC first merges neighbors of selected 0D feature cubes.
SHREC merges these neighbors in three steps. First, for each se-
lected 0D feature cube c, SHREC merges with c the active cubes
which share a facet with c. Next, for each selected 0D feature cube
c, SHREC merges with c the active cubes which share an edge with
c. Finally, for each selected 0D feature cube c, SHREC merges with
c the active cubes which share a vertex with c. Of course, once an
active cube is merged with some selected cube, it is never merged
with any other cube.

SHREC next merges neighbors of selected 1D feature cubes.
The procedure is similar to the one for 0D feature cubes. SHREC
first merges active cubes which share a facet with a selected 1D
feature cube, then merges active cubes which share an edge with
a selected 1D feature cube, and finally merges active cubes which
share a vertex with a selected 1D feature cube.

8.2 Merging Tests

For both the 0D feature cube and 1D feature cube merging, SHREC
applies six different tests to avoid creating very thin triangles or
flipping triangles or violating manifold conditions. Consider a cube
c̃ which SHREC would like to merge with a selected cube c. In
order for a cube c̃ to merge with a selected cube c, cubes c̃ and c
should satisfy the following conditions:

1. Some isosurface edge connects c̃ to c.

2. Merging c̃ with c does not create an edge which is contained
in four isosurface triangles or quadrilaterals (manifold condi-
tion).

3. If c̃ is connected to three different selected 1D feature cubes,
c, c′ and c′′, then c should lie “between” c′ and c′′. (See Fig-
ure 16(a) for a 2D illustration.)

4. Merging c̃ with c does not create a triangle with very small
angles.

5. Merging c̃ with c does not “flip” a triangle, creating a “fold”
in the isosurface.

6. If cubes c̃ and c̃′ share an ambiguous facet, then c̃ should
merge with c if and only if c̃′ merges with c.

We describe these conditions in more detail below.
First, SHREC checks that the isosurface vertex in c̃ is connected

to the isosurface vertex in c. A cube c̃ is connected to a selected

cube c if c̃ shares an active facet or edge with c or some cube c̃′

shares an active facet or edge with c̃ and is merged with c. If c̃ is
not connected with c, then c̃ is not merged with c.

Second, SHREC checks for some manifold violations that could
be caused by merging c̃ with c. For each such selected cube c′ 6= c
which is connected to c̃, SHREC checks if c′ is connected to c. Let
c′ be a selected cube which is connected to c and c̃. Each active
edge e of c̃ is dual to an isosurface quadrilateral with a vertex in c̃.
Let c̃1, c̃2, and c̃3 be the three other cubes containing e. If some c̃i

merges with c and another c̃ j merges with c′, then merging c̃ with
c collapses this quadrilateral to a triangle or an edge. However, if
no isosurface quadrilateral dual to an active edge of c̃ has vertices
in c̃, c and c′, then merging c̃ with c creates a non-manifold edge
from c to c′ with four incident polygons. (See Figure 16(b).) If
some selected c′ is connected to both c and c̃, but no isosurface
quadrilateral has vertices in c̃, c and c′, then SHREC does not merge
c̃ with c.

Third, SHREC checks that if c̃ is connected to three selected 1D
feature cubes, c, c′ and c′′, then c is between c′ and c′′. If not, then
mapping c̃ to c could create a triangle with a small angle. (See Fig-
ure 16 for a 2D illustration.) Let c, c′ and c′′ be grid cubes with
grid indices (x0,x1,x2), (x′0,x

′
1,x
′
2) and (x′′0 ,x

′′
1 ,x
′′
2), respectively.

If (x′′0 ,x
′′
1 ,x
′′
2) is contained in the box with corners (x0,x1,x2) and

(x′0,x
′
1,x
′
2) and does not lie on any of the eight corners of that box,

then we say that c′′ lies between c and c′. If c̃ is connected to se-
lected 1D feature cubes c, c′ and c′′, and c′′ lies between c and c′ or
c′ lies between c and c′′ then SHREC does not merge c̃ with c.

In the fourth and fifth tests, SHREC checks whether mapping c̃
to c creates an isosurface triangle with a small angle or “flips” an
isosurface triangle, creating a “fold” in the isosurface. These tests
are a little more complicated than the others and are explained in
the next section.

Finally, SHREC checks whether cube c̃ has more than one iso-
surface vertex. If cube c̃ has more than one isosurface vertex, then
it has at least one ambiguous facet. (A facet is ambiguous if two
diagonally opposite vertices have scalar value above the isovalue
while the other two vertices have scalar value below the isovalue.)
Let c̃′ be a cube sharing an ambiguous facet with c̃. If cube c̃ has
two isosurface vertices and c̃′ is not merged with c, then c̃ is not
merged with c.

8.3 Distortion Tests

Let q be a quadrilateral dual to some active edge of c̃. Let w̃ be
the vertex of q which is generated by c̃. Quadrilateral q can either
be triangulated by adding a diagonal incident on w̃ or by adding a
diagonal connecting the neighbors of w̃ in q. Triangulating w̃ by
adding a diagonal incident on w̃ places more restrictions on pos-
sible locations of w̃. Since SHREC does not know how q will be
triangulated, it assumes this more restrictive triangulation.

The diagonal of q incident on w̃ splits q into two triangles.
SHREC checks whether mapping c̃ to c will severely distort either
of those triangles. Let c̃, c̃′ and c̃′′ be the cubes containing the tri-
angle vertices. SHREC only checks triangles where c̃′ and c̃′′ are
not covered or selected.

Let w̃, w̃′ and w̃′′ be the vertices generated by c̃, c̃′ and c̃′′. Let
w be the vertex generated by selected cube c. In the fourth test,
SHREC computes ∠(w, w̃′, w̃′′) and ∠(w, w̃′′, w̃′). If ∠(w, w̃′, w̃′′) or
∠(w, w̃′′, w̃′) is less than 5◦, then SHREC does not map c̃ to c.

The fifth test is composed of two different parts. In the first part,
SHREC checks whether mapping w̃ to w significantly changes the
normal of triangle (w̃, w̃′, w̃′′). If the angle between the normal of
(w, w̃′, w̃′′) is less than 30◦, then the triangle passes this test.

In the second part, SHREC checks the orientation of (w, w̃′, w̃′′).
Let e be the grid edge shared by cubes c̃, c̃′ and c̃′′. Let π(w),
π(w̃′) and π(w̃′′) be the orthogonal projection of w, w̃′ and w̃′′,
respectively, onto a plane h perpendicular to e. If the orientation



of π(w), π(w̃′) and π(w̃′′) matches the orientation of c̃, c̃′ and c̃′′

around e, then triangle (w, w̃′, w̃′′) passes the orientation test.

To pass the fifth test, SHREC requires that a triangle pass either
the normal or the orientation test, not necessarily both tests. The
original triangle (w̃, w̃′, w̃′′) could have a normal which is very far
from the true surface normal. In that case, the normal of triangle
(w, w̃′, w̃′′) should be far from the normal of triangle (w̃, w̃′, w̃′′). On
the other hand, the projected vertices π(w), π(w̃′) and π(w̃′′) could
be nearly collinear. In that case, π(w), π(w̃′) and π(w̃′′) could have
opposite orientation from c̃, c̃′ and c̃′′, even though the normal of
(w, w̃′, w̃′′) is quite close to the original.

8.4 Pair Merging

A cube c̃ may fail to merge with a selected cube c because of some
neighboring cube c̃′ while c̃′ fails to merge with c because of c̃.
Often this “deadlocking” arises when c̃ and c̃′ share a common am-
biguous facet.

After attempting to merge individual cubes, SHREC tries to
merge pairs (c̃, c̃′) of covered cubes with selected cubes. The ele-
ments of the pairs should share a common facet or edge and should
both be covered by the selected cube c. SHREC temporarily merges
c̃ with c, and then applies all the above tests to c̃′. SHREC then tem-
porarily merges c̃′ with c, and applies all the above tests to c̃. If both
c̃ and c̃′ pass the tests, then SHREC merges both of them with c.

As the merging proceeds, it is possible that a cube which was
previously unable to merge with any selected cube is now able to
merge with some such cube. Thus, SHREC reapplies the algorithm
in Section 8.1 and in this section to any remaining covered, un-
merged cubes.

8.5 Extended Merging

The merging of cubes in 3×3×3 subgrid around each selected cube
will clear most but not all of the vertices around sharp features.
There are multiple reasons that some vertices near sharp features
may remain. First, the location of some vertex outside of R3×3×3

c
may stop some cube covered by c from merging with c. Second, if
two selected c and c′ are in a (2,2,0) or (2,2,1) or (2,2,2) config-
uration, then a 1-dimensional feature with endpoints in c and c′ can

intersect the boundary of the R3×3×3
c ∪R3×3×3

c′ . Vertices in uncov-
ered cubes can be arbitrarily close to such a 1-dimensional feature.
Third, while the selection step avoids most (3,2,∗) configurations,
it does not avoid all of them. If c and c′ are in a (3,2,∗) configu-
rations, then a 1-dimensional feature passing through c and c′ may

contain points outside of R3×3×3
c ∪R3×3×3

c′ .

To handle such problems, SHREC extends the merging to cubes
in a 5× 5× 5 subgrid around each selected cube. Merging cubes
in a 5× 5× 5 subgrid R5×5×5

c around a selected cube c can create
its own problems of thin or flipped triangles. Thus, SHREC only
attempts to merge cubes in R5×5×5

c which are potentially near a 1-
dimensional feature through c.

First, SHREC checks whether any covered cubes are unmerged
after the steps in Sections 8.1 and 8.4. If some cube c̃ is covered by
selected cube c but not merged with any cube, SHREC pairs c̃ with
any adjacent active cubes c̃′ sharing a vertex with c̃ and attempts
to merge the pair (c̃, c̃′) with c. SHREC applies the pair merging
procedure in Section 8.4 to determine whether to allow the pair
(c̃, c̃′) to merge with c. Note that in Section 8.4 both cubes in the

pair must be contained in R3×3×3
c while here only one cube must be

contained in R3×3×3
c .

It is possible that the interaction of vertices in three cubes pre-
vents a covered cube from merging with a selected cube. SHREC
considers triples of unmerged cubes which share a common edge e.
At least one cube in the triple must be in R3×3×3

c . The triple merg-
ing procedure is the same as the pair merging procedure described
in Section 8.4. Its description is omitted.

(a) (b)

(c) (d)

Figure 17: 2D example of selecting gradients “close” to square c.
(a) Set Q of red vertices with undefined gradients. (b) Graph Gc

formed from Q∪Qc and the grid edges. Qc is the set of four blue
vertices of square c. (c) Connected component G′ of Gc. (d) Green
vertices which are connected to the vertices of G′. The green ver-
tices are the vertices with defined gradients which are “close” to
c.

Next, SHREC tries to merge cubes which lie at the intersection

∂R3×3×3
c ∩∂R3×3×3

c′ of two 3×3×3 subgrids around two selected

cubes c and c′. More specifically, SHREC attempts to merge a cube
c̃ with a selected cube c if some facet of c̃ lies on the boundary of

R3×3×3
c while some other facet of c̃ lies on the boundary of R3×3×3

c′ .

Note that such a cube is contained in R5×5×5
c . SHREC applies all

the tests in Section 8.2 to determine whether to merge c̃ with c′.

Finally, SHREC tries to merge pairs of cubes (c̃, c̃′) which lie

at the intersection ∂R3×3×3
c ∩ ∂R3×3×3

c′ . Both c̃ and c̃′ must have

facets which lie on R3×3×3
c and R3×3×3

c′ . SHREC applies the pair
merging procedure described in Section 8.4 to determine whether
to allow the pair (c̃, c̃′) to merge with c.

9 SELECTING GRADIENTS

The algorithm in Section 6.1 for computing isosurface vertex loca-
tions requires a set of gradients for each cube c. An obvious set is
the gradients at the vertices of c. However, even if correct gradients
were provided at every vertex of c, this set would not suffice. It is
possible to have an active cube c which contains a sharp isosurface
corner defined by three perpendicular planes while only two of the
planes are represented by the gradients of c.

MergeSharp computes isosurface vertex locations from the ver-
tices of c and of the six cubes sharing a facet with c. When exact
gradients are provided at all grid vertices, this set of gradients suf-
fices.

When gradients are not provided in the input, they must be com-
puted from the scalar data. If an isosurface has sharp features, then
the gradient field is discontinuous around those sharp features. As
discussed in [7] computing correct gradients near gradient field dis-
continuities is extremely difficult. In [7] Bhattacharya and Wenger
give an algorithm for computing correct gradients in the presence of
gradient discontinuities, but the algorithm does not compute correct



gradients at all the grid vertices. Instead, the algorithm returns a set
of correct gradients at some of the grid vertices while returning no
gradient information at other vertices. Under suitable conditions,
the algorithm returns the correct gradient at any vertex which is at
least three edge lengths from any gradient discontinuity.

Because the algorithm in [7] does not return gradients near gradi-
ent discontinuities, no gradient information may be available for the
vertices of cubes which contain those discontinuities or for neigh-
bors of such cubes. Thus, we must use gradients from a 7× 7× 7
subgrid around each cube c.

When scalar data is provided by computer tomography (CT),
then the scalar values near gradient discontinuities may also be
incorrect. As discussed in [7], we must go out even further to a
9×9×9 subgrid around each cube c to get gradient information.

Only gradients which determine isosurface tangent planes near
c should be used in c.isovLoc. We use three tests on the vertices
in a 7×7×7 or 9×9×9 subgrid around c to determine such gra-
dients. First, we are only interested in vertices which are near the
isosurface. Thus, we only choose vertices from edges where one
endpoint has scalar value below the isovalue and one endpoint has
scalar value at or above the isovalue. Second, we are only inter-
ested in vertices whose gradients generate planes which are close
to c. We construct a cube c′ of size 2×2×2 centered at c and only
choose a vertex v if the plane hv given by Equation 1 intersects c′.

Third, if vertices “close” to c have been chosen, then there is no
reason to select vertices “far” from c. In fact, choosing gradients
at vertices “far” from c in smooth, curved surfaces can cause the
creation of non-existent sharp features in the isosurface.

To choose only vertices close to c, we consider the set Q of ver-
tices of the 9× 9× 9 (or 7× 7× 7) subgrid, whose gradients are
undefined. (See Figure 17.) We choose only vertices with defined
gradients which are adjacent to vertices in Q.

More precisely, let Q be the set of vertices of the subgrid whose
gradients are undefined (Figure 17(a)). Let Qc be the vertices of
c. Let Gc be the graph whose vertices are Q∪Qc and whose edges
are (u,v) where (u,v) is a grid edge (Figure 17(b)). We find the
connected component G′ of Gc containing Qc (Figure 17(c)). A
grid vertex u 6∈ V (G′) is on the boundary of G′ if (u,v) is a grid
edge and v is in V (G′). As out third test, we only a choose a vertex
if it is in Qc or if it is on the boundary of G′. (Figure 17(d)).

Applying the three tests gives a set of vertices and their gradients
which define planes. We use those vertices and their gradients to
compute pc as described in Section 6.1.

10 CONSTRUCTING ISOSURFACE TRIANGLES AND QUADRI-
LATERALS

The last step in SHREC is the construction of isosurface triangles
and quadrilaterals. SHREC first applies the Manifold Dual March-
ing Cubes algorithm described in [36] to the full resolution grid (no
merged grid cubes) to construct a set of isosurface quadrilaterals.
The algorithm is essentially the same as the Nielson’s Dual March-
ing Cubes algorithm [26] but with some small changes to the iso-
surface in certain ambiguous cases. We briefly describe Manifold
Dual Marching Cubes.

Each grid vertex with scalar value below the isovalue receives a
negative (“−”) label. Each grid vertex with scalar value equal to or
above the isovalue receives a positive (“+”) label. A grid edge is
active if it has one positive endpoint and one negative endpoint.

The eight labels on the eight vertices of a cube c determine the
configuration of the cube. There are 28 = 256 possible configura-
tions. A lookup table stores the number of isosurface vertices for
each configuration κ . Cubes with configuration κ contain the cor-
responding number of isosurface vertices. For each configuration
κ , the lookup table also stores an assignment of active edges to iso-
surface vertices. If a cube has configuration κ , then the isosurface

quadrilateral dual to active edge e is incident on the isosurface ver-
tex assigned to edge e.

As with all dual contouring algorithms, Manifold Dual March-
ing Cubes constructs one isosurface quadrilateral dual to each ac-
tive grid edge. The four vertices of the isosurface quadrilateral q
lie in the four grid cubes containing the active edge e. Using the
lookup table, we determine the four isosurface vertices in the four
grid cubes which form the vertices of q and store q by its four ver-
tices.

When two cubes, c and c′, share an ambiguous facet and each has
only one isosurface vertex, the procedure in the previous paragraph
will generate a non-manifold edge contained in four quadrilaterals.
In this case, we replace the configurations of c and c′ with comple-
mentary configurations where all the positive and negative vertex
labels are flipped. The complementary configurations generate two
isosurface vertices in each cube, avoiding the non-manifold edge.
Because the initial configuration for each cube generates only one
isosurface vertex, each cube has only one ambiguous facet, the facet
shared by c and c′. Thus, using the complementary configurations
for c and c′ does not create any “cracks” in the connection of c and
c′ to other cubes.

After constructing a full resolution isosurface mesh, SHREC col-
lapses mesh quadrilaterals using the previously constructed grid
cube merging. For each selected cube c, let wc be the isosurface
vertex generated by c. If c generates more than one isosurface ver-
tex, arbitrarily choose one to be wc.

For each isosurface vertex of a non-selected cube c′, if c′ merges
a selected cube c let M(w) equal wc. For each isosurface vertex w
of a selected cube c, let M(w) equal wc. For every other isosurface
vertex w, let M(w) equal w.

Replace each quadrilateral (w,w′,w′′,w′′′) by
(M(w),M(w′),M(w′′),M(w′′′). Replacing the vertices of
these quadrilaterals will map some of the quadrilaterals to triangles
and collapse others to edges, vertices or pairs of edges. Remove
the quadrilaterals which are mapped to vertices or edges.

For each selected cube c, assign wc the isosurface vertex location
computed for c as described in Section 6. For each unselected, un-
merged cube containing a single isosurface vertex w, also assign w
the location computed for c as described in Section 6. The remain-
ing isosurface vertices are in unselected, unmerged cubes which
contain multiple isosurface vertices. For each such isosurface ver-
tex w, let Ew be the cube edges dual to the quadrilaterals incident
on w. Using linear interpolation, compute the intersection point of
the isosurface and each edge e∈ Ew. Locate w at the centroid of the
intersection points.

Manifold Dual Marching Cubes generates an isosurface which
is always a manifold. However, the merging of isosurface vertices
can create non-manifold edges. In the experiments described in
Section 13, SHREC almost always produced a manifold isosurface.
If a manifold isosurface is required, then tests such as in [11] or [30]
can be added to the merging step to ensure that the resulting surface
is a manifold.

10.1 Grid Spacing

The distortion tests for cube merging (Section 8.3) depend upon two
angle parameters, one for testing triangle angles and one for testing
changes in normals. If the grid is not spaced by the same length in
the x, y and z directions, these tests will be biased in certain direc-
tions. To avoid this bias, we map the isosurface vertex locations to
locations in a grid with uniform 1×1×1 spacing before applying
these tests.

In gradient selection (Section 9), we use a 2×2×2 region around
cube c to determine the selected gradients. Of course, this region
size is only for a grid with uniform 1× 1× 1 spacing. If the grid
spacing is δx× δy× δz, we use a region of size (2/δx,2/δy,2/δz)
around cube c.



In sharp cube selection (Section 7), we use an angle test to avoid
selecting a cube whose isosurface vertex may create a thin triangle
with vertices in other selected cubes. For that test, we use the vertex
locations in the original grid.

11 PARAMETERS

Algorithm SHREC has two major parameters, one determining the
number of large singular values in matrix A and the second deter-
mining the size of the k× k× k subgrid from which gradients are
selected around each cube (Section 9). The first parameter is a value
ε between 0 and 1. As described in Section 6.1, a singular value σi

of matrix A is called “large” if σi/σ1 is greater than or equal to ε .
The number of large singular values determines whether a vertex
is on a sharp feature or a smooth subgrid of the isosurface. To the
best of our knowledge, all algorithms which reconstruct surfaces
with sharp features require some parameter to distinguish the sharp
features from the smooth regions of the surface.

The second parameter is an odd integer k ≥ 3. Each cube c uses
gradients from a k×k×k subgrid around the cube in selecting gra-
dients for computing c.isovLoc. The size of k depends upon the
input data. If correct gradients are provided at each grid vertex,
then k should equal 3 for a 3×3×3 subgrid around each cube. If
gradients are computed from correct scalar values using the algo-
rithm in [7], then k should equal 7 for a 7× 7× 7 subgrid around
each cube. If gradients are computed from CT data using the algo-
rithm in [7], then k should equal 9 for a 9× 9× 9 subgrid around
each cube.

SHREC uses three other constants: one for the triangle test in
selecting vertices, one for the angle test in merging cubes and a
second for the normal test in merging cubes. In the triangle test,
if selecting cube c would possibly create a triangle between three
selected cubes with angle greater than 140◦ , cube c is not selected.
In the angle test, if merging cube c̃ with c would create a triangle
with angle less than 5◦, then cube c̃ is not selected. In the normal
test, if merging c̃ with c would change the normal of some triangle
(w̃, w̃′, w̃′′) by less than 30◦, then merging c̃ with c does not distort
triangle (w̃, w̃′, w̃′′).

Because SHREC is based on the regular grid, the constants used
in all three of these tests do not depend upon the input data and
should work well for any scalar fields. Note that SHREC maps the
input grid and the computed isosurface locations c.isovLoc to the
regular grid composed of unit cubes before applying the angle or
normal tests.

12 MEASURING ANGLE DISTANCE BETWEEN SURFACES

As described in Section 3, we evaluated MergeSharp in [1] by
extracting sharp mesh edges (dihedral angle less than 140◦) and
comparing the 1-skeleton formed by those sharp edges with the 1-
skeleton of the sharp edges in an ideal surface. We present here a
different way of evaluating a reconstructed mesh containing sharp
features.

Let ΣP and ΣQ be two surfaces. Given a point p ∈ ΣP, the dis-
tance, d(p,ΣQ), from p to ΣQ is the distance from p to the closest
point on ΣQ, i.e., d(p,ΣQ) = minq∈ΣQ

d(p,q). We would like a sim-
ilar measurement of the difference between the normal at p and the
normals of ΣQ.

The simplest approach would be to locate the point q ∈ ΣQ clos-
est to p and measure the difference between their normals. As
shown in Figure 18, this measurement is not be very useful. Rect-
angle A′ is a slightly translation of rectangle A. The boundaries of
rectangles A and A′ are close under the Hausdorff metric and their
normals are the same. However, point p is in the intersection of the
two boundaries, ∂A and ∂A′, but the normal to point p in ∂A is 90◦

from the normal to point p in ∂A′. Furthermore, for any point p̃∈ A
in a suitably small neighborhood of p, the closest point in p̃′ ∈ A′

has normal which is 90◦ from the normal of A at p̃. Note that the

A

A′

p A

A′

p

(a) (b)

A

B

q

A

B

q

(c) (d)

Figure 18: (a) Rectangle A′ is a slight perturbation of rectangle A.
(b) Close up view of dotted region around point p. (c) The corner
of polygon B is clipped near q. (d) Close up view of dotted region
around point q.

translation could be arbitrarily small and there would still be a point
in A whose normal was 90◦ from the closest point in A′.

In contrast to the match between the normals of A and A′, the
corner of polygon B in Figure 18(c) is clipped and its normal is 45◦

from any normal of A. We would like some measurement which
gives a high value between q ∈ B and A while giving a low value
between any point of A′ and A. Our idea is to compare the normal
at p ∈ ΣP with the normals of ΣQ in some suitable neighborhood
around p.

Let ΣS
P and ΣS

Q be the set of smooth points in ΣP and ΣQ. Let

np and nq be the normals of p ∈ ΣS
P and q ∈ ΣS

Q, respectively. Let

Bp(ε) be the ball around p of radius ε . For each point p∈ ΣS
a where

Bp(ε)∩ΣS
Q 6= /0, define the angle distance between p and ΣQ in the

ε-neighborhood as:

d̃ε
A(p,ΣQ) = liminf{∠(np,nq) : q ∈ ΣS

Q ∩Bp(ε)}.

Define the directed angle distance between ΣP and ΣQ in ε-
neighborhood as:

d̃ε
A(ΣP,ΣQ) = limsup

p∈ΣS
P and Bp(ε)∩ΣS

Q 6= /0

d̃ε
A(p,ΣQ).

Finally, define the angle distance between ΣP and ΣQ in ε-
neighborhood as:

dε
A(ΣP,ΣQ) = max(d̃ε

A(ΣP,ΣQ), d̃
ε
A(ΣQ,ΣP)).

The angle distance depends upon the parameter ε . If some point
p ∈ ΣS

P is not within ε of ΣQ, then d̃ε
A(p,ΣQ) is undefined. To

address this problem, we replace the neighborhood Bp(ε) by an
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Figure 19: Isosurfaces constructed from synthetic test datasets.

extended neighborhood Bp(ε +d(p,Σq)) where d(p,Σq) is the dis-
tance from p to ΣQ. The ball around p is now guaranteed to intersect
ΣQ.

Define the angle distance between p∈ ΣS
p and ΣQ in the extended

ε-neighborhood as:

d̃+ε
A (p,ΣQ) = liminf{∠(np,nq) : q ∈ ΣS

Q ∩Bp(ε +d(p,ΣQ))}.

As before, d(p,ΣQ) is the distance from p to the closest point on
Q. Note that the addition of d(p,ΣQ) ensures that the ball around p
intersects ΣQ.

Define the directed angle distance between ΣP and ΣQ in ex-
tended ε-neighborhood as:

d̃+ε
A (ΣP,ΣQ) = limsup

p∈PS

d̃+ε
A (p,ΣQ).

Define the angle distance between ΣP and ΣQ in extended ε-
neighborhood as:

d+ε
A (ΣP,ΣQ) = max(d̃+ε

A (ΣP,ΣQ), d̃
+ε
A (ΣQ,ΣP)).

Unfortunately, neither dε
A(Σp,Σq) nor d+ε

A
(Σp,Σq) obey the tri-

angle inequality. Nevertheless, we think that the angle distance is a
useful way of measuring the difference in surface normals between
two surfaces.

The angle distance depends upon a consistent orientation of
the two surfaces. If the surface is not oriented or if it is rep-
resented by a set of polygons without a consistent orientation,
then we can still measure an “unoriented” angle distance by using
min(∠(np,nq),∠(np,−nq)) in place of ∠(np,nq). We call the two
versions of the angle distance, the oriented angle distance and the
unoriented angle distance.

The angle distance, both in the absolute and extended neighbor-
hoods, can be modified to give a variety of measurements of surface
normal differences. Instead of measuring the maximum angle dif-
ference between normals, one could count the number of polygons
with normal difference above a threshold or the total area of such
polygons. One could also produce a histogram of the number or
total area of such polygons with normal difference in given ranges.
Some such histograms are provided in Section 13.

13 EXPERIMENTAL RESULTS ON SYNTHETIC DATA

13.1 Synthetic Scalar and Gradient Data

To measure the quality of our reconstruction, we used a number of
synthetic scalar and gradient datasets. (See Figure 19.) Given a

point p, let f
L1
p (q) be the L1 distance from p to q. A Cube dataset

is generated by sampling f
L1
p and its gradients on vertices of the

regular grid.

Level sets of f
L1
p are cubes whose edges are parallel to the co-

ordinate axes and whose facets are orthogonal to those axes. By

rotating f
L1
p around p, we can generate a scalar field whose level

sets are cubes that are not axis-aligned. By taking the minimum of

two (rotated) scalar fields, f
L1
p and f

L1

p′
, centered around two differ-

ent points, p and p′, respectively, we get a scalar field whose level
sets are the boundaries of the unions of the two cubes. (See Fig-
ure 19(a).) We call a regular grid sampling of such a scalar field and
its gradients a TwoCubes dataset. The isosurface of a TwoCubes
dataset has twenty 0-dimensional features, fourteen of which are
cube corners and six of which are “saddle points” where the two
boundaries of two cubes meet. We use the TwoCubes datasets with
various rotations as test sets for the reconstruction of 0-dimensional
features.

Let ℓ be a line. Let f
Cyl
ℓ (q) be the Euclidean distance from point

q to ℓ. The level sets of f
Cyl
ℓ (q) are infinite cylinders around ℓ. Let

f
Cyl×2
ℓ,r (q) equal | fCyl

ℓ (q)− r|. The level sets of f
Cyl×2
ℓ,r (q) are pairs

of infinite cylinders at equal distances from the cylinder of radius

r around ℓ. Let f Pl×2
p,ℓ (q) be the (unsigned) distance from q to the

plane that contains point p and is orthogonal to line ℓ. Let f Ann
p,ℓ,r(q)

be the maximum of f
Cyl×2
ℓ,r (q) and of f Pl×2

p,ℓ (q). The level sets are

the boundaries of thickened annuli. (See Figure 19(b).)

The width of the thickened annuli defined by f Ann
p,ℓ,r equals their

height. We can adjust change the difference between the width and

height by adding constants to f
Cyl×2
ℓ,r or f Pl×2

p,ℓ (q). Let f Ann
p,ℓ,r,c1,c2

(q)

be the maximum of f
Cyl×2
ℓ,r (q) + c1 and of f Pl×2

p,ℓ (q) + c2. If c1

is greater than c2, then the height is c1− c2 units greater than the
width. If c2 is greater than c1, then the width is c2−c1 units greater
than the height.

Define f Fr
p,ℓ,r,c(q) as the minimum of f Ann

p,ℓ,r,c,0(q) and f Ann
p,ℓ,r,0,c(q).
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Figure 20: Polygonal meshes representing level sets.

The level sets of f Fr
p,ℓ,r,c(q) are the boundaries of the unions of two

thickened annuli. (See Figure 19(c).) One annuli has height c units
greater than its width while the other has width c units greater than
its height. A Flange dataset is a regular grid sampling of f Fr

p,ℓ,r,c(q)

and its gradients. The Flange dataset has no 0-dimensional features.
We use the Flange datasets as test sets for the reconstruction of 1-
dimensional features.

We use two other types of datasets to test our algorithm on di-
hedral angles other than 90◦. A cone is defined by an apex p, an
axis direction ζ , and an angle α < 90◦. The cone is the union of all
the rays from p forming angle α with ζ . Let ℓ be the directed line
through p with direction ζ , i.e. the cone axis. Let πℓ(q) be the pro-
jection of point q on ℓ. Let D1(q) be the distance from p to πℓ(q)
and let D2(q) be the signed distance from πℓ(q) to p. (The distance
is negative if πℓ(q)− p points in the opposite direction from ζ .) De-

fine fCone
p,ζ ,α

(q) as cos(α)D1(q)− sin(α)D2(q). Function fCone
p,ζ ,α

(q)

is the signed distance from point q to its orthogonal projection on
the cone, when that orthogonal projection exists. The level sets of
fCone
p,ζ ,α

(q) are cones with axis ℓ.

We truncate the cone by defining a plane orthogonal to ℓ. Let p′

be a point on ray p+ tζ where ζ is a unit vector. Let f Pl
p′,ζ (q) equal

(q− p′) · ζ , the (unsigned) distance from q to the plane containing
p′ orthogonal to ζ . Define

f Fr
p,ζ ,α ,p′(q) = max

(

fCone
p,ζ ,α (q), f Pl

p′ ,ζ (q), f Pl
p′,−ζ (q)

)

.

The level sets of f Fr
p,ζ ,α ,p′ (q) are frustra. (See Figure 19(d).)

The level sets of f Fr
p,ζ ,α ,p′(q) have two closed curves forming 1-

dimensional features. The dihedral angle on one of these curves
is 90◦ +α while the dihedral angle on the other is 90◦ −α . To
generate a field with dihedral angles of 90◦+α or 90◦−α , but not
both, we modify f Fr

p,ζ ,α ,p′(q) so that the level sets are capped by

spheres at one end.

Define

f SCone
p,ζ ,α ,p′ (q) =

{

|q− p′| if ∠(q, p′, p)≤ 90◦−α,
fCone
p,ζ ,α

(q) if ∠(q, p′, p)> 90◦−α,

f TCone
p,ζ ,α ,p′ (q) = max

(

f SCone
p,ζ ,α ,p′(q), f Pl

p′,ζ

)

.

A level set of f SCone
p,ζ ,α ,p′

(q) is a cone with its tip smoothed. A level

set of f TCone
p,ζ ,α ,p′

(q) is a truncated cone with its tip smoothed. The

level set has a single closed curve forming a 1-dimensional feature
with dihedral angle 90◦ − α . The Smooth Tip Cone dataset is a
regular sampling of f TCone

p,ζ ,α ,p′
(q) and its gradients. We use Smooth

Tip Cone datasets to evaluate reconstruction of dihedral angles less
than 90◦.

Let p′ and p′′ be points on the ray p+ tζ where |p− p′| is less
than (1− sin(α))|p− p′′|. Define

f X
p,ζ ,α ,p′′(q) =

{

|q− p′′| if ∠(q, p′, p)> 90◦−α,
fCone
p,ζ ,α

(q) if ∠(q, p′, p)≤ 90◦−α.

fCan
p,ζ ,α ,p′,p′′(q) = max

(

f X
p,ζ ,α ,p′′(q), f Pl

p′,−ζ

)

.

A level set of fCan
p,ζ ,α ,p′

(q) has the shape of a cannon. The level

set has a single closed curve forming a 1-dimensional feature with
dihedral angle 90◦+α . The Cannon dataset is a regular sampling
of fCan

p,ζ ,α ,p′
(q) and its gradients. We use Cannon datasets to evaluate

reconstruction of dihedral angles greater than 90◦.

13.2 Gradients

Algorithm SHREC requires gradients at the grid vertices. Exact
formulas can be given for gradients for each of the scalar fields de-
scribed in the previous section. However, if scalar data is acquired
from scanning devices such as CT scanners, only scalar informa-
tion is available. In [7], we describe an algorithm, Religrad, for
constructing a set of reliable gradients from scalar data. We evalu-
ated SHREC both on gradients computed by exact formulas and on
the gradients produced by Religrad from the scalar data.

13.3 Measurements

For each test scalar field f and test isovalue σ , we constructed a
polygonal mesh which represented the level set, f−1(σ). (See Fig-
ure 20.) The polygonal mesh was designed specifically for each sur-
face to accurately represent the 0-dimensional and 1-dimensional
features on the surface.

To compare isosurfaces constructed by different software on dif-
ferent scales, we rescaled every isosurface and polygonal mesh to
lie in the unit cube. Our isosurfaces were computed from grids
of 150× 150× 150 or 200× 200× 200 so this rescaled the cube
size to about 0.005 units. We computed the angular distance in the
extended ε-neighborhood as defined in Section 12 between each
isosurface and the corresponding polygonal mesh. We also com-
puted the number of triangles whose normals differed by more than
30, 40 or 50 degrees from polyhedral triangles in the extended ε-
neighborhood around each triangle. We set ε equal to 0.01 or about
twice the cube size for the extended neighborhood.

We also used the degree test as described in [1] to measure er-
rors in reconstructing sharp features. We extracted the 1-skeleton
of isosurface edges with dihedral angle less than 140◦ and counted
the number of vertices in the 1-skeleton with degree other than two.
For an isosurface Σ, let N6=2(Σ) be the number of vertices in the 1-
skeleton with degree other than two. Isosurfaces from the Flange,
Smooth Tip Cone and Cannon datasets should have zero vertices
with degrees other than two. The number of degree errors for these
isosurfaces is N6=2(Σ). Isosurfaces from the TwoCubes datasets



Num Avg Num Avg Num Avg Num
Dataset Type Datasets Grid Size Isovalue Active Cubes Iso Vert Iso Tri Avg Time

TwoCubes 34 150×150×150 20.1 25K 22K 45K 0.8 sec

Flange 39 200×200×200 10.1 90K 75K 150K 1.8 sec

Smooth Tip Cone 15 100×100×100 10.2 4K 3.5K 7K 0.2 sec

Cannon 15 100×100×100 0.0 7K 7K 14K 0.2 sec

Table 1: Synthetic test dataset sizes, isovalues, and average statistics on isosurfaces produced by SHREC. Average number of active cubes,
average number of isosurface vertices, average number of isosurface triangles, and average SHREC running time. All isosurface quadrilaterals
are triangulated before counting the number of isosurface triangles. Because SHREC merges isosurface vertices, the average number of
isosurface vertices is less than the average number of active cubes.

Figure 21: SHREC Flange isosurface. “Sharp” edges (with dihedral
angle less than 140◦) are marked in red. “Smooth” edges are in dark
gray. The magnified region shows a blend of the “sharp” edges with
a subset of the “smooth” edges.

should have exactly twenty vertices with degrees other than two.
The number of degree errors for these isosurfaces is |N6=2(Σ)−20|.

13.4 Isosurface Reconstruction on Synthetic Data

We tested SHREC on 39 Flange datasets with 39 different orienta-
tions and 34 TwoCubes datasets with 34 different orientations. Ta-
ble 1 presents dataset sizes, isovalues, and average isosurface sizes.
We tested SHREC both on gradients produced by exact formulas
and on gradients produced by Religrad. We set the singular value
threshold ε to 0.1, and used 9× 9× 9 subgrids for gradient selec-
tion. We measured the oriented angle distance between the SHREC
isosurfaces and the polygonal meshes representing the level sets.
We also counted the number of isosurface triangles whose normal
differences from the polyhedral mesh were above 30◦, 40◦ and 50◦.
Finally, we measured the number of degree errors in the 1-skeleton
of sharp isosurface edges.

Figure 21 shows a Flange isosurface produced by SHREC using
exact gradients. The magnified region shows edges with dihedral
angle less than 140◦ in red blended with a subset of the “non-sharp”
edges.

Figure 22 shows a TwoCubes isosurface and isosurface edges
constructed by SHREC. SHREC reproduces the 0-dimensional fea-
tures with single mesh vertices and the 1-dimensional features with
a sequence of mesh edges with dihedral angle 90◦.

With exact gradients, all the Flange isosurfaces had oriented an-
gle distance under 15 degrees from the polygonal meshes. They
also had no degree errors in the 1-skeletons of sharp isosurface
edges, i.e. all the vertices in the 1-skeletons had degree two.

Figure 23 displays oriented angle distance and degree error infor-
mation for the 39 Flange isosurfaces when gradients were produced
using Religrad. As shown in Figures 23(a) and 23(e), only one iso-
surface had oriented angle distance greater than 50◦ and more than
half had oriented angle distance less than 40◦. No isosurfaces had
more than 5 triangles with angle distance greater than 40◦ and no

Figure 22: SHREC TwoCubes isosurface. “Sharp” edges (dihedral
angle less than 140◦) are marked in red. Smooth edges are shown
in cyan. The magnified region shows the output mesh edges around
a corner.

isosurfaces had more than 15 triangles with angle distance greater
than 30◦.

Figure 23(b) shows the 1-skeleton degree errors for the 39 Flange
isosurfaces when gradients were produced using Religrad. Thirteen
isosurfaces had no degree errors. No isosurface had more than four-
teen degree errors.

Figure 23 displays angle distance and degree error information
for the 34 TwoCubes isosurfaces produced by SHREC. Figure 23(c)
shows the oriented angle distance using exact gradients and Re-
ligrad gradients. As with the exact gradients in the Flange datasets,
the angle distance is very low (less than 5◦) for all the TwoCubes
isosurfaces produced using exact gradients. For most isosurfaces
produced using Religrad gradients, the angle distance is still low
(under 15◦), although six isosurfaces have angle distances above
30◦. The high angle distances indicate errors in the SHREC recon-
struction of sharp features.

Figure 23(f) gives the number of TwoCubes Religrad isosur-
face triangles whose normal differences to the polyhedral mesh are
above 30◦, 40◦ and 50◦. No isosurface has more than 10 triangles
with normal difference above 30◦.

With exact gradients, the 34 TwoCubes isosurfaces had no 1-
skeleton degree errors, i.e. they all had exactly 20 vertices with
degree three in the 1-skeleton of their sharp edges. Figure 23(d)
shows the degree errors in the 1-skeleton of sharp edges when gra-
dients were produced using Religrad. 29 out of the 34 TwoCubes
isosurfaces had no degree errors. Of the 5 isosurfaces with degree
errors, the maximum number of degree errors was four.

To measure the dihedral angles other than 90◦, we ran SHREC
on 15 Cannon datasets with 15 different orientations and 14 Smooth
Tip Cone datasets with 14 different orientations. The 1-dimensional
features in the Cannon level sets had dihedral angles of 120◦. The 1-
dimensional features in the Smooth Tip Cone level sets had dihedral
angles of 60◦. As expected, SHREC produced more errors than on
the Flange or TwoCubes datasets, although it still did quite well.

Figure 24 shows Cannon and Smooth Tip Cone isosurfaces



(a) Flange: Oriented angle distance (b) Flange: Degree errors

(c) TwoCubes: Oriented angle distance (d) TwoCubes: Degree errors

(e) Flange: Triangle normal differences (f) TwoCubes: Triangle normal differences

Figure 23: Results of SHREC using exact gradients and Religrad gradients on 39 Flange datasets and 34 TwoCubes datasets. (a) Oriented
angle distances between Flange isosurfaces (exact and Religrad gradients) and polygonal mesh. (b) Number of degree errors in the Flange 1-
skeletons of sharp edges (Religrad gradients). (SHREC using exact gradients produces no degree errors.) (c) Oriented angle distances between
TwoCubes isosurfaces (exact and Religrad gradients) and polygonal mesh. (d) Number of degree errors in the TwoCubes 1-skeletons of sharp
edges (Religrad gradients). (SHREC using exact gradients produces no degree errors.) (e) Number of Flange isosurface triangles with normal
difference to polygonal mesh above 30, 40 and 50 degrees. (f) Number of TwoCubes isosurface triangles with normal difference to polygonal
mesh above 30, 40 and 50 degrees.



Software Algorithm URL References

EMC (IsoEx) Extended Marching Cubes www.graphics.rwth-aachen.de/software [22]

EMCpoly Extended Marching Cubes web.cse.ohio-state.edu/research/graphics/isotable

PolyMender Dual Contouring www.cse.wustl.edu/ taoju/code/polymender.htm [19, 20, 31]

SingularCocone Singular Cocone web.cse.ohio-state.edu/ tamaldey/cocone.html [8, 12, 13]

MergeSharp MergeSharp web.cse.ohio-state.edu/research/graphics/isotable [1, 6]

SHREC SHREC web.cse.ohio-state.edu/research/graphics/isotable

Table 2: Surface reconstruction software. EMC is a sample implementation of Extended Marching Cubes. EMCpoly is a modification of
EMC which creates TwoCubes and Flange isosurfaces. PolyMender is an implementation of dual contouring for fixing polygonal meshes.
SingularCoconeis an implementation of a Voronoi based algorithm for surface reconstruction from point clouds. The algorithm handles 0
and 1 dimensional features including non-manifold features. MergeSharp is an implementation of a dual contouring reconstruction algorithm
which uses cube merging to obtain better reconstruction around sharp features. SHREC is an implementation of the algorithm in this paper.

(a) Cannon (b) Smooth Tip Cone

Figure 24: SHREC Cannon and Smooth Tip Cone isosurfaces (Re-
ligrad gradients.) (a) Cannon isosurface. 1-dimensional feature
has dihedral angle 120◦. (b) Smooth Tip Cone isosurface. 1-
dimensional feature has dihedral angle 60◦.

(a) (b)

Figure 25: Results of SHREC on 15 Cannon and 14 Smooth Tip
Cone datasets. (a) Number of degree errors on 1-skeleton of Can-
non isosurfaces constructed using Religrad gradients. (Cannon iso-
surfaces constructed using exact gradients had no degree errors.)
(b) Number of degree errors on 1-skeleton of Smooth Tip Cone
isosurfaces constructed using Religrad gradients (green) and exact
gradients (red).

produced by SHREC using Religrad gradients. In each, the 1-
dimensional is represented by a sequence of isosurface mesh edges
with the appropriate dihedral angles.

Figure 25 gives the number of degree errors in the 1-skeleton of
sharp edges for Cannon and Smooth Tip Cone isosurfaces. SHREC
using exact gradients produced no degree errors on the 15 Cannon
datasets. SHREC using Religrad produced degree errors on only
four Cannon datasets. No SHREC Cannon Religrad isosurface had
more than two degree errors. SHREC using exact gradients pro-
duced degree errors in only two of the Smooth Tip Cone datasets,
one with two errors and one with four. SHREC using Religrad gra-
dients produced degree errors on 7 out of the 14 Smooth Tip Cone
datasets. The maximum number of degree errors in any Smooth Tip
Cone isosurface was 4.

14 COMPARISON WITH OTHER ALGORITHMS

We compared SHREC with software implementations of four other
algorithms: MergeSharp [1, 6], PolyMender [19], EMC (Extended
Marching Cubes) [22] and SingularCocone [12]. Table 2 contains
descriptions of the software.

Input to both SHREC and MergeSharp is a regular grid sampling
of a scalar field and the gradients at the grid vertices. Input to the
software implementations of the other algorithms is very different
from input to SHREC or inputs to each other, so one should be
extremely careful in make comparisons between these algorithms
based on the results presented here. For instance, on average, EMC
has fewer degree errors than PolyMender or SingularCocone, but
EMC computes scalar, distance and normal values from formulas
hard coded into the software. PolyMender and SingularCocone
(and SHREC and MergeSharp) would certainly do much better if
their input came from formulas hard coded into their software.

SingularCocone has the most degree errors, but SingularCocone
is designed for reconstruction from point samples of a (possibly
non-manifold) surface, not for reconstruction from sampling of a
scalar field. Input to SingularCocone is point samples of a surface,
not scalar grid or gradient information.

Comparison with MergeSharp. Input to MergeSharp is a
regular grid sampling of a scalar field and the gradients at the
grid vertices. We ran MergeSharp on the same 39 Flange and 34
TwoCubes synthetic datasets that we applied to SHREC in Sec-
tion 13.4. We used the exact gradients on MergeSharp, not the Re-
ligrad gradients. Figures 26(a) and 26(c) show the oriented angle
distances between the MergeSharp isosurfaces and the polygonal
mesh isosurfaces. Five of the MergeSharp TwoCubes isosurfaces
have angle distance near 180◦ indicating “flipped” triangles pro-
duced by folds in the mesh. Figures 26e and 26f present the number
of triangles with angle difference greater than 30, 40 and 50 degrees
in the MergeSharp Flange and TwoCubes isosurfaces. 24 out of 39
of the Flange isosurfaces and 18 out of 34 of the TwoCubes isosur-
face have angle distance above 30◦ indicating significant problems
in the reconstruction of sharp features.

Figures 26(b) and 26(d) gives the number of degree errors in the
1-skeleton’s of the sharp edges. 8 out of 39 of the Flange isosur-
faces and 15 out of 34 of the TwoCubes isosurfaces have degree
errors. The maximum number of degree errors is eight.

Note that all the results in Figure 26 are for MergeSharp isosur-
faces produced from EXACT gradients. Thus, they should not be
compared with the SHREC results in Figure 23 for Flange isosur-
faces produced using Religrad gradients. The 39 SHREC Flange
isosurfaces produced using exact gradients all have angle distance
under 15◦ compared with angle distances above 30◦ for 24 of
the corresponding MergeSharp isosurfaces. None of the SHREC
Flange isosurfaces produced using exact gradients have degree er-
rors compared with 8 MergeSharp isosurfaces with 4 to 8 degree
errors.

https://www.graphics.rwth-aachen.de/software
http://web.cse.ohio-state.edu/research/graphics/isotable
http://www.cse.wustl.edu/~taoju/code/polymender.htm
http://web.cse.ohio-state.edu/~tamaldey/cocone.html
http://web.cse.ohio-state.edu/research/graphics/isotable
http://web.cse.ohio-state.edu/research/graphics/isotable


(a) Flange: Oriented angle distance (b) Flange: Degree errors

(c) TwoCubes: Oriented angle distance (d) TwoCubes: Degree errors

(e) Flange: Triangle normal differences (f) TwoCubes: Triangle normal differences

Figure 26: Results of MergeSharp on 39 Flange and 34 TwoCubes datasets (exact gradients). (a) Oriented angle distance to polygonal Flange
meshes. (b) Degree errors in 1-skeleton of sharp edges of Flange datasets. (c) Oriented angle distance to polygonal TwoCubes meshes.
(d) Degree errors in 1-skeleton of sharp edges of TwoCubes datasets. (f) Number of triangles with normal difference to polygonal Flange
mesh above 30, 40 and 50 degrees. (No Flange isosurface triangles have normal difference above 50◦.) (e) Number of triangles with normal
difference to polygonal TwoCubes mesh above 30, 40 and 50 degrees.



(a) Notch in MergeSharp Flange isosurface (b) Dimpled MergeSharp isosurface (left) and smooth SHREC

isosurface (right)

Figure 27: (a) Notch in a MergeSharp Flange isosurface. (b) Dimples in a MergeSharp Cone isosurface (left). Compare with smooth SHREC
isosurface (right).

(a) PolyMender Flange isosurface (b) SHREC Flange isosurface (c) Triangle normal differences

(d) PolyMender (e) SHREC (f) Magnified Smooth Tip Cone isosurfaces

Figure 28: PolyMender and SHREC comparison. Mesh edges with dihedral angle below 140◦ are colored red. (a) PolyMender Flange
isosurface. (b) Corresponding SHREC Flange isosurface. (c) Distribution of differences of triangle normals between PolyMender isosurface
and polygonal mesh (red) and between SHREC isosurface and polygonal mesh (green). (d) PolyMender Cone isosurface. (e) Corresponding
SHREC Cone isosurface. (f) Magnified view of PolyMender isosurface (left) and corresponding SHREC isosurface (right).

As shown in Figure 23(c), the 39 SHREC TwoCubes isosurfaces
produced using exact gradients all have angle distance under 2◦. 18
of the corresponding MergeSharp TwoCubes isosurfaces have angle
distance above 30◦. None of the SHREC TwoCubes isosurfaces
produced using exact gradients have degree errors compared with
15 of the TwoCubes isosurfaces with 2 to 5 degree errors.

Figure 27(a) shows “notches” in a MergeSharp Flange isosur-
face. Figure 27(b) shows gentle dimples in a MergeSharp Cone
isosurface (left image). The corresponding SHREC isosurface is
smooth and does not have these dimples.

Comparison with PolyMender. PolyMender is an implemen-
tation of mesh repairing algorithm from Ju [19]. Input to Poly-
Mender is a set of triangles representing a surface, but not necessar-
ily properly connected in a polygonal mesh. PolyMender uses the
input triangles to build a regular scalar grid representing the signed
distance to the surface. It also uses the input triangles to determine

surface normals on the surface. It extracts an isosurface mesh using
the dual contouring algorithm described in [20, 31]. The extracted
isosurface mesh is the “mended” polygonal mesh.

Because PolyMender contains an implementation of the dual
contouring algorithm from [20, 31], we used it to compare SHREC
and the algorithm from [20, 31]. Our inputs to PolyMender were the
polygonal meshes (Figure 20) designed specifically for each sur-
face to accurately represent the 0-dimensional and 1-dimensional
features on the surface.

PolyMender builds a multiresolution isosurface using an octree
instead of a fixed regular grid. The highest resolution is determined
by the depth of the octree. For all tests, we ran PolyMender with
octree depth set of 7. At the highest resolution, this octree sampled
data from a regular grid with dimensions 27 × 27 × 27 or 128×
128× 128. We set the scale to 0.9 and used defaults for all other
parameters.



(a) Flange: Oriented angle distance (b) Flange: Degree errors

(c) TwoCubes: Oriented angle distance (d) TwoCubes: Degree errors

(e) Flange: Triangle normal differences (f) TwoCubes: Triangle normal differences

Figure 29: Results of PolyMender on 39 Flange and 34 TwoCubes datasets. (a) Oriented angle distance to polygonal Flange meshes.
(b) Degree errors in 1-skeleton of sharp edges of Flange datasets. (c) Oriented angle distance to polygonal TwoCubes meshes. (d) Degree
errors in 1-skeleton of sharp edges of TwoCubes datasets. (Note: Y-scale is 0 to 200 compared with y-scale 0 to 450 in (b).) (e) Number of
triangles with normal difference to Flange mesh above 30, 40 and 50 degrees. (f) Number of triangles with normal difference to TwoCubes
mesh above 30, 40 and 50 degrees. (Note: Y-scale is 0 to 200 compared with y-scale 0 to 400 in (e).)



(a) Oriented angle distance (b) Triangle normal differences (c) Degree errors

(d) EMCpoly Flange isosurface (e) EMCpoly TwoCubes isosurface

Figure 30: EMCpoly (Extended Marching Cubes) and SHREC comparison. Tests tw1-tw4 are four TwoCubes scalar fields. Tests fl1-fl4 are
four Flange scalar fields. (a) Oriented angle distances for EMCpoly (blue) and SHREC (red). (b) Number of triangles in EMCpoly isosurfaces
with oriented angle difference to polygonal mesh above 30, 40 and 50 degrees. (c) Degree errors in 1-skeleton of EMCpoly isosurface (blue).
(SHREC has no degree errors for these cases.) (d) EMCpoly Flange isosurface. The magnified region shows very thin mesh triangles aligned
with a 1-dimensional feature. (e) EMCpoly TwoCubes isosurface. The magnified region shows errors folds and degenerate triangles in the
EMCpoly isosurface mesh.

Because PolyMender computes its scalar field and surface nor-
mals from an input polygonal mesh, we did not think it fair to
compare PolyMender to SHREC with exact gradients. Instead, we
compared PolyMender to SHREC using Religrad gradients. Since
PolyMender surface normals come from triangles on the polygonal
meshes used for the angle distance measurements while Religrad
gradients are computed from the scalar data, we think this compar-
ison is actually biased in favor of PolyMender.

Figures 28(a) and 28(b) show part of a Flange isosurface recon-
structed by PolyMender and a corresponding isosurface produced
by SHREC (Religrad gradients). Note the flipped triangles and
distorted “sharp” curve (red) in the PolyMender isosurface. Fig-
ure 28(c) shows the distribution of differences of triangle normals
between the PolyMender isosurface and the polygonal mesh and be-
tween the SHREC isosurface and the polygonal mesh. All SHREC
triangle normals are within 25◦ of the polygonal mesh normals,
while PolyMender has numerous triangles with normals greater
than 30◦ of the polygonal mesh normals.

Figures 28(d), 28(e) and 28(f) show a PolyMender Smooth Tip
Cone isosurface and the corresponding SHREC isosurface (Re-
ligrad gradients). The 1-dimensional feature around the base of the
cone has a 60◦ dihedral angle. In the PolyMender isosurface, there
are numerous “notches” along the 1-dimensional feature.

We ran PolyMender on the same 39 Flange and 34 TwoCubes
meshes that we applied to SHREC in Section 13.4. Figure 29 shows
the oriented angle distances from the polygonal meshes and the de-
gree errors in the 1-skeletons of sharp edges. Most of the Poly-
Mender Flange and TwoCubes isosurfaces had an oriented angle
distance greater than 90◦ from the corresponding polygonal mesh
normals. 24 out of 39 of the PolyMender Flange isosurfaces had
over 150 triangles whose normals were more than 50◦ from the

normals of the corresponding polygonal meshes. In comparison,
only one SHREC Flange isosurface (Religrad gradients) had trian-
gles whose normals were more than 50◦ from the normals of the
corresponding polygonal meshes (Figure 23). No SHREC Flange
isosurface (Religrad gradients) had more than 15 triangles whose
normals were more than 30◦ from the normals of the corresponding
polygonal meshes Almost all of the PolyMender Flange isosurfaces
had degree errors and 25 out of 39 had over 200 degree errors. Only
8 out of 39 SHREC Flange isosurfaces (Religrad gradients) had de-
gree errors and the maximum number of degree errors was eight.

PolyMender did a bit better on the TwoCubes isosurfaces, prob-
ably because the 1-dimensional features in the TwoCubes level sets
are line segments. Only one of the 34 PolyMender TwoCubes iso-
surfaces had over 150 triangles whose normals were more than 50◦

from the normals of the corresponding polygonal meshes. 18 out of
34 PolyMender TwoCubes isosurfaces had over 50 triangles whose
normals were more than 50◦ from the normals of the corresponding
polygonal meshes. Most of the PolyMender TwoCubes isosurfaces
had degree errors, but none had more than 180 degree errors. 8 out
of 34 had more than 100 degree errors and 22 out of 34 had more
than 40 degree errors. 5 out of 34 SHREC TwoCubes isosurfaces
(Religrad gradients) had angle distance greater than 40◦ to the cor-
responding polygonal meshes. The same five SHREC isosurfaces
had degree errors, but no SHREC isosurface had more than four
such errors.

Comparison with EMC (Extended Marching Cubes):
EMC is a sample implementation by Mario Botsch of the Extended
Marching Cubes algorithm [22]. The program has a function which
provides the scalar value of a point cloud dataset, the directed dis-
tances along the x, y and z axes to some level set of the point cloud



(a sphere), and the gradients at query points near the level set. Iso-
surfaces with sharp features are constructed by combining the func-
tions to represent the union, intersection or difference of balls de-
fined by the point cloud datasets.

The union, intersection and difference of balls produces visually
interesting surfaces but such surfaces do not seem a realistic ap-
proximation to the surfaces found in industrial products. To com-
pare EMC with SHREC, we implemented functions which produce
scalar values, directed distances, and gradients, for Cube and Annu-
lus scalar fields. By combining these functions, we the correspond-
ing values for the TwoCubes and Flange scalar fields. We added
only functions to provide the relevant scalar field measurements,
but did not change the EMC code which generates the isosurface.
Our modification of EMC is called EMCpoly.

We ran EMCpoly on four Flange scalar fields with four randomly
generated axes directions and four TwoCubes scalar fields with four
randomly generated orientations. We ran SHREC on eight cor-
responding datasets representing the same scalar fields. For both
EMCpoly and SHREC, the Flange scalar fields were sampled on a
200×200×200 regular grid and the TwoCubes scalar fields were
sampled on a 150×150×150 regular grid.

Figure (a) shows the angle distance between the EMCpoly iso-
surfaces and the polygonal meshes The oriented angle distance of
the SHREC isosurfaces is less than 20◦, but is over 90◦ for all of
the EMCpoly isosurfaces. Figure 30(b) shows the number of trian-
gles in EMCpoly isosurfaces whose normals differ more than 30,
40 or 50 degrees from the polygonal mesh normals. All four of the
EMCpoly Flange isosurfaces had over 20 triangles with normals
differing more than 50◦ from the polygonal mesh. The four EMC
TwoCubes isosurfaces were better, with only a few triangles with
normals differing more than 50◦.

Figure 30(c) shows the degree errors in the 1-skeletons of the
EMCpoly isosurfaces. All eight EMCpoly isosurfaces had some
degree errors, but each of the TwoCubes isosurfaces had under 40
degree errors while each of the Flange isosurfaces had over 200
errors. None of the eight SHREC isosurfaces had any degree errors.
Examples of errors in EMCpoly Flange and TwoCubes isosurfaces
are shown in Figures 30(d) and 30(e).

Visually, the sharp features in the EMCpoly isosurface look quite
good. The large number of triangles with normals very different
from the polygonal mesh normals and the high number of degree
errors are probably caused by the large number of near degenerate
triangles. Each of the EMCpoly TwoCubes isosurfaces has over
250 triangles (out of 46K-48K) with angle less than 1◦. Each of the
EMCpoly Flange isosurfaces has over 1500 triangles (out of 200K)
with angle less than 1◦. In contrast, none of the eight corresponding
SHREC isosurfaces had any triangles with angles less than 4◦. The
SHREC TwoCubes and Flange isosurfaces had about 40K triangles,
and 150K triangles, respectively.

Small perturbations in the locations of vertices of thin trian-
gles create almost arbitrary normal orientations contributing to the
normal differences and degree errors in the EMCpoly isosurfaces.
These thin triangles are aligned with the 1-dimensional features so
they do not create large visual anomalies in the EMCpoly isosur-
faces.

As previously noted, EMCpoly uses hard coded functions to di-
rectly compute scalar values, directed distances and gradient in-
formation. Thus, the vertex locations both on and near the sharp
features are extremely precise. If EMCpoly computed such in-
formation from an input mesh as does PolyMender or from scalar
and gradient data, as does SHREC, those vertex positions would be
much less precise. We conjecture that under those circumstances,
the numerous thin triangles would be much more visible, creating
numerous visual anomalies.

Comparison with SingularCocone. Extensive research has
been done on reconstruction of surfaces with sharp features from

(a) (b)

Figure 32: SingularCocone TwoCubes isosurface. (a) Input cloud is
a supersampled polygonal mesh. (b) Input cloud is a supersampled
set of isosurface vertices produced by Marching Cubes. The mag-
nified regions show some of the errors. The reconstruction from
Marching Cube vertices is worse than the reconstruction from the
supersampled polygonal mesh..

point cloud data. Regular grid scalar data can easily be converted to
point cloud data by approximating the intersection points between
a given level set and the grid edges, and applying a point cloud
reconstruction algorithm to the intersection points. Perhaps, this is
an effective way to reconstruct isosurfaces with sharp features?

To test the efficacy of point cloud reconstruction for isosurface
reconstruction, we tested one algorithm, SingularCocone, on recon-
structing the TwoCubes isosurfaces. Cube merging in MergeSharp
and SHREC plays a similar role to the “protective balls” in Sin-
gularCocone, so we thought that SingularCocone would perform
better than other point cloud reconstruction algorithms.

We note that we are only evaluating whether SingularCocone is
more effective than SHREC in reconstructing isosurfaces. Singu-
larCocone is really built for point cloud data which is much noisier
and more difficult to handle than scalar data. SingularCocone also
can reconstruct non-manifold surfaces and their non-manifold fea-
tures. SHREC has no application to reconstruction from point cloud
data or to reconstruction of non-manifold surfaces.

As described in Section 3, SingularCocone extracts a surface
mesh from a weighted Delaunay triangulation of a set of sample
points of the features and the smooth portions of the mesh. Singu-
larCocone requires two inputs: a point cloud and a weighted sam-
pling of the 0 and 1 dimensional features of the surface. Weight of
the sampling determines the size of “protecting balls” around sur-
face features. SingularCocone outputs a feature sensitive mesh.

In order to run SingularCocone, we must construct a weighted
sampling of surface features from a set of points sampling the sur-
face. We use the algorithm FeatureRecon by Dey et al. [13] to com-
pute sample points on the surface features.

Experimental details: The input to FeatureRecon is a point
cloud. We tested two different input point cloud;

1. We applied Marching Cubes [24] to fifteen TwoCubes
datasets. We supersampled the vertices of the Marching
Cubes mesh using the Monte Carlo point sampling, to gen-
erate a point cloud with approximately sixty-five thousand
points.

2. We supersampled the polygonal meshes described in Sec-
tion 13.3 to generate a point cloud with approximately sixty-
five thousand points.

The first experiment measured how well FeatureRecon and Sin-
gularCocone could reconstruct an isosurface from scalar data. The
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Figure 31: Comparison of SHREC and SingularCocone on 10 Flange and 15 TwoCubes datasets. Point clouds for SingularCocone (and
FeatureRecon) were computed by supersampling the polygonal meshes. (a) Unoriented angle distances from Singular Cocone (blue) Flange
isosurfaces and from SHREC Flange isosurfaces (exact gradients in red, Religrad gradients in green) to polygonal Flange meshes. (b) Degree
errors in the 1-skeleton of the sharp edges for SingularCocone Flange isosurfaces (blue) and SHREC isosurfaces (Religrad gradients, red).
(SHREC isosurfaces based on exact gradients have no degree errors.) (c) Number of SingularCocone triangles with normal difference to
Flange mesh above 30◦, 40◦ and 50◦. (d) Unoriented angle distances from Singular Cocone (red) TwoCubes isosurfaces and from SHREC
TwoCubes isosurfaces (Religrad gradients, green) to polygonal TwoCubes meshes. (e) Degree errors in the 1-skeleton of the sharp edges
for SingularCocone TwoCubes isosurfaces (red) and SHREC isosurfaces based (Religrad gradients, blue). (f) Number of SingularCocone
triangles with normal difference to TwoCubes mesh above 30◦, 40◦ and 50◦.

second experiment measured how well FeatureRecon and Singular-
Cocone reconstructed surface meshes from point cloud samplings
of those meshes.

The two different point clouds are used as input to FeatureRecon
to extract sample points on the surface features. The feature sam-
ple points generated by FeatureRecon along with the supersampled
point cloud are used as input to SingularCocone.

FeatureRecon has nine separate parameters. Experimentally and
also noted by the authors Dey et al. [13], we found FeatureRecon
to be heavily reliant on parameter fine tuning. We used the follow-
ing parameter values for the TwoCubes datasets, (as suggest by the
authors Dey et al. [13]). −t = 25,− f l = 0.04,−cl = 0.06,−dc =
0,−ρ3 = 0.32,−ρ1 = 0.0,−rc = 3.

Figure 32 shows a TwoCubes mesh reconstructed by Singular-
Cocone. The associated “sharp” edges are also shown. Figure 32(a)
shows the reconstruction from the point cloud generated from the
polygonal mesh. The red “sharp” edges show that the reconstruc-
tion has many errors. The magnified regions show some of the
errors along the sharp edges and corners. Figure 32(b) shows the
reconstruction from the point cloud generated from running March-

ing Cubes. The magnified regions show the same regions as Fig-
ure 32(a). The reconstruction is worse than SingularCocone recon-
struction from the supersampled polygonal mesh.

Figure 31 shows a comparison of SingularCocone and SHREC
on 15 different datasets. The inputs to SingularCocone for these
tests were generated from the polygonal meshes. The results using
sample points created from Marching Cubes are much worse and
not shown. Because SingularCocone does not assume the output is
a manifold, the triangles in the SingularCocone mesh have arbitrary
orientations. Thus, we use the unoriented angle distance to compare
the SingularCocone and SHREC meshes.

We ran SingularCocone and SHREC on the same 15 datasets,
and used both exact and Religrad gradients for SHREC. Fig-
ure 31(d) shows the unoriented angle distance between the Sin-
gularCocone isosurfaces and the corresponding polygonal meshes,
and the SHREC isosurfaces based on Religrad gradients and the
corresponding polygonal meshes. The maximum angle distance
was 43◦ for SHREC with the mean error of 8◦ for the 15 tests.
In comparison, the maximum angle distance was 87◦ for Singular-
Cocone, with a mean of 79◦. Figure 31(f) shows the number of



Avg Num Avg Num Avg Num
Dataset Grid Size Spacing Isovalue Active Cubes Iso Vert Iso Tri Time

Motorcycle Engine 200×129×62 0.27×0.27×0.68 (mm) 22000 25k 26k 51k 1.9 sec

Volt 411×431×61 1×1×1 4000 519k 527k 1039k 39 sec

CMM 500×500×196 0.2×0.2×0.31 (mm) 20000 861k 863k 1726k 60 sec

Table 3: CT dataset sizes, isovalues, and average statistics on isosurfaces produced by SHREC. Average number of active cubes, average
number of isosurface vertices, average number of isosurface triangles, and average SHREC running time. All isosurface quadrilaterals are
triangulated before counting the number of isosurface triangles.

(a) Single image slice, original ma-

chine part

(b) Sharp Isosurface

Figure 33: Motorcycle Engine dataset. (a) a slice of the original CT
image, note the streaking artifacts introduced during the scanning
process. The inset shows the original machine part. Figure (b)
shows the sharp mesh.

Figure 34: SHREC with Religrad gradients computed from part of
industrial CT data (Motorcycle Engine). Magnified regions show
“sharp” edges reconstructed. In red, picture from the original item.

SingularCocone triangles with normal difference greater than 30,
40 or 50 degrees to the corresponding polygonal mesh normals. On
all the test cases there are large numbers of triangles with normal
differences more than 40◦ and 50◦.

Figure 31(e) shows the degree errors for SingularCocone isosur-
faces and SHREC isosurfaces based on Religrad gradients. SHREC
with Religrad gradients generates degree errors in only two isosur-
faces (t6 and t13) and does not generate more than 4 degree errors
per isosurface. SHREC with exact gradients generates no degree
errors. In contrast, SingularCocone generates an average of 330
degree errors in each isosurface.

15 EXPERIMENTAL RESULTS ON CT DATA

We applied the SHREC algorithm on industrial X-ray computed to-
mography (CT) scans of three objects. We set the singular value
threshold ε to 0.1, and used 9× 9× 9 subgrids for gradient selec-
tion. The Motorcycle Engine dataset is an industrial CT scan of a
motorcycle engine cylinder. (See photo in Figure 33(a).) The Volt
dataset is an industrial CT scan of a 440 voltage electrical connec-

Figure 35: SHREC with Religrad gradients computed from part
of the VOLT data. Magnified regions show “sharp” reconstructed
edges. In red picture of the original item.

tor. is an industrial CT scan of a solid aluminum shape used to cal-
ibrate measurements from CT scans. CMM stands for “coordinate
measuring machine”. Since the CT scanner provides only scalar
values for each object, we used Religrad to construct gradients at
the grid vertices.

Dataset sizes, spacing, isovalues and average isosurface sizes are
presented in Table 3. The full Motorcycle Engine dataset has very
large dimensions so we only report on a small 200×129×62 corner
of that dataset depicted in Figures 33 and 34. Note the non-uniform
spacing in the Motorcycle Engine and CMM datasets.

Figures 33 and 34 show a small corner of the motorcycle en-
gine cylinders and the results of reconstruction of that corner. The
magnified regions (with black border) in Figure 34 show that the
sharp edges are well reconstructed. In yellow border boxes, we see
magnified parts of the reconstructed mesh along with the sharp and
non-sharp edges generated by SHREC.

Figure 35 shows part of the 440 voltage connector (in red) and
the SHREC reconstruction of the Volt dataset. To aid in visualiza-
tion of the sharp features, the figure displays a cropped image of
the the reconstructed isosurface. Once again we see that SHREC is
able to reconstruct the sharp (flange-like) curves accurately.

Figure 36 shows the SHREC reconstruction of the CMM dataset.
Again, the reconstructed isosurface is cropped to better display the
sharp features. Figure 36(b) shows a single slice of the CT scan,
with scalar values mapped to the “heat” color map.

SHREC does a good job of reproducing the 0 and 1 dimensional
features from each of these data sets and in producing meshes which
accurately reflect those features.

16 TIMINGS

Table 4 gives the running time of the various algorithms on a
TwoCubes dataset. The running time was measured on a Win-
dows PC with an Intel Core i7-4770 processor (3.4 GHz) and 16
GB RAM.

Inputs to Marching Cubes, EMCpoly, MergeSharp and SHREC
were grids of size 150×150×150. PolyMender constructed an oct
tree with depth 7, with a full resolution grid of size 128× 128×



(a)

(b)

Figure 36: (a) SHREC with Religrad gradients computed from part
of the CMM dataset. Magnified regions show “sharp” reconstructed
edges. (b) Single slice of the CT scan, with scalar values mapped
to the “heat” color map.

Num
Software Iso Tri Time

Marching Cubes 41K 0.4 sec
EMCpoly 46K 0.8 sec
PolyMender 85K 0.7 sec
MergeSharp 35K 0.6 sec
SHREC grad3 34K 1.0 sec
SHREC grad9 34K 1.4 sec
Religrad 34K 30 sec
SingularCocone 125K 1.8 sec
FeatureRecon 125K 344 sec

Table 4: Timings. SHREC grad3 and SHREC grad9 is SHREC
using gradients from 3×3×3 and 9×9×9 subgrids, respectively,
around selected vertices.

128. Inputs to SingularCocone and FeatureRecon had 60K sample
points.

The point cloud reconstruction software SingularCocone and
FeatureRecon are very different from the isosurface reconstruction
software, so one should be extremely careful in comparing its tim-
ings to the others. SingularCocone receives a set of points on 0 and
1-dimensional features as part of its input, while EMCpoly, Poly-
Mender, MergeSharp and SHREC must spend time computing such
points from gradients or surface normals. On the other hand, Fea-
tureRecon receives a set of sample points without any gradient or
surface normal information, while EMCpoly, PolyMender, Merge-
Sharp and SHREC receive gradient or surface normals as part of
their input. Computing points on 0 and 1-dimensional features is
much easier if gradient or surface normals are provided.

EMCpoly, PolyMender, MergeSharp and SHREC take compa-
rable times. SHREC takes the longest and the time increases if
gradients are selected from larger subgrids around each cube. The
extra time taken by SHREC is spent selecting gradients around each
cube. The time for merging cubes in MergeSharp and SHREC is a

small part of the total, since merging is only performed around se-
lected grid cubes covering sharp features.

If a gradient grid file is not available, then it must be constructed
from the scalar grid. The Religrad time (30 second) to construct the
gradient grid should be added to the SHREC time. Note that EM-
Cpoly, PolyMender and MergeSharp would also require Religrad or
some similar program to construct a gradient grid or set of surface
normals, so the programs still take comparable times. FeatureRe-
con takes considerably longer than Religrad but input to FeatureRe-
con is set of surface sample points, not a scalar grid.

17 SOFTWARE AND DATASETS

Software and datasets used in this paper can be downloaded from:
web.cse.ohio-state.edu/research/graphics/isotable.

In particular, the web site contains source code for SHREC, Re-
ligrad, MergeSharp and EMCpoly. The web site also contains pro-
grams to generate regular grid samplings of scalar and gradient
fields (ijkgenscalar), generate polygonal meshes of annuli, flanges,
two cubes, cones, frustra, smooth tip cones and cannons (ijkgen-
mesh), compute angle distances (angle dist), find sharp edges (find-
sharp) and count the vertex degree in the graph formed by the
sharp edges (countdegree). Finally, the web site contains the Can-
non and Cone scalar and gradient datasets and some of the Flange
and TwoCubes scalar and gradient datasets. (Because of restricted
space, we were not able to include all 39 Flange datasets and 34
TwoCube datasets in the web site.)

18 CONCLUSION AND FUTURE WORK

SHREC produces far fewer polygons with normal errors than any
other software we tested, but it still occasionally produces such er-
rors. Because of the regular structure of the regular grid, we were
hoping, but unable, to eliminate all such errors and even to prove
“correctness” of the reconstruction under appropriate conditions.
We still believe that some algorithm along the lines of SHREC
should be able to construct isosurfaces with provable guarantees on
the reconstruction of sharp features and surface normal directions.

One of the problems with the work on sharp feature reconstruc-
tion is the lack of quantitative measures of the accuracy of the fea-
ture reconstruction. We hope that the extensive quantitative com-
parisons in this paper will set a precedent for such measurements in
future work on sharp feature reconstruction.

We presented the angle distance as a measurement of the dif-
ference between the normals in two surfaces. The angle distance
does not obey the triangle inequality and is not a metric. It would
be nice to have some measurement similar to angle distance which
measured the difference between surface normals and is a metric.
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A CLOSEST POINT UNDER THE L∞ DISTANCE

Let p = (px, py, pz) be a point and let L be a line in R
3. We wish to

find the point on L closest to p under the L∞ distance.

Parameterize line L by tu + q where u = (ux,uy,uz) and q =
(qx,qy,qz). Let q∗ be the point of L closest to p under the L∞

distance. Let δ be the L∞ distance from q∗ to p and let c be a
2δ ×2δ ×2δ cube centered at p. Line L is tangent to c at point q∗.

Let πi(p), πi(L), πi(q
∗) and πi(c) be the projection of p, L, q∗

and c onto a plane orthogonal to axis i. For some axis i, projected
line πi(L) is tangent to square π(c) at point πi(q

∗). For this axis,
πi(q

∗) is the point of πi(L) closest to πi(p) under the L∞ distance.
Therefore, if tu+ q is the point on L closest to p under L∞, then
tπi(u)+ πi(q) is the point on πi(L) closest to πi(p) under L∞ for
some axis i. Thus, we project p and L onto the three planes orthog-
onal to the three axes and find ti such that tiπi(u)+πi(q) is closest
to πi(p).

Consider a projection, πxy, of point p and line L onto the xy
plane. The projected point πxy(p) has coordinates (px, py) and the
projected line πxy(L) is parameterized by t(ux,uy)+ (qx,qy). The
point on πxy(L) which is closest to πxy(p) under the L∞ distance
satisfies the equation:

|tux +qx− px|= |tuy +qy− py|.

Equivalently,

t =
(qy− py)− (qx− px)

ux−uy
, or

t =
(qy− py)+(qx− px)

ux +uy
.



Solving for t in each direction, computing the L∞ distance from
tu + q to p, and taking the minimum, identifies the point tu + q
which is closest to p under the L∞ distance.
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