
Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

3D Vector Field Distribution Visualization with Glyphs
Xin Tong∗

The Ohio State University
Chris Jacobsen †

The Ohio State University
Huijie Zhang ‡

Northeast Normal University, China
Han-Wei Shen §

The Ohio State University

Patrick McCormick ¶

Los Alamos National Laboratory

ABSTRACT

The major challenges of visualizing large-scale three-dimensional
(3D) vector fields are the impact of visual clutter and an intensive
computational workload. Visualizing vector fields with geometry
(streamlines) or textures (LIC) requires the computation of integrals
over a large memory footprint and often involves random, cache un-
friendly, data access patterns. Large-scale data often contains noise
and/or uncertainty that affects the quality of the visualization by
producing visual clutter that interferes with the interpretation and
identification of important features. A more ideal approach is to
present statistics or distributions that help to describe the probabil-
ity density of vector orientations. This paper presents the cube map
histogram a new data structure for storing the distribution of 3D
vectors, how to visualize the histogram with superquadric glyphs,
and a hierarchical structure of the partitioned space to assist in the
placement of the glyphs.With this representation users can identify
the distribution and uncertainty of the vector field in an arbitrary
axis-aligned rectangular region from the shape and color on the sur-
face of the glyph. Users can also leverage the binary tree represent-
ing the partitioning to select the glyphs at different levels-of-detail
(LOD) and achieve focus and context during the exploration of the
data.

Keywords: Flow visualization, distribution, glyph

1 INTRODUCTION

The major three-dimensional flow visualization techniques include
texture-based and geometry-based visualization. Line integral con-
volution (LIC) is a common texture-based visualization that dis-
plays a texture whose patterns follow the flow directions. LIC only
provides flow patterns on a defined two-dimensional surface and
thus it looses critical information about the flow in other spaces.
Streamlines are a common geometry-based visualization that shows
the trajectories of particles generated by integrating the vector di-
rections across the 3D domain. This requires the tracing of particles
within the flow and large datasets typically suffer a performance im-
pact due to random data accesses across the memory hierarchy (in-
cluding storage systems). Furthermore, even if streamlines can be
generated for a large dataset, they often produce a cluttered display
making it difficult to reason about important features and character-
istics of the flow.

Glyph-based visualization allows users to quickly perceive the
pattern of the multivariate data in the context of a spatial relation-
ship [2]. A 3D vector is ideal to be visualized as a glyph because its
three x, y and z components can be treated as multivariate data and
are also related to its location in the spatial domain. This technique

∗e-mail: tong@cse.ohio-state.edu
†e-mail: jacobsen.44@buckeyemail.osu.edu
‡e-mail: zhanghj167@nenu.edu.cn
§e-mail: hwshen@cse.ohio-state.edu
¶e-mail: pat@lanl.gov

is leveraged in the conventional use of arrow plots for flow visual-
ization. This technique places arrow glyphs throughout the space
to show the vector field directions. While this approach gives users
a direct understanding of the flow direction at a particular point, it
suffers from congestion and occlusion as shown in Figure 1a. Dis-
playing fewer glyphs can reduce such clutter but additional steps
must be considered to avoid removing crucial information from the
dataset.

(a) Arrow plots (b) Polar histogram

Figure 1: (a) The flow visualization with arrow plots suffers from
visual clutter. (b) A polar histogram visualizes the distribution of
2D vector directions.

An additional way to incorporate more information into a glyph-
based visualization is to present more information than just vector
direction. For instance, a glyph can show the distribution of the
flow directions in a local neighborhood. In a 2D vector field, this
glyph can be a one-dimensional polar histogram [1] as shown in
Figure 1b. A polar histogram segments the directions of the two-
dimensional vector field into bins of equal one-dimensional angles,
and it uses the 2D vector’s possibility of falling into a bin as the
height or the color of the bin. From the polar histogram, users know
the distribution of the flow directions. Note that the polar histogram
does not record the magnitude of the vector field. However, design-
ing a histogram that represents the three-dimensional vector field
distribution remains unsolved.

In this paper, we first introduce the cube map histogram as a
model to discretize 3D vector directions and a data structure to ef-
ficiently and accurately store the 3D vector field distribution. We
then visualize the cube map histogram using a three-dimensional
glyph, which shows the distribution of vector directions in a local
neighborhood. We design the glyph as a superquadric geometry,
whose shape and orientation follow the principal component anal-
ysis results of the local vector field. In addition, an environment
mapping of the cube map histogram is applied as a texture to the
glyph’s surface. Furthermore, the fatness of the glyph represents
the uncertainty of the flow field, while the color distribution on the
glyph tells the exact vector field distribution. Finally, the size of the
glyph is scaled to fit its represented cubic block so that users know
the space it corresponds to within the flow field. In order for the

1

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

glyph-based visualization to effectively convey maximal informa-
tion about the data, we provide a top-down volume partitioning al-
gorithm to divide the volume into a hierarchical tree structure based
on the cube map distribution such that each glyph represents a spa-
tial block. To provide a user-friendly interactive data exploration
system, we allow users to interactively explore the treemap to focus
on specific glyphs (regions) without occluding or querying the tree
structure in order to inspect the partition results at different levels
of detail (LOD).

2 RELATED WORKS

The traditional use of vector field histograms has been applied to
real-time obstacle avoidance in mobile robots [1]. This technique
only uses a two-dimensional vector field as input and our work ex-
tends it to support three-dimensional vectors. Leopardi [16] pro-
poses an algorithm to partition the surface of the unit sphere into
equal area regions that can be used to represent the histogram bins
of the 3D vector field. Our proposed method also partitions the
sphere’s surface but uses less computation and leverages the cube
map texturing capabilities in modern GPU architectures to achieve
higher rendering performance.

Glyphs are very powerful in two-dimensional visualization of
velocity in flow fields when there are no concerns of visual clut-
ter or occlusion. G. Kirby and Laidlaw [14] provide a 2D flow
visualization that uses arrow glyphs to represent velocity and el-
lipse glyphs to show the rates of strain tensors. They blend mul-
tiple layers of semi-transparent glyphs and background colors to-
gether to simultaneously display multiple data attributes. Peng and
Larameee [19] use two-dimensional glyphs to visualize the flow on
the surfaces of an unstructured adaptive resolution boundary mesh.
With a fast image-based glyph placement algorithm, users can in-
teractively change the glyph resolution to support a multi-resolution
visualization. In 3D flow visualization, the vector glyph is used as a
simple and direct rendering of the local vector field [5, 6]. The im-
pact of visual clutter and the occlusion of important details become
important factors in determining the effectiveness of these glyph-
based techniques. The 2D projections of 3D glyphs can overlap if
they are not well placed in the 3D space. Boring and Pang [3] apply
different lighting conditions to a three-dimensional hedgehog glyph
and other geometry-based forms of the flow to emphasize different
vector directions. By only highlighting the glyphs corresponding to
user-defined directions, they reduce the displayed data and hence
alleviate the clutter problem. Laramee [15] addresses visual clut-
ter by resampling the vector field and generating a smaller number
of summary vectors that leads to a sparser glyph placement. In
addition to the flow velocity, glyphs have also been used in visual-
izing other features, such as vortices. Sadarjoen et al. [21] detects
vortices and fits each vortex with an ellipse or ellipsoid icon to il-
lustrate both its shape and orientation. Reinders et al. highlight that
elliptical shapes are not always a good description of the shape of
a vortex structure [20]. Instead, they extract a skeleton graph from
the vortex structure and visualizes it using cylindrical icons.

Our work is closely related to vector field uncertainty glyphs
that use techniques to show the uncertainty information of local
regions within a vector field. Lodha et al. [17] place uncertainty
glyphs along particle traces to show the magnitude of the devia-
tion between two streamlines. Wittenbrink et al. [23] presents a
technique that expresses the variation of both vector direction and
magnitude using different glyph shapes. Zuk et al. [24] discusses
the interactive rendering of glyphs for visualizing uncertainty in a
bidirectional vector field. Hlawatsch et al.[10] extends the vector
field uncertainty glyph to address unsteady flows. This technique
shows the possible ranges of flow directions by angles and the time
by changing the glyph radius. All of the above techniques demon-
strate their effectiveness when placed on either a slice plane or on
a surface but do not address the visual challenges of representing

the entire 3D volume. More specifically, these techniques all use a
flat two-dimensional shape even when displayed within a 3D space
– thus loosing the details of the three-dimensional flow ambigu-
ous. Additionally, vector direction variation or range information
presented using these techniques is only a summary of uncertainty.
The glyphs used in our approach provides the distribution of 3D
vector directions that also contains more details about the uncer-
tainty and other important information for fully interpreting details
of the flow.

Our design is inspired by tensor glyphs, which play an impor-
tant role in tensor field visualization. Westin et al. [22] derives
the geometric anisotropy measure from the tensor field values and
then uses them to generate different shapes of ellipsoids to visu-
alize the field. Kindlmann [12] improves the ellipse glyph design
with a superquadric shape. This superquadric overcomes the prob-
lems of asymmetry and visual ambiguity in the previous designs.
Kindlmann and Westin [13] optimized the tensor glyph placement
technique by densely packing the glyphs using a particle system.
In this way, the glyph distribution does not have the pattern of the
original data sampling grid and appears more continuous.

3 3D VECTOR FIELD DISTRIBUTION

A histogram for 3D vector direction records the distribution of a set
of 3D vector directions. A bin in this histogram represents a range
of similar 3D vector directions. The size of the bin is a solid angle,
a two-dimensional angle in three-dimensional space. Given a fixed
number of bins, the bins of the 2D vector histogram have the same
fan shape as shown in Figure 1b. But for 3D vector directions, the
bins can have different shapes depending on the way that the solid
angles are partitioned, as mentioned in the related works. In this
work, we design our histogram using the concept of the cube map in
computer graphics environment mapping. The cube map histogram
ensures that the solid angle covered by each bin has a relatively
equal size, while achieving fast determination of bins for a given
3D Cartesian coordinates vector as described in Section 3.1. After
normalizing the histogram bins with their solid angles as talked in
Section 3.2, the histogram bin value reflects the true frequencies of
3D directions.

3.1 Cube Map Histogram
The problem of binning the 3D vector field directions into equal
solid angle ranges is equivalent to dividing the sphere surface into
small equal area patches because we know the solid angle in ra-
dian is equal to the area of its projected patch on a unit sphere.
There are existing methods to partitoin the sphere into equal area
pathces, such as using spherical polyhedron and Leopardi [16]’s
method. However, the spherical patches we need should also be
easy to become histogram bins, which means a vector starting from
the sphere center should easily know which patch it intersects. If us-
ing spherical polyhedron, we need to both store the polygon mesh
and perform intersection between a ray and a polygon, which are
not cheap. If using Leopardi’s method, we need to convert our vec-
tor in Cartesian coordinates to spherical coordinates using trigono-
metric functions, which is not cheap in computer either.

Our binning can be created by projecting a cubic uniform grid
onto a sphere surface. Assume there is an inscribed cube of the unit
sphere, who has each face divided into regular grids as shown in
Figure 2a. If projecting the grid on the cube from the cube center
towards the sphere surface, we get a grid on the surface as well, as
shown in Figure 2b. The points on two grids then have one-to-one
correspondence. We use the grid cell as the histogram bin for 3D
vector directions. From another perspective, if placing a 3D vector
at the sphere center, the vector belongs to the bin of the cell that it
intersects with.

This theory of projecting a 3D vector onto a cube map and de-
termine projected location on the cube map is computationally sim-

2

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

(a) (b)

Figure 2: (a) The projection between a patch on the sphere surface
and a patch on the surface of the inscribed cube. (b) Cube map grid
on the sphere surface.

Table 1: Binning

Condition b f bx by

vz <−|vx| & vz ≤−
∣∣vy

∣∣ 0 b(1− vx
|vz |) ·

d
2 c b(1− vy

|vz |) ·
d
2 c

vx <−
∣∣vy

∣∣ & vx ≤−|vz| 1 b(1− vy
|vx |) ·

d
2 c b(1+ vz

|vx |) ·
d
2 c

vy ≤−|vz| & vy <−|vx| 2 b(1+ vz
|vy|) ·

d
2 c b(1+ vx

|vy|) ·
d
2 c

vz ≥ |vx| & vz >
∣∣vy

∣∣ 3 b(1+ vx
|vz |) ·

d
2 c b(1+ vy

|vz |) ·
d
2 c

vx ≥
∣∣vy

∣∣ & vx > |vz| 4 b(1+ vy
|vx |) ·

d
2 c b(1− vz

|vx |) ·
d
2 c

vy > |vz| & vy ≥ |vx| 5 b(1− vz
|vy|) ·

d
2 c b(1− vx

|vy|) ·
d
2 c

ple, and is covered in the original environment mapping paper [9].
However, we use a different coordinate systems in our technique
which ensures better consistency on the boundary of the faces.
Thus, we explain the cube map algorithm below again using our
own coordinate system. For a given vector in Cartesian coordinates
v = (vx,vy,vz), its bin is represented as (b f ,bx,by), where b f is an
integer index of the cube face in the range of [0,5], and bx and by are
the integer indices of the grid on one face in the x and y directions.
Table 1 gives how to convert a 3D coordinate (vx,vy,vz) to the 3D
bin index (b f ,bx,by), where d is the dimension of the 2D grid on
each face. The dimensionality of the bin index can be further re-
duced to 2D as (b f · d + bx,by) when rendering the histogram as a
2D image, or be reduced to 1D as b f ·d2 +bx ·d +by when storing
in the linear memory space.

From the equations in the table, we see that the computation cost
of the bin index for a 3D vector is very small comparing to other two
methods mentioned above. Minimizing this computation is very
important for building histograms of large-scale datasets due to the
large number of cells.

3.2 Histogram Normalization

Histogram describes a distribution only when its bin sizes are equal.
Even though the corresponding solid angle of our histogram bins
are close to equal, they are still not exactly equal. So it is not ac-
curate to use bin counts computed by Section 3.1 to represent the
distribution frequency. In order to correct it, we can normalize the
bin counts by dividing it by the corresponding solid angle. In the
following, we describe how to compute the solid angle of each bin.

Figure 3a shows a face of the inscribed cube, which is divided
into 4× 4 cells. Each cell represents a histogram bin. From the
figure, we can see four rectangular patches marked as red, yellow,
green and blue frames, which are all centered at face center O. We
can imagine that connecting an arbitrary rectangular patch with the
cube center forms a four-sided rectangular pyramid. Because the
center of these four pyramid base are all at O, this pyramid is a
right rectangular pyramid. For a right rectangular pyramid as in

Figure 3b, its solid angle can be computed by:

S = 4∗arcsin(sin(
α

2
)∗ sin(

β

2
)) (1)

where α and β are the apex angles of the pyramid.
The apex angles of the pyramid can be computed from the edge

lengths of the rectangle. For example, for the blue rectangle in
Figure 3a, its two edge lengths are a and b. From Figure 3b, we can
compute the two apex angles by:

α = 2 · arctan(
a

2 · r
) (2)

β = 2 · arctan(
b

2 · r
) (3)

S1

a

b

S1

S1 S1

O

(a)

α

β

a

bO

P

r

(b)

Figure 3: (a) Four patches colored as red, green, blue, and yellow.
(b) Right rectangular pyramid, whose base is a a×b rectangle and
height is r, apex angles are α and β .

where r is the distance between the cube center and the cube face.
Then Eq. 1 becomes

S = 4 ·arcsin(sin(arctan(
a

2 · r
)) · sin(arctan(

b
2 · r

)) (4)

Next, we need to compute the corresponding solid angle for each
of the 4×4 cells in Figure 3a. For example, we pick the cell at the
corner of the face as an arbitrary cell, marked as S1 in Figure 3a,
and compute its solid angle. The four cells are symmetric and have
the same solid angle S1. Because those four cells are not centered at
the cube face center O, its connection with the cube center wouldn’t
form a right rectangular pyramid. But S1 can be computed by using
the solid angles of four other rectangles centered at O, shown as
red, green, blue, yellow frames in Figure 3a as:

S1 =
Sred −Sgreen−Sblue +Syellow

4
(5)

Then the four solid angles, Sred , Sgreen, Sblue, Syellow, can be easily
computed by Eq. 4. For an arbitrary bin (b f ,bi,b j), we can always
find such a set of four rectangles to compute its solid angle. Because
the six faces are symmetric, we only need to compute the solid
angles for one face and reuse it on the other 5 faces.

Figure 4b uses color to visualizes the solid angles of the bins in
one cube map face. We notice that the bins around the center have
larger solid angles while the bins around the boundary have smaller
solid angles. To verify the correctness of using the solid angle to
normalize the cube map histogram, we randomly generated a large
number of 3D vectors. If our generated distribution is close to a
uniform distribution, our normalization can be proved as correct.
Figure 4a gives one face of the cube map histogram for a uniform
samples before normalization. After normalizing it by the solid
angle shown in Figure 4b, we get the normalized histogram Fig-
ure 4c, which is mostly around the value of 1 with small variations.

3

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

(a) (b) (c)

Figure 4: (a) Histogram of uniform random sample. (b) solid angles
for the cells on one cube face. (c) Normalized histogram by the
computed solid angles.

The variation is from the error of the uniform sampling, which can
be ignored. This confirms the correctness and necessity of the cube
map histogram normalization.

Figure 5: Images of the 6 faces of the cube map

We compute and display the cube map histogram of the Solar
Plume dataset as a 2D image shown in Figure 5. Solar Plume is a
simulation of the solar plume on the surface of the Sun with a reso-
lution of 126×126×512. From this figure we can tell that the −z
direction (b f = 0) and the +z direction (b f = 3) on the histogram
have high probability.

4 VECTOR FIELD DISTRIBUTION VISUALIZATION

In the previous section, we plot the computed the vector field distri-
bution on a 2D image in Figure 5. However, it is not intuitive to do
so, because of lacking the correspondence between the bin and the
represented 3D vector direction. Instead, we should visualize the
histogram in the context of the 3D data space and let the histogram
bins point to their represented 3D directions. In this section, we
propose the design of our superquadric glyph that visualizes the
histogram. Besides, we place our glyphs in the data volume based
on a hierarchical space partitioning algorithm and place a glyph in-
side each block.

4.1 Glyph Design
A vector field histogram consists of many data variables because
we can consider each bin as a data variable. Besides, each bin rep-
resents a vector direction in the space domain. A glyph generally
has 6 major visual channels: color, shape, size, orientation, texture,
and opacity [2]. Mapping a large number of data variables onto a
limited number of visual channels is challenging.

Table 2: Correspondence between visual channels and data at-
tributes

Visual channel Data attribute Relationship
color & texture histogram bin values color map

shape principal components eigenvalue guided superquadric
size represented block size fit glyph tightly inside a block

orientation principal components eigenvector directions

We use a solid 3D shape, such as a sphere or a superquadric, with
color texture on its surface as the design of our glyph, as shown in
Figure 6. For each point on the glyph surface, its connection to the
glyph center gives us a 3D vector direction. We relate this direc-
tion to the represented 3D direction of a bin in the 3D cube map
histogram. In other words, there is a one-to-one correspondence
between each bin in the cube map histogram and each patch on the
glyph surface. We use different colors or shapes on this patch to
express the value of the bin in the cube map histogram. We list the
correspondence between the visual channels of our glyph and their
represented data attributes in the Table 2. In the following, we will
show how we encode the distribution onto the visual channels.

4.1.1 Color on Glyph Surface
Color is mapped on the glyph surface to express the the bin value
by following a colormap. As shown in Figure 6, we use a sphere as
the shape of the glyph and map the bin values of the histogram onto
the sphere with the cool-warm colormap. Technically, histogram
values are converted to RGB values using color map, and stored in
the OpenGL cube map texture. Every vertex on the sphere surface
is given a texture coordinate, which can be the corresponding his-
togram bin’s represented 3D vector direction. Then the OpenGL
will render the sphere with the cube map texture on the surface.
If a certain patch on the sphere has a red color, it means the cor-
responding vector direction has high frequency on the histogram.
The limitation of using color is occlusion. Half of the glyph surface
is invisible unless rotating the glyph. Section 4.3 will give more
details about the color map and the shading on the glyph.

(a) D1
sphere

(b) D1
superquadric

(c) D2
sphere

(d) D2
superquadric

Figure 6: Use sphere and superquadric as the glyph shapes for two
different distributions D1 and D2.

4.1.2 Superquadric Glyph Shape
Because of occlusion and visual clutter, it is not possible for users
to perceive the entire distribution from the color texture from a fixed
view point. Thus we use another two visual channels, shape and ori-
entation, to convey more distribution information that is the overall
trend of the distribution. One simple way of using the shape is to
extrude the mesh of the previously mentioned spherical glyph from
its center and use the bin value as the amount of the extrusion. How-
ever, this will give us an arbitrary shape that may have a very rough
surface when the histogram is noisy and can also cause severe oc-
clusion. Thus, we want to use a shape that is more descriptive than

4

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

the sphere and also relatively simple. Instead of encoding the entire
histogram information on the glyph shape, we choose to only en-
code its principal vector directions from principal component anal-
ysis (PCA). Kindlmann[12] used superquadric tensor glyph to vi-
sualize the eigenvalues and eigenvectors of a tensor matrix. To uti-
lize this technique, we can generate the covariance matrix from the
original 3D vector field samples, and use the eigenvalues and eigen-
vectors of the matrix to build the superquadric shape as described
in the Kindlmann’s paper.

We use 2D vector field as example to describe how we use PCA.
Figure 7a illustrates the process of PCA for a set of 2D vector di-
rections. Red points represent the normalized 2D vectors and are
placed on a unit circle. In order to keep the distribution center at
the unit circle center, we add same number of blue sample points
that are symmetric to the original red sample points without affect-
ing the ei Then, eigenvalues and eigenvectors are generated from
all sample points, including both red and blue points. In Figure 7a,
v1 is the principal vector direction or the eigenvector corresponding
to the largest eigenvalue, which points to the largest population of
the sample points. v2 is the second principal vector direction and
nearly points to the second largest sample population. Sometimes,
people fit an ellipse to the two purple axes to describe the distribu-
tion, which becomes an ellipsoid in 3D case. Again, superquadric
is a better alternative to ellipsoid as mentioned in the related works.

In 3D case, we can also perform PCA and will get three eigen-
values λ1, λ2, λ3 (λ1 > λ2 > λ3) that determine the shape of the
superquadric, and three eigenvectors v1, v2, v3 that determine the
orientation of the superquadric. Figure 6 shows two different dis-
tributions (D1 and D2) using both sphere and superquadrics. The
large values in the distribution D1 distributed at a small size region
as seen from the red regions in Figure 6a. So its largest eigenvalue
λ1 dominates, and is much larger than the other two, which makes
the superquadric shape become more linear as shown in Figure 6b.
On the other hand for distribution D2, large values are distributed in
a larger linear region as shown in Figure 6c. So its first two eigen-
values λ1 and λ2 are comparable, which makes the superquadric
shape more planar as shown in Figure 6d.

x

y
v1

v2

(a) (b)

Figure 7: (a) Principal component analysis of the 2D vector direc-
tions of the sample points. (b) H(Nlr) values on different splitting
points along the longest dimension.

4.2 Hierarchical Glyph Placement
The glyph can be placed in different locations of the volume with
different sizes to represent the vector field distribution of differ-
ent spatial regions. To express the flow distribution over the entire
data space, we need to decide the location and size of the glyphs.
Because the glyph is always a convex shape, we can partition the
3D volume into multiple rectangular blocks and fit a glyph to each
block to represent the distribution inside. Our partition criteria is to
make the vector field inside each block as coherent as possible. A
top-down space partitioning approach works better than a bottom-
up approach in terms of creating convex blocks. To partition our

space, we recursively subdivides the volume until the vector field
inside each block becomes coherent. The entropy of the cube map
histogram to describe the coherence of the vector field, so that the
subdivision stops when the entropy reaches a threshold.

More importantly, we need to find out where to place the cut to
subdivide the volume. Because we only talk about a 3D regular
grid dataset, we place a cut that is parallel to the one of the three
axis-aligned planes so that the subregions after cutting are still a
rectangular shape that can keep being cut. Additionally, because we
want to get a round region that is close to the shape of our glyph,
the cutting plane that is perpendicular longest block dimension is
chosen. The number of options for placing the cut is the length of
the longest dimension of this block. We want to be able to separate
different flow directions to the two sides so that each side can be
more coherent or pure. Here we use the concept of impurity from
data mining theory to solve this optimal cut problem. In the binary
decision tree algorithm, entropy can be used to describe impurity.
Before the cut, the entropy of the block is H(N). We cut the block
into two smaller blocks with fractions of Pl and (1− Pl), whose
entropies are H(Nl) and H(Nr), respectively. After cutting, then
the total entropy of the entire block is reduced. And the amount of
the entropy reduction is defined by [7]:

∆H(N) = H(N)−Pl ·H(Nl)− (1−Pl) ·H(Nr) (6)

For a given block, the value of H(N) is fixed. So in order to max-
imize the ∆H(N), we need to minimize the H(Nlr) = Pl ·H(Nl)+
(1−Pl) ·H(Nr), which is a weighted sum of the entropy of the cut’s
two sides.

A brute force method to find the minimum point is to compute
H(Nlr) for every point along the longest dimension and find out the
minimum value. For example, in the Solar Plume dataset, when
placing the first cut, we compute and plot the H(Nlr) in Figure 7b.
There is a very obvious minimum point near x = 400, which is the
point to place the optimal cut.

An easy way to accelerate the computation of H(Nlr) is to reuse
the previously computed histogram with a sliding plane perpendic-
ular to the longest dimension. After computing histograms of the
two blocks on the two sides, we shift the cutting plane, and then add
or subtract the histogram from the plane on the histogram of the pre-
viously computed histograms to get the histogram of the new two
blocks. An even faster implementation is to compute the histogram
for each slice parallel to the cut plan, and then make a scan or prefix
sum on the histograms of the slices to compute the histograms for
different subregions at once. The prefix sum can be implemented
with a parallel algorithm on a parallel machine to achieve tremen-
dous speedup, which can be a future work.

4.3 Glyph Rendering

It is important to make the glyph’s rendering coherent with the rep-
resented histogram values. As mentioned before, the values of the
histogram are mapped onto the superquadric using a colormap. As
we known, the rainbow colormap is very popular in scientific vi-
sualization. However, perceptual changes of the rainbow colormap
are heterogeneous among the different colors, so that its nonuni-
form changes is unable to accurately reflect the uniform changes
in our histogram values. In this paper, we adopted the cool-warm
color map recommended in [18] as the default colormap. The cool-
warm color map has two major color components, cool component
and warm component. The transition between them is an interme-
diate white color. The colormap not only has a perceptually linear
transition, but also is aesthetically pleasing and guarantees minimal
interference with shading. In our case, we map the cool blue color
to low histogram frequency values and warm reds to high values. To
gain better depth cue for our 3D glyph rendering, the Blinn-Phong
illumination model is adopted, so that users can clearly observe the

5

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

Table 3: Design guideline

Index Guidelines Our glyph matched
DG1 visualization space Y
DG2 complexity vs. density Y
DG3 hybrid visualizations Y
DG4 perceptually uniform properties Y
DG5 redundant mapping Y
DG6 importance-based mapping Y
DG7 view point independence Y
DG8 simplicity and symmetry Y
DG9 orthogonality and normalization N

DG10 intuitive / semantical mapping Y
DG11 balanced glyph placement Y
DG12 facilitate 3D depth perception Y
DG13 interactive occlusion control Y

orientation of the superquadric shape and the spatial relationships
among the glyphs.

4.4 Design Analysis

Borgo et al. [2] provides thirteen general considerations and guide-
lines for glyph design, as shown in Table 3, by summarizing a few
previous glyph techniques. We followed these design guidelines to
design our glyph and matched most of them. Note that it is not
always possible or required to match all of them.

Now we describe how the design matches the guidelines one by
one. [DG1]Because our visualization space is a 3D volume, our
glyph is a 3D shape as well. [DG2] Our glyph is relatively com-
plex because of the color texture, so we keep the glyphs density
relatively low to make sure users are able to easily view the tex-
ture patterns on the glyph. [DG3] An optional rendering of the
streamlines in the same space with the glyphs can provide spatial
context and other additional information. [DG4] Our well designed
cool-warm color map ensures that equal distance in the bin values
is perceived equal in color difference, in contrast to the rainbow
color map. [DG5] We map data variables (histogram bins) not only
on the visual channels of the color texture, but also redundantly
map the principal directions of the vector field on the visual chan-
nel of shape to reduce the risk of information loss and occlusion.
[DG6] The bins with high values are more important and should be
highlighted, so we make the sharper ends of the superquadric shape
coincide with the high value bins. [DG7] The superquadric shape is
symmetric with respect to three orthogonal axes, so its shape can be
perceived with arbitrary view directions. [DG8] Our superquadric
shape is simple, smooth, and symmetric. The symmetry makes it
easy for users to mentally reconstruct the shape of the occluded
parts of the glyph. [DG9] The visual channels can be perceived
mostly independently, except a few points. First, the shape of the
glyph (fat or thin) can slightly affect the perception of its size. Also,
a bin that is distributed far from the glyph center may appear larger
than the ones closer to the glyph center because of the distortion
on the superquadric shape. [DG10] The shape and color mapping
on the glyphs is intuitive because the sharper red ends of the glyph
always point toward the major flow directions; the fatness of the
glyph infers the uncertainty. [DG11] There is no obvious artificial
pattern in the glyph placement based on our space partitioning algo-
rithm, in contrast to placing glyphs on the regular grid points. Be-
ing able to display the glyphs of the blocks at different levels of the
hierarchical partition alleviate the overlapping problem. [DG12]
Shading effects on the glyphs can help to enhance the depth per-
ception. [DG13] Allowing users to explore the data with a treemap
visualization helps offset occlusion problems.

5 SPATIAL EXPLORATION OF VECTOR DISTRIBUTION

Simply visualizing all the glyphs in the 3D spatial domain stati-
cally can result in visual clutter, especially when dealing with a
large dataset with a large number of glyphs. The user needs some
sort of way to find items of interest and see the entire set all at
once in two dimensions. Thus we provide a treemap to visualize
the nodes of the space partitioning tree, as well as their entropies
and corresponding spatial volumes. Furthermore, we allow the user
to explore the hierarchical structure of the tree by querying both
globally and locally. The accompanying video demonstrates our
interactive visualization system.

5.1 Glyph Query
To globally control the number of glyphs to render, our system al-
lows users to control the granularity of the space partitioning by
specifying the entropy threshold. Using different entropy thresh-
old values in our space partitioning algorithm will result in differ-
ent trees. A tree using a higher threshold is a sub-tree of a tree
generated using a lower threshold; this is accomplished by trim-
ming some of the nodes whose entropies are lower than the higher
threshold. Thus if we have a bigger tree generated using a low
enough threshold, we can easily generate arbitrarily smaller trees
corresponding to any higher entropy threshold. In the glyph visu-
alization, by specifying different entropy thresholds, we can im-
mediately get the tree and render the glyphs corresponding to its
leaf nodes. A higher threshold value results in less but larger su-
perquadrics, while a lower value results in more but smaller su-
perquadrics. In the system, when the user requests the entropy
threshold increase or decrease, we iteratively increase or decrease
this amount until a change is detected in the tree. This prevents the
user from having to be aware of the entropy threshold values. We
also allow the user to set the values more exactly through a slider if
needed.

To allow local control of the glyphs, we allow users to click on a
glyph to subdivide the corresponding block into two subregions and
visualize the two glyphs corresponding to them. This is achieved
by checking the tree node of the clicked glyph to see whether it
has child nodes. If so, the two glyphs corresponding to the two
child nodes are displayed in place of the original glyph. In this
way, we allow the users to interactively split any glyph, expanding
individual branches of the tree to show more nodes from the original
tree. The users can thus drill into the data locally to explore more
details in the region of interest.

5.2 Treemap Visualization
A treemap is a visualization introduced by Shneiderman and John-
son [11] that displays one rectangle for each of the leaf nodes in a
tree. The area of each rectangle is proportional to its data value.
This is often useful for finding data values that are larger. In our
treemap, we show rectangles at different sizes based on the volume
occupied by each superquadric’s spatial block. It allows the user to
quickly find the larger size blocks, which are more representative in
the data volume.

Multiple layout algorithms can be used to build a treemap. The
original layout algorithm used in Schneiderman and Johnson’s pa-
per can result in thin rectangles in the layout, which is not aes-
thetically pleasing and difficult to be picked by users. We instead
used the squarify layout introduced by Bruls et al [4]. It provides
good aspect ratios for our rectangles, which makes it much easier
for users to identify the areas.

As shown in Figure 8, we also give colors to the rectangles based
on the entropy values of the represented spatial blocks so that the
users can use color to pinpoint the glyphs with larger or smaller
entropy values. The ranges of colors are shown with a colorbar to
the right of the widget. Selecting a rectangle in the treemap high-
lights the corresponding superquadric in the scene and vice versa,

6

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

allowing the users to correlate the spatial blocks between the two
visualization spaces.

Figure 8: Treemap Visualization.

6 CASE STUDIES

To explore the effectiveness of our technique we applied our algo-
rithm to two different, uniform grid-based datasets. In this section
we review each of these two datasets as well as provide a summary
of our findings.

6.1 Solar Plume
The Solar Plume dataset is generated from a simulation of the
plume on the surface of a sun-like star. It has a resolution of
126× 126× 512 and Figure 9 shows the data using both stream-
lines and our glyph-based approach. The beginnings of visual clut-
ter and occlusion are apparent in the streamline-based image. As
previously discussed, this makes it difficult to understand the over-
all flow distribution as it only shows the exact 3D direction at indi-
vidual points.

(a) Streamline visualization for solar plume.

(b) Glyph visualization for solar plume.

Figure 9

In Figure 9b and the accompanying video, the superquadric
glyphs of different sizes, shapes and orientations are displayed
throughout the volume. Each glyph represents the vector field dis-
tribution of an axis-aligned rectangular space around it. The left-
most four glyphs show a diverging flow structure as the red portion
of the glyphs are all pointing towards the outside of the volume.
In contrast, the right-most four glyphs show converging flow as the
red part of the glyphs all point inward within the volume. In ad-
dition, the left four glyphs have linear shapes that represent a high
certainty of flow direction. The right four glyphs each have a pla-
nar form, representing that it has another vector component other
than its major vector direction. Specifically, the converging flows
on the right also moves towards the left – towards the middle of the

volume. In the middle-left region a large number of small glyphs
indicate a turbulent region due to high entropy calculation and our
space partitioning algorithm. In this region the glyphs in the center
mostly point towards the left, while in the vicinity there are a few
planar shape glyphs that represent potential vortices. Lastly, there
is only one linear glyph on the middle-right region that has red on
both ends. This captures that the vector distribution has two oppo-
site components. Ideally, we would want to keep subdividing this
region to separate the two flows. However, the current entropy cal-
culation used in space partitioning cannot recognize the bin order
within the histogram.

6.2 Nek

(a) Streamline for Nek. (b) Glyphs for Nek.

Figure 10

The Nek dataset is generated from the Nek5000 simulation code.
As explained in the paper by Paul Fischer et al. [8], Nek5000 sim-
ulates thermal hydraulics in a nuclear reactor using the spectral el-
ement method. This allows the simulation of coolant flowing be-
tween and around the pins in the reactor. The dataset resolution is
128×128×128.

Figure 10a shows the rendering of the dataset once again using
streamlines as a comparison. The impact of visual clutter is signifi-
cant in this dataset as the occlusion makes it impossible to visualize
the full details of the flow. In contrast, the glyph-based version in
Figure 10 shows the flow distribution much more clearly. In this
case, we see a decomposition into glyphs throughout the entirety of
the volume. This represents the overall amount of turbulence within
the data that is also suggested by the occlusion issues within the
streamline representation. The glyphs in the central region of the
volume are big, indicating a more coherent flow, while the glyphs
on the left are small and are thus relatively more turbulent. The
large linear-shaped glyphs in the center are pointing upwards and
are relatively fat, so we know the majority flow in the center goes
up with a high variation (once again suggesting a turbulent flow).
The glyphs close to the near-right plane are mostly planar and thus
that the flow directions mostly reside on the corresponding plane.
Additionally, from the texture applied to the bottom right glyph, we
know the flow has components going left and going down along its
corresponding plane.

7 PERFORMANCE

We measured the performance of the computation and interactive
visualization system on a machine running Windows 8.1 with an In-
tel Core i7-4700HQ CPU with 32 GB RAM and an nVidia GeForce
765M GPU with 2GB of frame buffer memory. We used the Nek
dataset at different resolutions to measure the performance and scal-
ability of our technique. The shape of our tested volume datasets
are all cubic.

The blue bars in Figure 11 show the execution time of the cube
map histogram computation using different numbers of vectors.

7

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

64x64x64 128x128x128 256x256x256 512x512x512

Data resolution

101

102

103

Ti
m
e
 (
se
co
n
d
s)

Generate histogram
Space partition

Figure 11: Time of generating cube map histogram.

This time includes computing the histogram bin indices of the vec-
tors on all the cells using Table 1, normalizing the histogram with
solid angles computed from Equation 5 and counting the bin in-
dices. The last two operations take less than 1% of the total execu-
tion time. From the figure, we notice that the time increases almost
linearly with an increasing number of input vectors.

0 200 400 600 800 1000 1200 1400
Number of glyphs

0

100

200

300

400

500

600

700

800

900

Fr
a
m
e
 r
a
te
 (
FP

S
)

Figure 12: Frame rate.

The red bars in Figure 11 show the time required to compute
the hierarchical space partitioning in support of visualizing the his-
togram data. This time includes recursively building the histogram
from the computed bin indices and computing the entropies on the
two sides of a splitting plane using the mentioned sliding plane
method. In addition, it includes determining the splitting plane
position with Equation 6. We notice that this time also increases
almost linearly with the increasing number of input vectors. This
stage is dominated by the recursive partitioning algorithm.

In order to benchmark the visualization of the histogram, each
glyph is rendered with a different 16× 16× 6 cube map texture.
Figure 12 shows the frame rates that are achieved for an increasing
number of glyphs. As expected, the frame rate decreases with an
increasing number of glyphs. Using a modern graphics card, it is
possible to render more than 1,000 glyphs at a frame rate just over
60 frames per second, which is sufficient for supporting effective
user interaction. We have not tested more than 1,400 glyphs as it
trends towards reintroducing visual clutter.

8 CONCLUSION

We have presented a technique to compute and store the distribution
of three-dimensional vector directions using a cube map histogram.
In addition, we use a hardware-accelerated approach to visualizing
the histogram using superquadric glyphs. Our cube map histogram
technique can:
• Partition the 3D vector direction space into relatively equal size

histogram bins,
• Compute the bin index quickly for a given 3D vector in Carte-

sian space,

• Generate an accurate vector direction distribution by normal-
izing the bin counts with the solid angles.

We visualize the computed cube map histogram using color-
textured superquadric glyphs that depict the vector field distribu-
tion of a local region. Our glyph placement strategy partitions the
uniform grid space into blocks of coherent flows by using entropy
and placing a glyph in each block. To allow users to freely explore
the vector field, we provide an interactive visualization system. Us-
ing this system, users can interact with a treemap visualization of
the partitioned space to focus on different regions of interest and
change glyph density both globally and locally to utilize different
levels of details. Additionally, we presented two case studies us-
ing Solar Plume and Nek dataset, and reported the performances of
both the cube map computation and the visualization system.

One limitation of our space partitioning algorithm is that we
sometimes cannot separate two opposite flow directions within a
block, because the entropy alone cannot determine the number of
peaks in the histogram. As a future work, we plan to explore using
image processing algorithms to analyze the cube map histogram
as six connected 2D images to discover the existence of multiple
peaks. Furthermore, the performance of computing cube map his-
togram can be improved by using prefix sum and expanded to use
on supercomputers.

REFERENCES

[1] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle
avoidance for mobile robots. Robotics and Automation, IEEE Trans-
actions on, 7(3):278–288, Jun 1991.

[2] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. S. Laramee,
H. Hauser, M. Ward, and M. Chen. Glyph-based Visualization: Foun-
dations, Design Guidelines, Techniques and Applications. In M. Sbert
and L. Szirmay-Kalos, editors, Eurographics 2013 - State of the Art
Reports. The Eurographics Association, 2012.

[3] E. Boring and A. Pang. Directional flow visualization of vector fields.
In Proceedings of the 7th Conference on Visualization ’96, VIS ’96,
pages 389–ff., Los Alamitos, CA, USA, 1996. IEEE Computer Soci-
ety Press.

[4] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In In
Proceedings of the Joint Eurographics and IEEE TCVG Symposium
on Visualization, pages 33–42. Press, 1999.

[5] R. Crawfis and N. Max. Direct volume visualization of three-
dimensional vector fields. In Proceedings of the 1992 Workshop on
Volume Visualization, VVS ’92, pages 55–60, New York, NY, USA,
1992. ACM.

[6] D. Dovey. Vector plots for irregular grids. In Visualization, 1995.
Visualization ’95. Proceedings., IEEE Conference on, pages 248–253,
459, Oct 1995.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2Nd
Edition). Wiley-Interscience, 2000.

[8] P. Fischer, J. Lottes, D. Pointer, and A. Siegel. Petascale algorithms
for reactor hydrodynamics, 2008.

[9] N. Greene. Environment mapping and other applications of world
projections. Computer Graphics and Applications, IEEE, 6(11):21–
29, Nov 1986.

[10] M. Hlawatsch, P. Leube, W. Nowak, and D. Weiskopf. Flow radar
glyphs - static visualization of unsteady flow with uncertainty. Visual-
ization and Computer Graphics, IEEE Transactions on, 17(12):1949–
1958, Dec 2011.

[11] B. Johnson and B. Shneiderman. Treemaps: a space-filling approach
to the visualization of hierarchical information structures. In Proc.
2nd International Visualization Conference 1991. IEEE, pages 284–
291, 1991.

[12] G. Kindlmann. Superquadric tensor glyphs. In Proceedings of the
Sixth Joint Eurographics - IEEE TCVG Conference on Visualization,
VISSYM’04, pages 147–154, Aire-la-Ville, Switzerland, Switzerland,
2004. Eurographics Association.

[13] G. Kindlmann and C.-F. Westin. Diffusion tensor visualization with
glyph packing. Visualization and Computer Graphics, IEEE Transac-

8

Technical Report: OSU-CISRC-11/15-TR20. Revised: Nov 3, 2015

tions on, 12(5):1329–1336, Sept 2006.
[14] R. M. Kirby, H. Marmanis, and D. H. Laidlaw. Visualizing multival-

ued data from 2d incompressible flows using concepts from painting.
In Proceedings of the Conference on Visualization ’99: Celebrating
Ten Years, VIS ’99, pages 333–340, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[15] R. S. Laramee. First: a flexible and interactive resampling tool for cfd
simulation data. Computers & Graphics, 27(6):905–916, 2003.

[16] P. Leopardi. A partition of the unit sphere into regions of equal area
and small diameter. Electronic Transactions on Numerical Analysis,
25:309–327, 2006.

[17] S. Lodha, A. Pang, R. Sheehan, and C. Wittenbrink. Uflow: visualiz-
ing uncertainty in fluid flow. In Visualization ’96. Proceedings., pages
249–254, Oct 1996.

[18] K. Moreland. Diverging color maps for scientific visualization. In
Advances in Visual Computing, pages 92–103, 2009.

[19] Z. Peng and R. S. Laramee. Vector glyphs for surfaces: A fast and
simple glyph placement algorithm for adaptive resolution meshes. In
Proceedings of the Vision, Modeling, and Visualization Conference
2008, VMV 2008, Konstanz, Germany, October 8-10, 2008, pages 61–
70, 2008.

[20] F. Reinders, M. E. Jacobson, and F. H. Post. Skeleton graph genera-
tion for feature shape description. In W. de Leeuw and R. van Liere,
editors, Proc. Data Visualization 2000, pages 73–82. Springer Verlag,
2000.

[21] I. A. Sadarjoen and F. H. Post. Detection, quantification, and track-
ing of vortices using streamline geometry. Computers & Graphics,
24(3):333–341, 2000.

[22] C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and
R. Kikinis. Processing and visualization of diffusion tensor MRI.
Medical Image Analysis, 6(2):93–108, 2002.

[23] C. Wittenbrink, A. Pang, and S. Lodha. Glyphs for visualizing uncer-
tainty in vector fields. Visualization and Computer Graphics, IEEE
Transactions on, 2(3):266–279, Sep 1996.

[24] T. Zuk, J. Downton, D. Gray, S. Carpendale, and J. Liang. Explo-
ration of uncertainty in bidirectional vector fields. In Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, volume
6809, 2008. published online.

9

