
Technical Report OSU-CISRC-8/15-TR13
Department of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210-1277

Ftpsite: ftp.cse.ohio-state.edu
Login: anonymous
Directory: pub/tech-report/2015
File: TR13.pdf
Website: http://www.cse.ohio-state.edu/research/techReport.shtml

Deep Ensemble Learning for Monaural Speech Separation

Xiao-Lei Zhang
Department of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210, USA
xiaolei.zhang9@gmail.com

DeLiang Wang
Department of Computer Science and Engineering & Center for Cognitive and Brain Sciences

The Ohio State University, Columbus, OH 43210, USA
dwang@cse.ohio-state.edu

Abstract – Monaural speech separation is a fundamental problem in robust speech processing.
Recently, deep neural network (DNN) based speech separation methods, which predict either
clean speech or an ideal time-frequency mask, have demonstrated remarkable performance
improvement. However, a single DNN with a given window length does not leverage contex-
tual information sufficiently, and the differences between the two optimization objectives are
not well understood. In this paper, we propose to stack ensembles of DNNs, named multi-
resolution stacking, to address monaural speech separation. Each DNN in a module of the
stack takes the concatenation of original acoustic features and expansion of the soft output
of the lower module as its input, and predicts the ideal ratio mask of the target speaker. The
DNNs in the same module explore different contexts by employing different window lengths.
We have conducted extensive experiments with three speech corpora. The results demon-
strate the effectiveness of the proposed method. We have also compared the two optimization
objectives systematically and found that predicting the ideal time-frequency mask is more
efficient in utilizing clean training speech, while predicting clean speech is less sensitive to
SNR variations.

Index Terms – Deep neural networks, ensemble learning, mapping-based separation, masking-
based separation, monaural speech separation, multi-resolution stacking.



1

Deep Ensemble Learning for Monaural Speech
Separation

Xiao-Lei Zhang, Member, IEEE and DeLiang Wang, Fellow, IEEE

Abstract—Monaural speech separation is a fundamental prob-
lem in robust speech processing. Recently, deep neural network
(DNN) based speech separation methods, which predict either
clean speech or an ideal time-frequency mask, have demonstrated
remarkable performance improvement. However, a single DNN
with a given window length does not leverage contextual informa-
tion sufficiently, and the differences between the two optimization
objectives are not well understood. In this paper, we propose to
stack ensembles of DNNs, named multi-resolution stacking, to
address monaural speech separation. Each DNN in a module of
the stack takes the concatenation of original acoustic features
and expansion of the soft output of the lower module as its
input, and predicts the ideal ratio mask of the target speaker.
The DNNs in the same module explore different contexts by
employing different window lengths. We have conducted extensive
experiments with three speech corpora. The results demonstrate
the effectiveness of the proposed method. We have also compared
the two optimization objectives systematically and found that
predicting the ideal time-frequency mask is more efficient in
utilizing clean training speech, while predicting clean speech is
less sensitive to SNR variations.

Index Terms—Deep neural networks, ensemble learning,
mapping-based separation, masking-based separation, monaural
speech separation, multi-resolution stacking.

I. INTRODUCTION

MONAURAL speech separation aims to separate the
speech signal of a target speaker from background noise

or interfering speech from a single-microphone recording.
In this paper, we focus on the problem of separating a
target speaker from an interfering speaker. This problem is
challenging because the target and interfering speakers have
similar spectral shapes. A solution is important for a wide
range of applications, such as speech communication, speech
coding, speaker recognition, and speech recognition. It is
theoretically an ill-posed problem with a single microphone,
and to solve this problem, various assumptions have to be
made. Recently, supervised (data-driven) speech separation
has received much attention [22]. Based on the definition
of the training target, supervised separation methods can be
categorized to (i) masking-based methods and (ii) mapping-
based methods.

Masking-based methods learn a mapping function from a
mixed signal to a time-frequency (T-F) mask, and then use the
estimated mask to separate the mixed signal. These methods
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typically predict the ideal binary mask (IBM) or ideal ratio
mask (IRM). For the IBM [21], a T-F unit is assigned 1, if
the signal-to-noise ratio (SNR) within the unit exceeds a local
criterion, indicating target dominance. Otherwise, it is assigned
0, indicating interference dominance. For the IRM [17], a T-
F unit is assigned some ratio of target energy and mixture
energy. Kim et al. [15] used Gaussian mixture models (GMM)
to learn the distribution of target and interference dominant
T-F units and then built a Bayesian classifier to estimate
the IBM. Jin and Wang [14] employed multilayer perceptron
with one hidden layer, to estimate the IBM, and their method
demonstrates promising results in reverberant conditions. Han
and Wang [9] used support vector machines (SVM) for mask
estimation and produced more accurate classification than
GMM-based classifiers. May and Dau [16] first used GMM to
calculate the posterior probabilities of target dominance in T-
F units and then trained SVM with the new features for IBM
estimation. Their method can generalize to a wide range of
SNR variation.

Recently, motivated by the success of deep neural networks
(DNN) with more than one hidden layer, Wang and Wang
[24] first introduced DNN to perform binary classification
for speech separation. Their DNN-based method significantly
outperforms earlier separation methods. Subsequently, Wang et
al. [23] examined a number of training targets and suggested
that the IRM should be preferred over the IBM in terms
of speech quality. Huang et al. [11], [12] used DNN to
predict the IRM, and demonstrated significant performance
improvement over standard non-negative matrix factorization
based methods.

Mapping-based methods learn a regression function from
a mixed signal to clean speech directly, which differs from
masking-based methods in optimization objectives. Xu et al.
[25], [26] trained DNN as a regression model to perform
speech separation and showed a significant improvement over
conventional speech enhancement methods. Han et al. [8],
[10] used DNN to learn a mapping from reverberant and
reverberant-noisy speech to anechoic speech. Their spectral
mapping approach substantially improves SNR and objective
speech intelligibility. Du et al. [6] improved the method in
[25] with global variance equailization, dropout training, and
noise-aware training strategies. They demonstrated significant
improvement over a GMM-based method and good generaliza-
tion to unseen speakers in testing. Tu et al. [20] trained DNN
to estimate not only the target speech but also the interfering
speech. They showed that using dual outputs improves the
quality of speech separation.

We investigate DNN-based speech separation by incorpo-
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rating DNN into the framework of ensemble learning [5],
which integrates multiple weak learners to create a stronger
one. Ensemble learning is a methodology applicable to various
machine learning methods, including DNN. To our knowledge,
ensemble methods have not been systematically explored for
speech separation. There are two key elements for ensemble
learning to succeed: (i) weak learners are at least stronger than
random guess, and (ii) strong diversity exists among the weak
learners [5]. For the former, DNN is a good choice; for the
latter, there are a number of ways to enlarge the diversity by
manipulating input features, output targets, training data, and
hyperparameters of base learners [5].

In this paper, we propose a deep ensemble learning method,
called multi-resolution stacking, which uses DNN as the base
learner and manipulates the input features and output targets
of DNNs for enlarging learner diversity and exploring com-
plementary contexts. In addition, we analyze the differences
between the two optimization objectives, i.e. ideal masking
and spectral mapping, systematically. The contributions of this
paper are summarized as follows:

• Multi-resolution stacking (MRS) for speech separa-
tion. MRS is a stack of DNN ensembles. Each DNN
in a module of the stack uses the IRM as the training
target. It first concatenates original acoustic features and
the estimated ratio masks from the lower module as a
new acoustic feature, and then takes the expansion of the
new feature in a window (called a resolution) as its input.
The DNNs in the same module have different resolutions.
MRS improves the accuracy of DNN by ensembling and
stacking, and enlarges the diversity between the DNNs
with the multi-resolution scheme which manipulates the
input features of DNNs.

• Comparison of masking and mapping for DNN-based
speech separation. The methods in comparison use the
same type of DNN in MRS. Our systematic comparison
leads to the following conclusions. (i) The masking-
based approach is more effective in utilizing the clean
training speech of a target speaker. (ii) The mapping-
based method is less sensitive to the SNR variation of a
training corpus. (iii) Given a training corpus with a fixed
mixture SNR and plenty of clean training speech from the
target speaker, the mapping and masking-based methods
tend to perform equally well.

We have conducted extensive experiments on the corpora
of speech separation challenge [2], TIMIT [7], and IEEE [13],
and found that the proposed MRS method outperforms previ-
ous mapping- and masking-based methods in all experiments.

This paper is organized as follows. In Section II, we present
the MRS algorithm. In Section III, we analyze the differences
between mapping and masking. In Section IV, we present the
results. Finally, we conclude in Section V.

II. MULTI-RESOLUTION STACKING

Speech signal is highly structured, and leveraging temporal
context is important for improving the performance of a speech
processing method. Generally, a learning machine uses the
concatenation of neighboring frames instead of a single frame

as its input for predicting the output. A good choice of input
expansion is to select a fixed window that performs the best
among several candidate windows. For example, in [11], the
masking-based method sets the window length to 3; in [6], the
mapping-based method sets the window length to 7. However,
different candidate windows may provide complementary in-
formation that can further improve the performance. Motivated
by the recent success of the multi-resolution cochleagram
feature [1] and the relationship between the feature and its
components [27], we propose the multi-resolution stacking
algorithm for speech separation, where the term “resolution”
denotes a window of neighboring frames.

MRS is a stack of ensemble learning machines, as shown in
Fig. 1. The learning machines in a module of the stack have
different resolutions; they take the concatenation of the output
predictions of their lower module and the original acoustic
features as their input. MRS can be either mapping-based,
masking-based, or a combination of mapping and masking. In
this paper, we instantiate the learning machines by DNN and
use the IRM as the optimization objective.

In the preprocessing stage of MRS training, given a mixed
signal and the corresponding clean signals of a target speaker
and an interfering speaker, we extract the magnitude spectra of
their short time Fourier transform (STFT) features, denoted as
{ym}Mm=1, {xam}Mm=1, and {xbm}Mm=1, respectively, where M
is the number of frames for the mixed signal, and subscript
a denotes the target speaker and subscript b the interfering
speaker. We further calculate the ideal ratio mask of the target
speaker, denoted as {IRMm}Mm=1, from the STFT features
(see Section III for the definitions of the ideal ratio mask).

In the training stage, MRS learns a mapping function
IRM = f(y) given a training corpus of mixed signals.
Suppose MRS trains S modules, and the sth module has Ps
learning machines, denoted as {f (s)p (·)}Ps

p=1, each of which has
a unique resolution W

(s)
p . The pth DNN learns the mapping
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where {RM (s−1)
n,l }Ps−1

l=1 are the estimated IRMs of yn pro-
duced by the (s − 1)th module {f (s−1)

l (·)}Ps−1

l=1 . Note that
we usually train only one model with an empirically optimal
resolution at the top module, as illustrated in Fig. 1.

In the test stage of MRS, given a mixed signal of two speak-
ers in the time domain, we first extract {ym exp(jθθθm)}Mm=1 by
STFT, where ym and θm represent the magnitude vector and
phase vector of the mth frame respectively. We use {ym}Mm=1
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Fig. 1. Diagram of multi-resolution stacking. The symbols in the figure
are defined in Section II. Trapezoid modules represent resolutions or DNNs.
Rectangle modules represent features.

as the input of MRS and get the estimated ratio masks in each
module. After getting the estimated ratio masks {RM (S)

m }Mm=1

from the top module, we first get the estimated magnitude
spectra {x̂am}Mm=1 by x̂am = RM

(S)
m �ym and then transform

{x̂am exp(jθm)}Mm=1 back to the time-domain signals via the
inverse STFT, where the operator � denotes the element-wise
product. Note that we use the noisy phase to do resynthesis,
and the Hamming window in STFT.

A DNN model has a number of nonlinear hidden layers plus
an output layer. Each layer has a number of model neurons (or
mapping functions). The model can be described as follows:

IRM = g (hL (. . . hl (. . . h2 (h1 (y))))) (3)

where l = 1, . . . , L denotes the lth hidden layer from the
bottom, hl(·) denotes nonlinear activation functions of the lth
hidden layer, g(·) activation functions of the output layer, and
y is the input feature vector. Common activation functions for

the hidden layers include the sigmoid function b = 1
1+e−a ,

tanh function, and more recently rectified linear function b =
max(0, a) where a is the input and b the output of a neuron.
Common activation functions in the output layer include the
linear function b = a, softmax function, and sigmoid function.
Because the rectified linear function is shown to result in faster
training and better learning of local patterns, we use it as
the activation function for the hidden layers of DNN. As the
training target is the IRM whose value varies between [0, 1],
we use the sigmoid function for the output layer.

Traditionally, DNN employs full connections between con-
secutive layers, which tends to overfit data and be sensi-
tive to different hyperparameter settings. Dropout [3], which
randomly deactivates a percentage of neurons, was proposed
recently to alleviate the problem. It has been analyzed the-
oretically that dropout provides as a regularization term for
DNN training. Due to this regularization, we are able to train
much larger DNN model. Therefore, we use dropout for DNN
training.

Although early research in deep learning uses pretraining
to prevent poor local minima, recent experience shows that,
when data sets are large enough, pretraining does not further
improve the performance of DNN. Therefore, we do not
pretrain DNN. In addition, we use the adaptive stochastic
gradient descent algorithm [4] with a momentum term [18] to
accelerate gradient descent and to facilitate parallel computing.

Note that the proposed MRS-based speech separation is
different from our preliminary work in [28] which used MRS
for separating speech from nonspeech noise, boosted DNN as
the base weak learner, ideal binary mask as the optimization
objective, and multi-resolution cochleagram [1] as the acoustic
feature.

III. MAPPING AND MASKING

A general training objective of DNN-based speech separa-
tion methods is as follows:

min
ααα

M∑
m=1

`(xam, fααα(ym)) (4)

where `(·) is a measurement of training loss and α is the
parameter of the speech separation algorithm f(·).

Mapping-based DNN methods learn a mapping function
from the spectrum of the mixed signal to the spectrum of
the clean speech of the target speaker directly, which can
be formulated as the following minimum mean squared error
problem:

min
ααα

M∑
m=1

‖xam − fααα(ym)‖2 (5)

where ‖ · ‖2 is the squared loss. In the test stage, mapping-
based methods transform the prediction x̂am = fααα(ym) back
to the time-domain signal by inverse STFT.

Masking-based DNN methods learn a mapping function
from the spectrum of the mixed signal to the ideal time-
frequency mask of the clean utterance of the target speaker:

min
ααα

M∑
m=1

‖IRMm − fααα(ym)‖2 (6)
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Fig. 2. Comparison of mapping and masking when the number of the
utterances of the target speaker is limited. (a) The spectrum of the utterance
of the target speaker. (b) The spectrum of the first utterance of the interfering
speaker. (c) The spectrum of the second utterance of the interfering speaker.
(d) The spectrum of the mixed signal produced from the target utterance (i.e.
Fig. 2a) and the first interfering utterance (i.e. Fig. 2b). (e) The spectrum of the
mixed signal produced from the target utterance and the second interfering
utterance (i.e. Fig. 2c). (f) The IRM of the target utterance given the first
interfering utterance. (g) The IRM of the target utterance given the second
interfering utterance.

where IRMm is the ideal mask. In the test stage, we first apply
the estimated mask RMm to the spectrum of the mixed signal
ym by x̂am = RMm � ym and then transform the estimated
spectrum x̂am back to the time-domain signal by inverse STFT.

The ideal ratio mask in MRS is defined as:

IRMm,k =
xam,k

xam,k + xbm,k + ε
(7)

where xam,k and xbm,k denote xam and xbm at frequency k
respectively, and ε is a very small positive constant to prevent
the denominator from being zero.

Here, we analyze the differences between mapping- and
masking-based methods. Masking-based methods can explore
the mutual information between target and interfering speakers
better than mapping-based methods. Specifically, data-driven
methods, such as DNN, need a large number of different
patterns to train a good machine. When a target speaker has a
limited number of utterances, we usually create a large training
corpus by mixing each utterance of the target speaker with
many utterances of interfering speakers. Fig. 2 illustrates such
a process where one utterance of a target speaker (Fig. 2a)
is mixed with two utterances of an interfering speaker (Figs.
2b and 2c), each at 0 dB, which produces two spectra from
the two mixed signals (Figs. 2d and 2e) and two ideal ratio

(a) Target utterance

Fr
eq

ue
nc

y 
bi

n

20 40 60 80 100 120 140

50
100
150
200
250

(b) Interfering utterance

20 40 60 80 100 120 140

50
100
150
200
250

(c) Mixture (SNR = -12 dB)

Fr
eq

ue
nc

y 
bi

n

20 40 60 80 100 120 140

50
100
150
200
250

(d) IRM (SNR = -12 dB)

20 40 60 80 100 120 140

50
100
150
200
250

(e) Mixture (SNR = 0 dB)

Fr
eq

ue
nc

y 
bi

n

20 40 60 80 100 120 140

50
100
150
200
250

(f) IRM (SNR = 0 dB)

20 40 60 80 100 120 140

50
100
150
200
250

(g) Mixture (SNR = 6 dB)

Time (in frames)

Fr
eq

ue
nc

y 
bi

n
20 40 60 80 100 120 140

50
100
150
200
250

(h) IRM (SNR = 6 dB)

Time (in frames)
20 40 60 80 100 120 140

50
100
150
200
250

Fig. 3. Comparison of mapping and masking when the SNR of the mixed
signal varies in a wide range. (a) The spectrum of an utterance of a target
speaker. (b) The spectrum of an utterance of an interfering speaker. (c) The
spectrum of the mixed signal with SNR = −12 dB. (d) The IRM of the target
speaker with SNR = −12 dB. (e) The spectrum of the mixed signal with
SNR = 0 dB. (f) The IRM of the target speaker with SNR = 0 dB. (g) The
spectrum of the mixed signal with SNR = 6 dB. (h) The IRM of the target
speaker with SNR = 6 dB.

masks (Figs. 2f and 2g). In the IRM illustrations of Figs. 2f
and 2g, white corresponds to 1 and black to 0. Mapping-based
methods learn a mapping function from the spectra in Figs. 2d
and 2e to the same output pattern in Fig. 2a. On the contrary,
masking-based methods learn a mapping function that projects
the spectrum in Fig. 2d to the ideal ratio mask in Fig. 2f,
and the spectrum in Fig. 2e to the ideal ratio mask in Fig.
2g, respectively. In other words, training targets are different
depending on interfering utterances (see also [23]). Therefore,
masking-based methods can potentially utilize the training
patterns better than mapping-based methods, and hence likely
achieve better performance.

Mapping-based methods are less sensitive to the SNR
variation of training data than masking-based methods. Specif-
ically, the optimization objective min

∑
‖xa − f(y)‖2 (or

min
∑
‖IRM − f(y)‖2) tends to recover the spectra xa (or

the ideal masks IRM ) that have large energy and sacrifice
those that have small energy, so that the overall loss is
minimized. Fig. 3 illustrates such an example, where a target
utterance (Fig. 3a) is mixed with an interfering utterance (Fig.
3b) at multiple SNR levels (Figs. 3c, 3e, and 3g). For mapping-
based methods, no matter how the SNR changes, the reference
xa (Fig. 3a) is unchanged, which means that only the energy
of y affects the optimization. On the contrary, for masking-
based methods, the energy of the ideal masks IRM (Figs. 3d,
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3f, and 3h) becomes small with the decrease of the SNR. One
can imagine that when the SNR is low, the estimated ratio
mask tends to suffer a larger loss than the estimated reference
x̂a in mapping-based methods. As a result, when the SNR
of a training corpus varies in a wide range, masking-based
methods likely perform worse than mapping-based methods
at low SNR levels.

Aside from these differences, Wang et al. [23] point out
that masking as a form of normalization reduces the dynamic
range of target values, leading to different training efficiency
compared to mapping.

IV. RESULTS AND COMPARISONS

In this section, we compared the mapping-, masking-,
and MRS-based speech separation methods in three different
training conditions. We trained hundreds of DNN models
and report the results of the comparison methods on each
gender pair, i.e. male+male (M+M), female+male (F+M),
female+female (F+F), and male+female (M+F), where the
first speaker of a gender pair is the target speaker in all
experiments.

A. Comparison with Single-SNR Speaker-pair Dependent
Training

In this training condition, the target and interfering speakers
of the training and test corpora are the same, and the training
and test corpora are created at each SNR.

1) Datasets: In this experiment, we used the speech sep-
aration challenge (SSC) [2] and TIMIT datasets [7] as the
separation corpora. SSC has predefined training and test cor-
pora. The training corpus contains 34 speakers, each of which
has 500 clean utterances. Each mixed signal in the test corpus
is also produced from a pair of speakers in the training corpus.
Because each pair of speakers contains at most 2 test mixtures,
we did not use the test corpus. Instead, we randomly picked 2
pairs of speakers for each gender pair from the training corpus,
and generated 8 separation tasks in total. Each task had 7
SNR levels ranging from {−12,−9,−6,−3, 0, 3, 6} dB. For
each SNR level of a task, we generated 1000 mixed signals
as the training set, and 50 mixed signals as the test set. In
other words, test results are reported from only one SNR that
is matched to that in the training data. Each component of
a mixture in the training set was a clean utterance randomly
selected from the first 450 utterances of the corresponding
speaker. Each component of a mixed signal in the test set
was a clean utterance from the last 50 utterances of the
corresponding speaker.

TIMIT contains 630 speakers, each of which has 10 clean
utterances. We randomly picked 2 pairs of speakers for each
gender pair, and formulated 8 tasks. Each task had 7 SNR
levels ranging from {−12,−9,−6,−3, 0, 3, 6} dB. For each
SNR level of a task, we generated 600 mixed signals as the
training set, and 2 mixed signals as the test set. Each mixture
in the training set was constructed by randomly selecting 2
clean utterances, each from the first 8 utterances of a speaker,
then shifting the interfering utterance randomly, wrapping
the shifted utterance circularly, and finally mixing the two

utterances together. For the test set, we mix the first target
utterance with the first interfering utterance, and the second
target utterance with the second interfering utterance. Note
that the random shift operation was used to synthesize a large
number of mixtures from a small number of clean utterances.

We resampled all corpora to 8 kHz, and extracted the STFT
features with the frame length set to 25 ms and the frame shift
set to 10 ms.

2) Evaluation Metrics: We used the short-time objective
intelligibility (STOI) [19] as the evaluation metric. STOI
evaluates the objective speech intelligibility of time-domain
signals. It has been shown empirically that STOI scores are
well correlated with human speech intelligibility scores. The
higher the STOI value is, the better the predicted intelligibility
is. STOI is a standard metric for evaluating speech separation
performance [23], [6], [12].

3) Comparison Methods and Parameter Settings: We com-
pared the mapping-, masking, and MRS-based speech sepa-
ration methods. For all comparison methods, we used DFT
to extract acoustic features. For the MRS-based method, we
trained two modules (i.e. parameter S = 2). For the bottom
module of MRS, we trained 3 DNNs with parameters W (1)

1 ,
W

(1)
2 , W (1)

3 set to 1, 2, and 3 respectively. For the top module
of MRS, we trained 1 DNN with W (2)

1 set to 1.
We searched for the optimal parameter settings of DNN

using a development task, and used the optimal settings in all
evaluation tasks. The development task was constructed from
two male speakers of SSC. Its training set contained 1000
mixtures, and its test set contained 50 mixtures, both of which
were at −12 dB.

The selected parameter settings are as follows. DNN was
optimized by the minimum mean square error criterion. Each
DNN has 2 hidden layers, each of which consists of 2048
rectified linear neurons. The output neurons of the DNN
for the mapping-based method are the linear neurons. The
output neurons of the DNNs for the masking- and MRS-based
methods were the sigmoid functions. The number of epoches
for backpropagation training was set to 50. The batch size
was set to 128. The scaling factor for the adaptive stochastic
gradient descent was set to 0.0015, and the learning rate
decreased linearly from 0.08 to 0.001. The momentum of the
first 5 epoches was set to 0.5, and the momentum of other
epoches was set to 0.9. The dropout rate of the hidden neurons
was set to 0.2. The half-window length W was set to 3 for
the mapping-based method, and set to 1 for the masking-based
method.

Note that we normalized data before training. For the
mapping-based method, we first normalized the training data
{ym}Mm=1 to zero mean and unit standard deviation in each
dimension, and then used the same normalization factor to
normalize both the training references {xam}Mm=1 and the
test data. After getting the predictions in the test stage, we
converted the predictions back to the original scale by the
same normalization factor. For the masking-based method and
MRS, we first normalized {ym}Mm=1 and then used the same
normalization factor to normalize the test data.

4) Results: We conducted a comparison at each SNR level
of each separation task, and report the average results of the
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TABLE I
STOI COMPARISON BETWEEN MAPPING-, MASKING-, AND MRS-BASED

SPEECH SEPARATION METHODS WITH SINGLE-SNR SPEAKER-PAIR
DEPENDENT TRAINING ON SSC CORPUS. “AVR” INDICATES THE AVERAGE

PERFORMANCE. THE NUMBERS IN BOLD INDICATE THE BEST RESULTS.

SNR −12 dB −9 dB −6 dB −3 dB 0 dB 3 dB 6 dB

M+M

Noisy 0.41 0.47 0.55 0.63 0.71 0.78 0.84
Mapping 0.65 0.71 0.77 0.81 0.85 0.89 0.92
Masking 0.67 0.71 0.76 0.81 0.85 0.88 0.91
MRS 0.68 0.74 0.78 0.83 0.87 0.90 0.93

F+M

Noisy 0.46 0.52 0.58 0.65 0.72 0.78 0.84
Mapping 0.73 0.78 0.83 0.87 0.90 0.92 0.94
Masking 0.73 0.78 0.82 0.87 0.90 0.93 0.94
MRS 0.75 0.80 0.84 0.88 0.91 0.93 0.95

F+F

Noisy 0.51 0.57 0.64 0.70 0.77 0.83 0.89
Mapping 0.70 0.75 0.79 0.83 0.87 0.91 0.94
Masking 0.69 0.73 0.77 0.82 0.86 0.89 0.93
MRS 0.71 0.75 0.80 0.84 0.87 0.91 0.94

M+F

Noisy 0.48 0.53 0.59 0.65 0.71 0.77 0.83
Mapping 0.78 0.82 0.85 0.88 0.91 0.93 0.94
Masking 0.80 0.83 0.86 0.89 0.91 0.93 0.95
MRS 0.81 0.85 0.87 0.90 0.93 0.94 0.95

AVR

Noisy 0.46 0.52 0.59 0.66 0.73 0.79 0.85
Mapping 0.71 0.77 0.81 0.85 0.88 0.91 0.94
Masking 0.72 0.76 0.81 0.85 0.88 0.91 0.93
MRS 0.74 0.78 0.82 0.86 0.89 0.92 0.94

two tasks that belonged to the same gender pair.
Table I lists the comparison results on the SSC corpus. From

the table, we observe that (i) all methods improve STOI scores
over the original mixed signals significantly, particularly at low
SNR levels; (ii) the MRS-based method slightly outperforms
the mapping- and masking-based methods; (iii) the mapping-
and masking-based methods perform equally well.

Table II lists the comparison results on the TIMIT corpus.
From the table, we observe that (i) all methods improve the
STOI scores at the low SNR levels, but the improvement
becomes insignificant or nonexistent with the increase of the
SNR. (ii) The masking- and MRS-based methods perform
equivalently, and significantly outperform the mapping-based
method in all cases. (iii) At positive SNR levels, the mapping-
based method produces lower STOI scores than the original
mixed signals.

Comparing Table I and Table II, we find that the mapping-
based method works well on SSC but not on TIMIT, while the
masking-based method works well on both corpora, consistent
with our analysis in Section III. Note that STOI improvements
are smaller on TIMIT than on SSC, reflecting the fact that the
TIMIT dateset has much fewer utterances for each speaker.

B. Comparison with Multi-SNR Speaker-pair Dependent
Training

In this training condition, the target and interfering speakers
of the training and test corpora are the same, and the SNR of
the training corpus varies in a wide range.

1) Experimental Settings: In this experiment, we followed
the experimental settings in Section IV-A and made 16 speech
separation tasks, each of which had 7 test sets. Different from
Section IV-A where each task had 7 training sets, we had
only 1 training set for each task encompassing various SNRs.
Each training set of SSC contained 10,000 mixed signals. Each

TABLE II
STOI COMPARISON BETWEEN MAPPING-, MASKING-, AND MRS-BASED

SPEECH SEPARATION METHODS WITH SINGLE-SNR SPEAKER-PAIR
DEPENDENT TRAINING ON TIMIT CORPUS.

SNR −12 dB −9 dB −6 dB −3 dB 0 dB 3 dB 6 dB

M+M

Noisy 0.43 0.50 0.58 0.66 0.74 0.81 0.87
Mapping 0.53 0.58 0.65 0.70 0.75 0.79 0.83
Masking 0.58 0.62 0.68 0.74 0.79 0.84 0.87
MRS 0.55 0.61 0.68 0.74 0.77 0.82 0.85

F+M

Noisy 0.54 0.59 0.64 0.70 0.76 0.82 0.87
Mapping 0.59 0.64 0.68 0.72 0.74 0.77 0.79
Masking 0.66 0.72 0.78 0.82 0.85 0.88 0.89
MRS 0.67 0.72 0.79 0.82 0.84 0.87 0.88

F+F

Noisy 0.54 0.60 0.67 0.74 0.80 0.86 0.91
Mapping 0.58 0.62 0.65 0.68 0.73 0.77 0.81
Masking 0.59 0.65 0.70 0.73 0.76 0.78 0.84
MRS 0.59 0.64 0.71 0.75 0.77 0.77 0.83

M+F

Noisy 0.48 0.54 0.60 0.67 0.74 0.80 0.86
Mapping 0.63 0.67 0.72 0.77 0.80 0.83 0.86
Masking 0.63 0.68 0.74 0.80 0.84 0.87 0.89
MRS 0.62 0.68 0.74 0.80 0.84 0.87 0.88

AVR

Noisy 0.50 0.56 0.62 0.69 0.76 0.82 0.88
Mapping 0.58 0.63 0.67 0.72 0.76 0.79 0.82
Masking 0.61 0.67 0.72 0.77 0.81 0.84 0.87
MRS 0.61 0.67 0.73 0.78 0.81 0.83 0.86

training set of TIMIT contained 6,000 mixed signals. Each
training mixture had a random SNR level varying between
−13 dB and 10 dB with the increment of 1 dB.

2) Results: For each speech separation task, we trained only
one model for each comparison method, and tested the model
on all 7 test sets at different SNRs. Then, we report the average
results of the two tasks that belonged to the same gender pair.

Table III lists the comparison results on the SSC corpus.
From the table, we observe that (i) all methods improve the
STOI scores over the original mixed signals significantly; (ii)
the MRS-based method performs overall the best across all
SNR levels; (iii) the masking-based method underperforms the
mapping-based method at low SNR levels, consistent with our
analysis in Section III.

Table IV lists the comparison results on the TIMIT corpus.
From the table, we observe a similar performance profile,
albeit STOI improvements are lower in TIMIT compared to
SSC.

Comparing Table III with Table I, we find that, when
a training set is generated from a large number of clean
utterances (each speaker in SSC has 450 clean utterances),
enlarging the size of the training set from 1000 mixed signals
in Table I to 10,000 mixed signals in Table III significantly
elevates the performance. On the other hand, we find that,
when a training set is constructed from limited clean utterances
(each speaker in TIMIT has only 8 utterances), enlarging
the size of the training set from 600 mixed signals in Table
II to 6000 mixed signals in Table IV does not elevate the
performance by as much. This can be seen from the fact that
the results at low SNR levels in Table IV are worse than those
in Table II.

C. Comparison with Target Dependent Training

In this condition, we compare the generalization ability
of the mapping-, masking-, and MRS-based methods when
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TABLE III
STOI COMPARISON BETWEEN MAPPING-, MASKING-, AND MRS-BASED

SPEECH SEPARATION METHODS WITH MULTI-SNR SPEAKER-PAIR
DEPENDENT TRAINING ON SSC CORPUS.

SNR −12 dB −9 dB −6 dB −3 dB 0 dB 3 dB 6 dB

M+M

Noisy 0.41 0.47 0.55 0.63 0.71 0.78 0.84
Mapping 0.69 0.75 0.81 0.85 0.88 0.91 0.92
Masking 0.66 0.72 0.78 0.83 0.87 0.90 0.93
MRS 0.69 0.76 0.82 0.86 0.90 0.92 0.94

F+M

Noisy 0.46 0.52 0.58 0.65 0.72 0.78 0.84
Mapping 0.77 0.82 0.86 0.89 0.91 0.93 0.94
Masking 0.74 0.80 0.85 0.88 0.91 0.93 0.95
MRS 0.77 0.83 0.87 0.90 0.93 0.95 0.96

F+F

Noisy 0.51 0.57 0.64 0.70 0.77 0.83 0.89
Mapping 0.73 0.78 0.83 0.86 0.89 0.91 0.93
Masking 0.69 0.75 0.80 0.84 0.88 0.91 0.93
MRS 0.73 0.79 0.84 0.87 0.90 0.92 0.94

M+F

Noisy 0.48 0.53 0.59 0.65 0.71 0.77 0.83
Mapping 0.81 0.85 0.89 0.91 0.93 0.94 0.95
Masking 0.79 0.84 0.88 0.91 0.93 0.95 0.96
MRS 0.81 0.86 0.90 0.92 0.94 0.96 0.97

AVR

Noisy 0.46 0.52 0.59 0.66 0.73 0.79 0.85
Mapping 0.75 0.80 0.85 0.88 0.90 0.92 0.94
Masking 0.72 0.78 0.83 0.87 0.90 0.92 0.94
MRS 0.75 0.81 0.86 0.89 0.92 0.94 0.95

TABLE IV
STOI COMPARISON BETWEEN MAPPING-, MASKING-, AND MRS-BASED

SPEECH SEPARATION METHODS WITH MULTI-SNR SPEAKER-PAIR
DEPENDENT TRAINING ON TIMIT CORPUS.

SNR −12 dB −9 dB −6 dB −3 dB 0 dB 3 dB 6 dB

M+M

Noisy 0.43 0.50 0.58 0.66 0.74 0.81 0.87
Mapping 0.50 0.57 0.64 0.71 0.76 0.79 0.81
Masking 0.51 0.58 0.65 0.72 0.77 0.82 0.86
MRS 0.50 0.59 0.67 0.74 0.80 0.84 0.87

F+M

Noisy 0.54 0.59 0.64 0.70 0.76 0.82 0.87
Mapping 0.58 0.64 0.69 0.73 0.76 0.78 0.79
Masking 0.66 0.72 0.77 0.81 0.84 0.86 0.88
MRS 0.67 0.73 0.78 0.82 0.85 0.87 0.88

F+F

Noisy 0.54 0.60 0.67 0.74 0.80 0.86 0.91
Mapping 0.52 0.57 0.63 0.68 0.72 0.76 0.77
Masking 0.50 0.57 0.64 0.70 0.75 0.77 0.79
MRS 0.51 0.58 0.66 0.72 0.75 0.78 0.79

M+F

Noisy 0.48 0.54 0.60 0.67 0.74 0.80 0.86
Mapping 0.61 0.68 0.74 0.78 0.81 0.84 0.86
Masking 0.59 0.66 0.72 0.78 0.83 0.87 0.90
MRS 0.60 0.67 0.73 0.79 0.84 0.88 0.90

AVR

Noisy 0.50 0.56 0.62 0.69 0.76 0.82 0.88
Mapping 0.55 0.61 0.68 0.73 0.76 0.79 0.81
Masking 0.57 0.63 0.70 0.75 0.80 0.83 0.86
MRS 0.57 0.64 0.71 0.77 0.81 0.84 0.86

interfering speakers in the test set were different from those
in the training set, but the target speakers of the training and
test corpora are the same. Also, SNR levels of the test corpus
are different from those of the training corpus.

1) Experimental Settings: We used the IEEE corpus as the
source of target speakers [13] and TIMIT as the source of
interfering speakers. We call this the IEEE-TIMIT corpus. The
IEEE corpus has one male speaker and one female speaker.
Each speaker utters 720 clean utterances. We formed two
speech separation tasks: one task used the male speaker as
the target speaker, and the other one used the female speaker
as the target speaker.

Each task had one training set. The training set had 6000

TABLE V
STOI COMPARISON BETWEEN MAPPING-, MASKING-, AND MRS-BASED
SPEECH SEPARATION METHODS WITH TARGET INDEPENDENT TRAINING

ON IEEE-TIMIT CORPUS.

SNR −12 dB −9 dB −6 dB −3 dB 0 dB 3 dB 6 dB

M+F

Noisy 0.50 0.56 0.62 0.68 0.74 0.80 0.85
Mapping 0.73 0.78 0.81 0.85 0.88 0.90 0.92
Masking 0.73 0.78 0.82 0.86 0.89 0.92 0.94
MRS 0.77 0.81 0.85 0.88 0.91 0.93 0.95

F+M

Noisy 0.48 0.54 0.61 0.68 0.75 0.81 0.86
Mapping 0.72 0.76 0.80 0.84 0.87 0.90 0.93
Masking 0.69 0.75 0.80 0.85 0.88 0.91 0.94
MRS 0.74 0.79 0.84 0.88 0.91 0.93 0.95

AVR

Noisy 0.49 0.55 0.61 0.68 0.74 0.80 0.85
Mapping 0.73 0.77 0.81 0.84 0.88 0.90 0.92
Masking 0.71 0.77 0.81 0.85 0.89 0.92 0.94
MRS 0.75 0.80 0.84 0.88 0.91 0.93 0.95

mixed signals with the SNR in dB varying in the range of
[−13, −11, −10, −8, −7, −5, −4, −2, −1, 1, 2, 4, 5, 7, 8,
9, 10]. The utterance of an target speaker in a mixed signal
was randomly selected from the first 640 utterances of the
speaker. The utterance of an interfering speaker in a mixed
signal was randomly selected from the 6300 utterances of the
entire TIMIT dataset.

Each task had 7 test sets with the SNR levels ranging at
−12, −9, −6, −3, 0, 3, and 6 dB. Given the target speaker
of a task, the interfering speaker in the test sets was the
other speaker in the IEEE corpus. Each test set had 80 mixed
signals, and each component of a mixture was a clean utterance
selected from the last 80 clean utterances of its corresponding
speaker.

The rest of the experimental settings follows that described
in Section IV-A.

2) Results: Table V lists the comparison results on the
IEEE-TIMIT corpus. From the table, we observe the follow-
ing results. (i) All methods improve the STOI score over
the original mixed signals significantly. (ii) The MRS-based
method outperforms the mapping- and masking-based methods
at all SNR levels. (iii) The mapping- and masking-based
methods perform equivalently between −9 dB and 0 dB.
But the mapping-based method outperforms the masking-
based method at −12 dB, whereas the masking-based method
outperforms the mapping-based method at 3 dB and 6 dB.
The comparative performances of mapping and masking are
consistent with our analysis in Section III.

Comparing Table V with Tables I and III, we find that
even if the interfering speakers are unseen during training,
target dependent training can still reach a similar performance
to that of speaker-pair dependent training. This demonstrates
the strong generalization of the DNN-based speech separation
methods.

3) Effects of Number of Training Utterances of Target
Speaker: From the experimental results on TIMIT, we see
that when the clean utterances of the target speaker are limited,
the performance improvement of all DNN-based methods is
limited. In this subsection, we examine how this factor affects
the separation performance.

We constructed 5 training sets for each target speaker of
the IEEE-TIMIT corpus in the same way as described above,
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Fig. 4. Comparison of mapping-, masking-, and MRS-based methods with respect to the number of the utterances of the target speaker in training.

except for the only difference that the 6,000 mixed signals
of each training set were generated from 5, 20, 50, 100,
and 640 clean utterances of the target speaker. Fig. 4 shows
the average results on the two separation tasks at various
SNR levels. From the figure, we observed that (i) the MRS-
based method outperforms the mapping- and masking-based
methods, particularly at the low SNR levels; (ii) when the
SNR is lower than −3 dB, the mapping- and masking-based
methods perform about the same; (iii) when the SNR is higher
than −3 dB, the masking-based method performs slightly
better than the mapping-based method; (iv) consistent with our
analysis, the masking-based method performs relatively better
with fewer target training utterances; (v) the effects of the
number of target training utterances weaken with the decrease
of the SNR.

V. CONCLUDING REMARKS

In this paper, we have proposed a deep ensemble learning
algorithm—multi-resolution stacking—for speech separation.
MRS is a stack of DNN ensembles. Each DNN model in
a module of the stack takes the concatenation of original
acoustic features and the estimated masks from its lower
module as the input, and takes the ideal ratio mask as the
training objective. The DNN models in the same module have
different resolutions (i.e. window lengths), so as to capture
different contextual information. MRS improves the accuracy
of DNN-based mask estimation by ensembling and stacking
multiple DNNs, and enlarges the diversity between the DNNs
by expanding the training features.

We have compared the two commonly adopted training
objectives for DNN-based speech separation—masking and
mapping—systematically. We have found that (i) masking
is more effective than mapping in utilizing clean training
utterances of a target speaker, and therefore masking-based
methods are more likely to achieve better performance when a
target speaker has a limited number of training utterances. (ii)
masking is more sensitive to the SNR variation of a training
corpus than mapping, and masking-based methods are more
likely to perform worse at low SNRs in the test stage when
the SNR of the training corpus varies in a wide range.

To evaluate the proposed MRS and the differences between
mapping and masking, we trained the mapping-, masking-
, and MRS-based methods in three conditions, i.e. single-
SNR speaker-pair dependent training, multi-SNR speaker-pair
dependent training, and target dependent training. After testing
hundreds of DNN models, we have observed that the MRS-
based method outperforms the mapping- and masking-based
methods uniformly, and the relative performances between the
mapping- and masking-based methods are consistent with our
analysis.
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