
Computing Reliable Gradients from Scalar Data -

Technical Report

Arindam Bhattacharya and Rephael Wenger

(a) TwoCube (b) Flange (c) Annulus (d) Cone (e) Cannon

Fig. 1: Sharp isosurface mesh and features generated by our algorithm. Sparse edge features are in green and corners in red.

Abstract— Sharp surface edges and corners often provide important visual information about the surface. However, algorithms for
isosurface visualization often smooth sharp edges and corners, hiding instead of highlighting the sharp features. Previous algorithms
for identifying sharp isosurface features required gradients or surface normals to be provided as input to the algorithm. We present
an algorithm for determining sharp isosurface edges and corners from scalar data on a regular grid. Our algorithm uses the central
difference formula to construct gradient approximations in the scalar field, and then identifies which gradient approximations are
reliable. Because our algorithm uses only local information to determine sharp features, it is fast and easily parallelizable. Our
algorithm can be used to generate an isosurface with sharp features or to visualize or highlight the sharp features.

Index Terms—Isosurface, sharp features, reconstruction, gradient, scalar field

1 INTRODUCTION

X-ray computed tomography (CT) scanners produce regular grids
of scalar values representing material densities of scanned objects.
These scalar values can be modeled as samples of some scalar field
f :R3→R. Object boundaries can be visualized by direct volume ren-
dering or by visualizing isosurfaces (mesh representations of f−1(σ))
representing the object boundaries. Both approaches have difficul-
ties in representing sharp edges and corners in the object boundaries.
Sharp edges and corners are best represented as discontinuities in the
gradient field of f . However, standard direct volume rendering and
isosurface construction algorithms implicitly assume some continuity
in the gradient field of f .

In this paper, we will describe a fast, local algorithm for reliably
reconstructing the gradient field of f and constructing points on sharp
edges and corners of an isosurface. The points can be rendered in con-
junction with isosurface visualizations to highlight sharp features or
they can be joined to form a skeleton representation of the sharp fea-
ture. They can also be used as input to isosurface or surface meshing
algorithms which are designed to handle surfaces with sharp features.

Previous algorithms to construct isosurfaces with sharp features re-
lied upon exact surface normals being provided to the algorithm [3,
11, 12, 14, 15, 17, 26, 22, 27]. The algorithm in [1] constructs iso-
surfaces with sharp features from gradient grid data where gradients
are provided at each grid vertex. We know of no work on constructing
isosurfaces with sharp features directly from scalar data.

If the level set f−1(σ) of a scalar field f : R3 → R has sharp fea-
tures, then there are discontinuities in the gradients of f at the sharp
features. Constructing the gradients near those discontinuities is dif-
ficult. Formulas for approximating gradients such as the central dif-
ference formula [7] or higher order approximations [2, 13, 18] assume

• The Ohio State University. E-mail: wenger.4@osu.edu.

• bhattaca@cse.ohio-state.edu.

the gradient is continuous at the given location. Anisotropic diffu-
sion [6, 8, 23, 24, 25] removes noise in low curvature regions of the
scalar field without affecting high curvature regions, but it does not
produce correct gradients near gradient discontinuities.

Instead of attempting to produce correct gradients at all grid ver-
tices, our algorithm identifies correct gradients and uses only those
gradients to predict locations of isosurface vertices. We give an algo-
rithm for identifying correct gradients based on their agreement with
neighboring gradients. The algorithm produces enough correct gradi-
ents in the neighborhood of sharp features to generate points on those
sharp features.

The basic steps of our algorithm are given in Figure 2. The first two
steps produce a set of reliable gradients. The algorithm then selects a
set of reliable gradients around each cube, computes a set of isosurface
tangent planes from those gradients, and finds a point at the “intersec-
tion” of those tangent planes. It simultaneously identifies whether that
point lies on a sharp edge or corner of the isosurface or on a smooth
region of the isosurface. The algorithm sparsifies the set of isosurface
vertices on sharp features and returns the sparsified set. The sparsified
set can be used for generating an isosurface mesh using feature pre-
serving algorithms such as MergeSharp [1] or Weighted Cocone [9].
Alternatively, it can be used to construct a representative sharp feature
curve or can be rendered directly to highlight sharp features on the
isosurface.

The focus of this paper is on constructing a set of reliable gradi-
ents from scalar data in the presence of gradient discontinuities. As
part of our work, we developed a theory (Section 3 giving bounds on
gradient approximation errors based on comparing gradients to nearby
gradients.

There is a substantial amount of work on computing surfaces with
sharp features from point cloud data. Some of the proposed algorithms
(e.g. [9, 20]) compute points on sharp features and then create repre-
sentative curves from those points. Scalar data might be turned into
point cloud data by computing a set of points which approximate the
intersection of the isosurface and the grid edges. Any of the point

Fig. 2: Constructing points on sharp features.

cloud algorithms which reconstruct sharp features or surfaces with
sharp features can then be applied to this point cloud data.

We strongly believe that there is a big advantage in constructing
sharp features directly from scalar data without (the extra step of) con-
verting it to point cloud data. First, converting scalar data to point
cloud data ignores the grid structure of the scalar data. This grid
structure can be employed both for constructing sharp features and for
meshing those features. Generally, grid based methods are faster than
their point-cloud counterparts. Second, point cloud data is extremely
noisy so the point cloud reconstruction algorithms average over large
neighborhoods. It is extremely difficult to predict the results of the al-
gorithms or to guarantee that the algorithms are not ignoring features
in the data. In contrast, our algorithm runs over a small, local neigh-
borhood, so that all features of the data (for better or for worse) are
represented in the output. Finally, because our algorithm is local, it is
very fast and easily parallelizable.

Our research contributions in this paper are:

1. An algorithm for constructing reliable gradients from scalar data
in the presence of gradient discontinuities.

2. Proofs of bounds on the angle between the approximate gradients
and the true gradients.

We use our algorithm to:

1. Construct samples points on sharp edges and corners of an iso-
surface.

2. Construct isosurface meshes with good representations of sharp
edges and corners.

We note that the algorithm for constructing the reliable gradients
and the sample points is completely local, and thus fast and easily
parallelizable.

2 RELATED WORK

Algorithms for constructing isosurfaces with sharp features are given
in [3, 12, 14, 15, 17, 21, 22, 26, 27]. All these algorithms require exact
surface normals as part of the input.

MERGESHARP [1] is an algorithm for constructing isosurfaces with
sharp features from gradient data. Input to the algorithm is gradient
grid data, scalar values and gradient vectors at each vertex of a regu-
lar grid. The algorithm can handle noise in the gradient vectors and
missing gradient vectors.

Salman et al. [20] and Dey et al. [9] reconstructed piecewise smooth
surfaces with sharp features from point cloud data by separately plac-
ing mesh vertices on the sharp features and vertices inside the smooth
patches. They place “protecting ball” around mesh vertices on sharp
features so that no vertices inside the smooth patches are placed near
the sharp features. Algorithm MERGESHARP does something similar,
merging grid cubes around sharp features so that isosurface vertices
on sharp features are “isolated” away from other vertices.

Fleishman et al. [10] introduced a least-squares technique to re-
construct a piecewise smooth surface. The sharp features are recon-
structed as intersection of these smooth regions. Oztireli et al. [19]
extended the moving least square reconstruction to sharp features us-
ing kernel regression. The strength of robust kernel regression, makes
this method robust to noise. Avron et al. [4] used a l1-sparse approach
to reconstruct sharp features from point set.

Formulas for improving the numerical accuracy of gradient com-
putations from scalar data are given in [2, 13, 18]. These formulas

Fig. 3: Gradient computation around a sharp surface edge in a CT data.
Expanded view of the cyan rectangle, shows the central difference gra-
dients at grid vertices which intersect the isosurface. Those parallel to
Y axis are colored green, those parallel to Z are colored blue, the rest
are linearly interpolated. The central difference formula produces in-
correct gradients near the sharp edge. Gradients which are not near the
sharp edge are correct.

Fig. 4: A double cone (red) representing the gradient discontinuities
of a scalar field f . The field f is the maximum of the distance to a
line and to a plane orthogonal to that line. The isosurfaces of f are
boundaries of cylinders. A sample isosurface is shown in grey. The
double cone separates R3 into three regions. The field f is continuous
within each region.

assume the gradient vector field is smooth and do not work when there
are discontinuities in the vector field. They also do not work when
there is noise in the input scalar data.

Anisotropic diffusion is a technique by which the filtering of surface
normals or field gradients changes based on local curvature. Gradi-
ents or normals in low curvature regions are moved to agree with their
neighbors. Gradients or normals in high curvature regions are moved
only slightly. Anisotropic diffusion for mesh smoothing is described
in [6, 8, 23, 24]. Tasziden et. al. [25] used anisotropic diffusion to
preserve features in isosurface reconstruction.

Features in papers on anisotropic diffusion are high curvature re-
gions, not regions with normal or gradient discontinuities (infinite cur-
vature.) Anisotropic diffusion applied to surfaces or gradient fields
with discontinuities will filter noise from smooth regions, but it will
not improve estimations at discontinuities or assist in identifying such
discontinuities.

3 DETERMINING CORRECT GRADIENTS

We assume that the scalar values sv represent the values at the grid ver-
tices v of a continuous, piecewise smooth scalar field f . The difference
between sv and f (v) is the “noise” in the data.

A scalar field f : R3 → R is piecewise smooth if R
3 can be par-

titioned into a finite set of piecewise smooth regions, A1,A2, . . . ,Ak

such that f has derivatives of all orders on each region Ai. Because f
is only piecewise smooth, the gradient field of f may have disconti-
nuities. Such discontinuities occur only on the boundaries, ∂Ai, of the
Ai.

Figure 4 contains an example of a continuous piecewise smooth
field, consisting of three piecewise smooth regions separated by two
cones (a “double cone”). The isosurface for this field is the boundary
of a cylinder.

The gradient at a point p is the vector (∂ f /∂x,∂ f /∂y,∂ f /∂ z) at p.
Gradients are computed at some, but not all, of the grid vertices. In
particular, gradients are not computed at grid vertices on or adjacent
to points where the scalar field is not smooth.

3.1 Definitions

We define the neighborhood of a grid vertex v. Let set N1(v) be v and
the six grid vertices which share a grid edge with v. Recursively define
set Nk(v) as:

Nk(v) = {v′ : v′ ∈ N1(v
′′) for some v′′ ∈ Nk−1(v)}.

We sometimes use N(v) as an abbreviation for N1(v).

A collinear sequence of adjacent grid vertices is a sequence
(v1,v2, . . . ,vk) of distinct grid vertices such that vi ∈ N(vi−1) for
i = 2, . . . ,k and all the vi are collinear.

An interior grid vertex of a region A is a grid vertex v such that N(v)
is a subset of A. Set IV (A) is the set of all interior grid vertices of A.

3.2 Central Difference Formula

To compute a gradient in a piecewise smooth scalar field, we need all
the scalar values used in the computation to be from a single smooth
portion of the scalar field. Thus, we want to use a small basis for our
gradient computation and not extend our gradient computation over
many grid vertices. We use the central difference formula

∂ f /∂ (xd)≈ (f (x+ud)− f (x−ud))/(2|ud |), (1)

where x is the location of a grid vertex and ud is the vector to the
adjacent vertex in direction d. Figure 3 shows the result of computing
gradient using the central difference formula.

If spacing between grid vertices is the same in all directions, then
the grid can be rescaled so that ud is a unit vector in all directions.
However, CT scans often have non-uniform spacing, with the z or slice
direction different from the x and y directions. In that case, ux and uy

will have different magnitudes from uz.

Let gv be the gradient at a vertex v and let g̃v be the gradient ap-
proximation produced by the central difference formula. There are
three types of errors in the approximation of gv by g̃v. First, there are
errors caused by noise in the data, i.e. the difference between the scalar
value sv and it “true” value f (v). Second, there are errors caused by
using the central difference formula as an approximation to the gra-
dient. Such errors occur even if we used the exact values f (v) and if
the field was smooth everywhere. Finally, if v and one of its neighbors
v′ ∈ N(v) lie in different smooth regions, then there may be a discon-
tinuity in the gradient along edge (v,v′). This discontinuity will also
contribute to errors in g̃v. (Numerical error is a fourth contributor to
errors in g̃v, but it is insignificant compared to the errors caused by
noise in the data.)

Replacing the central difference formula by an equation which re-
lies on more vertices will reduce the first two sources of error but in-
crease the effect of gradient discontinuities on the gradient approxima-
tion. Anisotropic filtering can be used to decrease noise in the scalar
data without affecting the discontinuities, but it will not reduce the er-
ror caused by gradient discontinuity. Anisotropic filtering can also be
used directly on the gradients. Again, it will improve gradients in the
smooth regions, but it won’t correct major errors caused by disconti-
nuities. (It might correct minor ones.)

αα n

n′
φ(n,n′)

α
αα

n

n′
φ(n,n′)φ2(n,n
′)

(a) (b)

Fig. 5: (a) Vector φ(n,n′) predicted by n and n′. (b) Vector φ2(n,n
′)

predicted by n and n′.

3.3 Reliable Gradients

For each vertex v, let ñv = g̃v/|g̃v| be the unit vector in the direction
of the central difference gradient g̃v. We can try to determine if the
gradient direction ñv at vertex v is reliable by comparing it with the
gradient directions ñv′ at all the neighboring vertices v′ ∈ N(v). If
∠(ñv, ñv′) is less than some constant α for all vertices v′ ∈ N(v), then
we can mark the gradient at v as reliable.

Determining reliable gradients from ∠(ñv, ñv′) will work for flat re-
gions but will fail if the scalar field has any significant curvature. If
α is set to a small value, then the algorithm will fail to detect correct
gradients in curved regions. On the other hand, if α is set to a large
value, then the algorithm will mark incorrect gradients as correct. In-
stead of comparing ñv to neighboring vertices, we use pairs of vertices
to predict the gradient direction at v and compare ñv to this predicted
direction.

Let nv = gv/|gv| be the unit vector pointing in the direction of the
true gradient gv. Assume (v,v′,v′′) is a collinear sequence of adjacent
vertices. Vectors nv and nv′ lie in a plane h. If the gradient changes at
a constant rate along line segment (v,v′′), then nv′′ also lies in plane h
and ∠(nv′ ,nv′′) equals ∠(nv,nv′).

Let n and n′ be unit vectors in R
3 lying plane h. Let φ(n,n′) be the

unit vector in h other than n whose angle with n′ is ∠(n,n′). We say
that the φ(n,n′) is the vector predicted by n and n′. (See Figure 5(a).)
More precisely, define Orth(n,n′) as n− (n ·n′)n′, the component of n
orthogonal to n. Define φ(n,n′) as:

φ(n,n′) = n−2×Orth(n,n′) = n−2(n− (n ·n′)n′) = 2(n ·n′)n′−n.

As defined above, unit vector ñv = g̃v/|g̃v| points in the direction
of the central difference gradient. We determine reliable gradients by
testing ∠(φ(ñv′′ , ñv′), ñv) against a constant α .

Input : Vertex v, Angle bound α .

1 foreach grid vertex v′ ∈ N(v) do
2 Let v′′ ∈ N(v′) be the vertex such that (v,v′,v′′) is a

collinear sequence of adjacent vertices;
3 if (∠(φ(ñv′′ , ñv′), ñv)> α) then return (false);

4 end
5 return (true)

Algorithm 1.

Assume N3(v) is a subset of a smooth region Ai so that v,v′,v′′ ∈
IV (Ai) for all the neighbors v′ of v. If all the second order partial
derivatives of function f in Ai are constant, then the gradients change
at a constant rate along any direction and φ(nv′′ ,nv′) equals nv. More-
over, if all the second order partial derivatives are constant and there
is no noise (sv = f (v) for all v), then the central difference gradient
g̃v equals the exact gradient gv (up to numerical error.) (See Proposi-
tion 10 in the appendix for a proof.)

In the more general case, the second order partial derivatives are not

constant and there is noise in the data. To analyze this case, define:

µ = max{∠(nv, ñv) : v ∈ IV (Ai) for some Ai}.
Λ(nv,nv′ ,nv′′) = ∠(φ(nv,nv′),nv′′).

λ = max{Λ(nv,nv′ ,nv′′) : v,v′,v′′ ∈ Ai for some Ai}.

Value µ is a bound on the angle between the approximate and exact
gradient directions in the smooth regions of the field. Λ(nv,nv′ ,nv′′) is
the difference between the prediction φ(nv,nv′) and nv′′ . This differ-
ence is caused by changes in the curvature of f . Value λ is a bound
on this difference over vertices in the interiors of the Ai. Note that
Algorithm 1 computes Λ(ñv′′ , ñv′ , ñv), not Λ(nv,nv′ ,nv′′).

The following proposition bounds Λ(ñv, ñv′ , ñv′′) and ∠(nv′′ , ñv′′).

Proposition 1. Let (v,v′,v′′) be a collinear sequence of adjacent ver-
tices contained in Ai for some smooth region Ai.

1. If v,v′,v′′ ∈ IV(Ai), then
Λ(ñv, ñv′ , ñv′′)≤ Λ(nv,nv′ ,nv′′)+4µ ≤ λ +4µ .

2. If v,v′ ∈ IV (Ai), then ∠(nv′′ , ñv′′)≤ Λ(ñv, ñv′ , ñv′′)+3µ +λ .

Outline of proof of 1.1: Perturbing nv by at most µ , changes φ(nv,nv′)
by at most µ . Since angles ∠(nv, ñv) and ∠(nv′′ , ñv′′) are at most µ ,
angle ∠(φ(ñv, ñv′), ñv′′) is at most ∠(φ(nv, ñv′),nv′′)+2µ .

Perturbing nv′ by at most µ changes φ(nv,nv′) by at most 2µ . Thus,

Λ(ñv, ñv′ , ñv′′) = ∠(φ(ñv, ñv′), ñv′′)

≤ ∠(φ(nv, ñv′),nv′′)+2µ

≤ ∠(φ(nv,nv′),nv′′)+2µ +2µ

= Λ(nv,nv′ ,nv′′)+4µ.

Outline of proof of 1.2: By the triangle inequality,

∠(nv′′ , ñv′′)≤ ∠(φ(nv,nv′),nv′′)+∠(φ(nv,nv′), ñv′′)

≤ λ +∠(φ(nv,nv′), ñv′′).

As discussed above, perturbing nv by at most µ changes φ(nv,nv′) by
at most µ . Perturbing nv′ by at most µ changes φ(nv,nv′ by at most
2µ . Thus,

∠(nv′′ , ñv′′)≤ λ +∠(φ(nv,nv′), ñv′′)

≤ λ +∠(φ(ñv, ñv′), ñv′′)+3µ

= Λ(ñv, ñv′ , ñv′′)+λ +3µ.

More complete versions of these proofs are in the appendix.
Assume that parameter α in Algorithm 1 is at least λ + 4µ . By

the first inequality, if N3(v) ⊆ Ai for some Ai, then Λ(ñv′′ , ñv′ , ñv) ≤
λ +4µ ≤ α for all neighbors v′ of v. Thus Algorithm 1 returns true.

On the other hand, assume that Algorithm 1 returns true and that
N3(v) intersects at most two regions. Let Ai be the region containing
v. Under the assumption that the boundary between these two regions
is planar, some v′ ∈ N(v) is in IV (Ai). If (v,v′,v′′) is a collinear se-
quence of adjacent vertices, then v′′ is also in IV (Ai). By the second
inequality, ∠(nv, ñv) ≤ Λ(ñv′′ , ñv′ , ñv)+ 3µ +λ ≤ α + 3µ +λ . Thus,
if Algorithm 1 returns true, then the angle between the approximate
gradient direction ñv and the true gradient direction nv is bounded by
α +3µ +λ .

So far we’ve made the assumption that the surface between two
smooth regions is planar. If we drop that assumption, then it is no
longer true that for every vertex v ∈ Ai some vertex in N(v) is in
IV (Ai). For instance, in the 2D example in Figure 6, no vertex in N(v)
lies in IV (A1). Without this property, we can no longer guarantee a
bound on ∠(nv, ñv) when Algorithm 1 returns true.

A1

A2

v

Fig. 6: Red curve is boundary separating regions A1 and A2. Green
vertex v is in A1 but no vertex of N(v) lies in IV (A1). Vertices in N(v)
are colored blue. Vertices in IV (A1) are colored yellow.

To handle curved boundaries of the Ai, we must modify our algo-
rithm to use vertices at edge distance 3 from v. We define φk(nv,nv′)
as the normal direction predicted by nv and nv′ at the vertex which is
edge distance k from nv′ .

φ0(n,n
′) = n′,

φ1(n,n
′) = φ(n,n′) = 2(n ·n′)n′−n,

φk(n,n
′) = φ(φk−2(n,n

′),φk−1(n,n
′)),

Λk(n,n
′,n′′) =∠(φk(n,n

′),n′′).

We replace φ in Algorithm 1 with φ2.

Input : Vertex v, Angle bound α .

1 foreach grid vertex v′ ∈ N(v) do

2 Let v′′,v′′′ ∈ N3(v) be the vertices such that (v,v′,v′′,v′′′) is
a collinear sequence of adjacent vertices;

3 if (∠(φ(ñv′′ , ñv′), ñv)> α) then return (false);
4 if (∠(φ2(ñv′′′ , ñv′′), ñv)> α) then return (false);

5 end
6 return (true)

Algorithm 2.

Let Ai be the smooth region containing vertex v. Let X = ∪A j
∂A j

be the union of all the boundaries of smooth regions A j. If there
is a sufficiently large ball containing v and not intersecting X , then
v′′,v′′′ ∈ IV (Ai) for some collinear sequence (v,v′,v′′,v′′′).

Proposition 2. Let Γ be a regular grid whose edges all have the same

length L. If some ball B of radius (5/2)
√

3L contains grid vertex
v ∈ Ai and does not intersect X , then there is a collinear sequence
(v,v′,v′′,v′′′) of adjacent grid vertices such that v′′ ∈ IV (Ai) and v′′′ ∈
IV (Ai).

To prove Proposition 2, we show that there B contains Nv(v
′′) and

Nv(v
′′′) for some collinear sequence (v,v′,v′′,v′′′). The proof is in the

appendix.

The following proposition bounds Λ2(ñv, ñv′ , ñv′′′) and ∠(nv′′′ , ñv′′′).

Proposition 3. Let (v,v′,v′′,v′′′) be a collinear sequence of adjacent
vertices contained in Ai for some smooth region Ai.

1. If v,v′,v′′,v′′′ ∈ IV (Ai), then
Λ2(ñv, ñv′ , ñv′′′)≤ Λ2(nv,nv′ ,nv′′′)+6µ ≤ 3λ +6µ .

2. If v,v′ ∈ IV (Ai), then
∠(nv′′′ , ñv′′′)≤ Λ(ñv, ñv′ , ñv′′′)+3λ +5µ .

Proofs of these relationships are in the appendix.

As in the discussion, of Algorithm 1, Property 3 can be used to
show that if N4(v)⊂ Ai for some Ai, then Algorithm 2 returns true. On
the other hand, assume Algorithm 2 returns true. By Proposition 2,
there is a collinear sequence of grid vertices (v,v′,v′′,v′′′) such that
v′′,v′′′ ∈ IV(Ai). By Proposition 3, the angle between the approximate
gradient direction ñv and the true gradient direction nv is bounded by
α +3λ +5µ .

DOESORTHMATCHA(v, α1, α2)

1 if (NO(v) = /0) then return (true);

2 foreach grid vertex v′ ∈ NO(v) do

3 Let v′′,v′′′ ∈ N3(v) be the vertices such that (v,v′,v′′,v′′′) is
a collinear sequence of adjacent vertices
flagMatch← false;

4 if (∠(ñv,φ(ñv′′ , ñv′))≤ α2) and
5 (∠(ñv,φ2(ñv′′′ , ñv′′))≤ α2) then flagMatch← true ;
6 if (∠(ñv, ñv′)≤ α1) and
7 (∠(ñv, ñv′′)≤ α1) then flagMatch← true ;
8 if (flagMatch = false) then return (false) ;

9 end
10 return (true)

Algorithm 3. Algorithm DOESORTHMATCHA.

DOESORTHMATCHB(v, α1)

1 foreach grid vertex v′ ∈ NO(v) do

2 if (v ∈ NO(v′)) then
3 if (∠(ñv, ñv′)≤ α1) then return (true);
4 end

5 end
6 return (false)

Algorithm 4. Algorithm DOESORTHMATCHB.

FINDRELIABLE(v, α1, α2)
/* α1 and α2 are angle bounds */

1 foreach grid vertex v′ ∈ NT
v do

2 Let v′′,v′′′ ∈ N3(v) be the vertices such that (v,v′,v′′,v′′′) is
a collinear sequence of adjacent vertices;

3 if (∠(ñv,φ(ñv′′ , ñv′))> α2) then return (false);
4 if (∠(ñv,φ2(ñv′′′ , ñv′′))> α2) then return (false);

5 end
6 if DOESORTHMATCHA (v, α1, α2) then return (true) ;
7 else if DOESORTHMATCHB (v, α1) then return (true);
8 else return (false);

Algorithm 5. Algorithm FINDRELIABLE

3.4 CT Data

Algorithm 2 has two problems when applied to CT data. First, in CT
data scalar values near gradient discontinuities are very unreliable. At
such vertices, the angle between the true gradient nv and the estimated
gradient direction ñv is also very unreliable. Thus, we cannot assume
that angle is bounded by a constant µ on vertices near gradient discon-
tinuities. Second, gradient magnitudes drop off quickly away from the
surface boundaries and gradient directions are quickly meaningless.
This is particularly true if the gradient direction is the z-direction and
the CT data is reconstructed in planar x-y slices. We address each of
these problems.

The first problem with CT data is that scalar values near gradient
discontinuities are very unreliable. At such vertices, the angle between
nv and ñv can be much greater than in the rest of the data set. Unfor-
tunately, gradients at vertices near gradient discontinuities are exactly
the gradients which we need to generate sharp features.

Gradients generated from scalar data rely upon the accuracy of the
scalar data. CT scanners do not measure scalar values directly at each

grid vertex. Instead, they measure the intensity of rays passing through
the scanned object. The resulting measurements are called projection
data. The projection data is transformed into scalar data by using a
Radon or similar transformation of by solving a large set of linear
equations. The resolution of the scalar data is usually set to equal the
resolution of the projection data.

The process of determining scalar values at grid vertices is provably
reliable in regions where field gradients vary slowly and continuously.
However, it is highly unreliable near discontinuities in the field gradi-
ents. The result is that scalar values at grid vertices adjacent to gradi-
ent discontinuities are highly unreliable and the angle between the true
gradient and the estimated gradient can be much larger than in the rest
of the data.

Fortunately, the scalar errors drop off quickly away from the gradi-
ent discontinuities. We found that scalar values at a grid vertex v was
reliable within an acceptable tolerance as long as no edge incident on
v intersected a gradient discontinuity. Equivalently, the scalar value
at v ∈ Ai was reliable as long as N(v) was a subset of Ai. Under this
assumption, if N2(v) is contained in some smooth region Ai, then the
scalar values at vertices in N(v) are close to their true values. This
implies that the angle between nv and ñv is small.

Let Ai be the smooth region containing grid vertex v. Assume that
the boundary of Ai is flat around v. We can no longer assume that
the angle between nv′ and ñv′ is small for some v′ ∈ N(v). However,
there is a collinear sequence (v,v′,v′′,v′′′) of adjacent vertices such
that N2(v

′′) and N2(v
′′′) are in Ai. Thus, ñv′′ and ñv′′′ are good esti-

mates of nv′′ and nv′′′ , respectively. By comparing ñv with the direction
φ2(ñv′′′ , ñv′′) predicted by ñv′′′ and ñv′′ , we can determine if ñv is a reli-
able gradient. Note that this exactly what Algorithm 2 does.

The argument above assumes the boundary of Ai is flat around v.
Without this assumption, we can no longer conclude that N2(v

′′) and
N2(v

′′′) are in Ai for some collinear sequence (v,v′,v′′,v′′′).
Assume that all grid edges have the same length L. Replace the

assumption that a scalar value at v ∈ Ai is reliable if N(v) ⊆ Ai by the
assumption that a scalar value at v is reliable if a ball B0.5L(v) of radius
0.5L around v is contained in Ai. Under this assumption, if B1.5L(v)
is contained in some smooth region Ai, then the scalar values at the
vertices N(v) are all close to their true values. This implies that the
angle between nv and ñv is small.

If B
′ is a sufficiently large ball containing v and Ai contains B

′,
then there is a collinear sequence (v,v′,v′′,v′′′) of adjacent grid vertices
such that Ai contains B1.5(v

′′) and B1.5(v
′′′). Thus, ñv′′ and ñv′′′ are

reliable gradients. Algorithm 2 determines if ñv is reliable from ñv′′

and ñv′′′ .
The second problem with CT data is that gradient magnitudes drop

off quickly away from the surface boundaries. To address this prob-
lem, we divide the vertex neighbors of v into two sets. Define the the
tangent neighbor set and the orthogonal neighbor set of v as:

NT (v) = {v′ ∈ N(v) : 20◦ ≤∠(ñv,(v
′−v))≤ 160◦.}

NO(v) = N(v)−NT
v

= {v′ ∈ N(v) : ∠(ñv,(v
′−v))< 20◦ or

∠(ñv,(v−v′))< 20◦.}

(v′−v) is the vector from v to v′. The orthogonal neighbor set may be
empty.

Assuming that ñv is relatively close to nv, vertices in NT (v) are near
the tangent plane at v and close to the isosurface through v. We han-
dle gradient directions at those vertices as in Algorithm 2. Vertices in
NO(v) are (relatively) far from the tangent plane and from the isosur-
face through v. Fortunately, the gradient directions at the vertices in
NO(v) are much more reliable than the gradient directions at vertices

in NT (v). Thus, we can use gradients at vertices in NO(v) to deter-
mine whether gradient ñv is reliable. We reduce the number of nearby
vertices whose gradient directions must match ñv in three ways.

First, we note that there is little curvature along the gradient direc-
tion in the scalar field represented by a CT scan. Thus, in addition to
the comparison of ñv and φ2(ñv′′′ , ñv′′), we can simply compare ñv and

ñv′′ . If angle ∠(ñv, ñv′′) is below some threshold α1, then ñv′′ can be a
guarantor of the reliability of ñv. (See Algorithm 3.)

Second, instead of comparing ñv and ñv′′ , we compare ñv to its im-
mediate neighbor ñv′ ∈ N(v) (Algorithm 4.) We still compare ñv with
vertices at edge distance 3 in the tangent directions. If some suffi-
ciently large ball contains v ∈ Ai and does not intersect X = ∪A j

∂A j,

then either there is a v′ ∈ NT (v) and collinear sequence (v,v′,v′′,v′′′)
where v′′,v′′′ ∈ IV (Ai) or there is a v′ ∈ NO(v) such that v′ ∈ IV (Ai).

Third, in Algorithm 4 we replace the requirement that gradient di-
rections of both vertices in NO(v) “match” ñv by a requirement that the

gradient direction of one vertex in NO(v) matches ñv. Let NO(v) =
{v′1,v′2}. We require that either the ∠(ñv, ñv′1

) or that ∠(ñv, ñv′2
) is

small. To make sure that we are only applying the single check to gra-
dients which truly point along an axis, we require also that ñv′1

or ñv′2
be close to the axis direction.

Algorithm 3 contains the check in both orthogonal directions. Al-
gorithm 4 contains the additional check in one orthogonal direction.
Because of the check v ∈ NO(v′) in line 2 of Algorithm 4, there are
cases where Algorithm 3 may return true while Algorithm 4 returns
false. Algorithm 5 is the full algorithm.

Algorithm 5 loosens the conditions under which a gradient is iden-
tified as reliable. By Proposition 3, if N4(v) ⊂ Ai for some Ai, then
Algorithm 5 returns true. What about the converse, i.e. if Algorithm 5
returns true?

We can show that for each v∈Ai, there is either a collinear sequence
of grid vertices (v,v′,v′′,v′′′) such that v′ ∈NT (v) and v′′,v′′′ ∈ IV (Ai)
or there is a vertex v′ ∈ NO(v) such that v′ ∈ IV (Ai). (See Proposi-
tion 9 in the appendix.) In the first case, the angle between the ap-
proximate gradient direction ñv and the true gradient direction nv is
bounded by α2 + 3λ + 5µ . In the second case, the angle between
ñv and nv is bounded by ∠(ñv, ñv′)+ κ + µ where κ is a bound on
curvature. (See Prop 6 in the appendix.) If ∠(ñv, ñv′) ≤ α1, then
∠(ñv,nv) ≤ α + κ + µ . However, Algorithm DOESORTHMATCHB
(Algorithm 4), only guarantees that ∠(ñv, ñw) ≤ α1 for one vertex

w ∈ NO(v). What if w is not the vertex of NO(v) which is in IV (Ai)?
We think that if ∠(ñv, ñw) ≤ α1 for one w ∈ NO(v) and

∠(ñv,φ2(ñw′′′ , ñw′′)) ≤ α2 for all collinear sequences (v,w′,w′′,w′′′)
where w′ ∈ NT (v), then ∠(ñv,nv) is small. However, we don’t yet
have a proof.

EXTENDRELIABLE(α2, numIter)
1 for k← 1 to numIter do
2 S← /0;
3 foreach vertex v do

4 foreach vertex v′ ∈ NT (v) do

5 Let v′′,v′′′ ∈ N3(v) be the vertices such that

(v,v′,v′′,v′′′) is a collinear sequence of adjacent
vertices;

6 if (v′, v′′ and v′′′ are marked reliable) then
7 if (∠(ñv,φ(ñv′′ , ñv′))< α2) and

(∠(ñv,φ2(ñv′′′ , ñv′′))< α2) then
8 S← S∪{v};
9 end

10 end

11 end

12 end
13 Mark each vertex v ∈ S as reliable;

14 end

Algorithm 6. Algorithm EXTENDRELIABLE

3.5 Extending Reliable Gradients

Once we’ve identified reliable gradients by Algorithm 5, we can
use those reliable gradients to identify vertex neighbors with reli-
able gradients. By Proposition 3, if v′′ and v′′′ are reliable and
∠(φ2(ñv′′′ , ñv′′), ñv) is small, then ∠(ñv,nv) is small. This is particu-
larly helpful near gradient discontinuities, where Algorithm 5 will fail

to identify correct gradients as reliable because some of their neigh-
bors are incorrect.

Pseudo code for Algorithm EXTENDRELIABLE is given in Algo-
rithm 6. Because the initial set of reliable gradients is computed If
the initial set of reliable gradients is computed using (v,v′,v′′,v′′′), the
value of numIter is set to 2.

RELIGRAD(α1, α2, numIter)
1 foreach grid vertex v do
2 FINDRELIABLE(v,α1,α2)
3 end
4 EXTENDRELIABLE(α2, numIter)

Algorithm 7. Algorithm RELIGRAD

3.6 Algorithm RELIGRAD

Our final algorithm, named RELIGRAD, applies Algorithm FIND-
RELIABLE to each vertex and then calls EXTENDRELIABLE. Pseudo
code is in Algorithm 7.

4 SELECTING GRADIENTS

Once we have identified reliable gradients, we use those gradients to
compute planes tangent to the isosurface in the neighborhood of each
cube c. Algorithm MergeSharp in [1] uses gradients at the vertices of
c and cubes adjacent to c. Unfortunately, if cube c intersects a gra-
dient discontinuity, this neighborhood may contain no or few reliable
gradients. We can only guarantee that a vertex v ∈ Ai will pass the an-
gle test in Step 3 of FINDRELIABLE (Algorithm 5), if N(v′′′)⊆ Ai for

each collinear sequence (v,v′,v′′,v′′′) where v′ ∈ NT (v). Thus, vertex
v should be at least four edges from the boundary of Ai in each of the
tangent directions.

Algorithm EXTENDRELIABLE (Algorithm 6) increases the number
of reliable gradients close to the gradient discontinuities. On the other
hand, if a cube contains an isosurface corner, then the distance to reli-
able gradients may be even larger than four. Thus, we look for reliable
gradients in a 9× 9× 9 region around cube c or distance 4 from the
vertices of c.

We are interested only in selecting gradients which determine iso-
surface tangent planes near c. We use three tests on vertices in the
9× 9× 9 region to select such gradients. First, we are only inter-
ested in vertices which are near the isosurface. Thus, we only choose
vertices from edges where one endpoint has scalar value below the
isovalue and one endpoint has scalar value at or above the isovalue.
Second, we are only interested in vertices whose gradients generate
planes which are close to c. Let hv be the tangent plane generated by
the gradient at vertex v. We construct a cube c′ of size 1.5×1.5×1.5
centered at c and only choose a vertex v if the plane hv intersects c′.
(We use a cube c′ which is slightly larger than c because noise and
approximation errors can cause a tangent plane hv to slightly miss c.)

Finally, we only want to choose a vertex which is far from c if a
closer vertex is not chosen. Let Q be the set of vertices which do NOT
have reliable gradients and are in the 9× 9× 9 subgrid centered at c.
Let Qc be the vertices of c. Let Gc be the graph whose vertices are
Q∪Qc and whose edges are (u,v) where (u,v) is a grid edge. We
find the connected component G′ of Gc containing Qc. A grid vertex
u 6∈ V (G′) is on the boundary of G′ if (u,v) is a grid edge and v is
in V (G′). We only a choose a vertex if it is in Qc or if it is on the
boundary of G′.

Applying the three tests gives a set of vertices and their reliable
gradients around cube c. As described in the next section, we use these
gradients to determine the locations of isosurface vertices on sharp
features.

5 COMPUTING POINTS ON SHARP FEATURES

Once we have reliable gradients, we can use those gradients to com-
pute the location of isosurface vertices on sharp edges and corners.
The gradients can also be used to compute the location of isosurface

vertices on smooth regions of the isosurface. The algorithm for com-
puting isosurface vertices from gradients is given in [1]. It is a modifi-
cation of Lindstrom’s algorithm in [16], with surface normals replaced
by gradients.

Let gi and si be the gradient and scalar value, respectively, at point
pi. Let σ be the isovalue. The set hi = {x : gi · (x− pi)+ si = σ} is a
plane in 3D. Equivalently, plane hi is {x : gi · x = σ − (gi · pi + si)}.

Given a set {(pi,gi,si)} of k points and their associated gradients
and scalar values, define a matrix M whose i’th row is gi/|gi| and a
column vector b whose i’th element is (σ − (gi · pi + si))/|gi|. (We
divide by |gi| so that all normal directions have equal weight.) This
gives a set of k equations Mx = b where M is a k× 3 matrix and x

and b are column vectors of length k. In general, this system is over-
determined so we wish to find the least squares solution.

We use the singular valued decomposition (SVD) of MT M to find
an approximate solution x∗ to Mx = b. We use the number of large sin-
gular values of A to determine whether x∗ is on a sharp corner, a sharp
edge or a smooth region on the surface. Details are in Appendix B.

6 SPARSIFYING ISOSURFACE VERTICES

The algorithm in the previous section produces one isosurface vertex
for each grid cube intersected by the isosurface. Points on sharp edges
and corners are identified as such by the algorithm. However, isosur-
face vertices on sharp features may lie very close together. If those
vertices are used for mesh generation or are joined together to form
sharp curves, they need to sparsified so there is spacing between them.
Fortunately, the grid structure makes this easy. We use a procedure
from [1] to sparsify the set of isosurface vertices on sharp features.

Let S be the list of isosurface vertices on sharp features sorted by
increasing distance from the grid cube centers. Select the first vertex
v in S. Let c be the cube containing v. Delete any vertices of S which
lie in c or in any of the 26 grid cubes which share a vertex with c.
Repeat until S contains no more vertices. If all grid edges have length
L, then the resulting isosurface vertices are never closer than distance
L. Figure 11(b) shows the original sharp edge vertices and figure 11(c)
shows the sparse set for an edge in a real CT dataset.

7 EXPERIMENTAL RESULTS

7.1 Synthetic datasets

Name ASize Spacing ARotation

Cube 100 1 1 1 1 1 1
Annulus 100 1 1 1 1 0 0
TwoCube 150 0.2 0.2 0.4 1.732 0.577 0
Flange 150 0.2 0.2 0.4 1.732 0.577 0

Smooth-tip Cone 100 1 1 1 -1 1 1
Cannon 100 1 1 1 -1 1 1

Table 1: Synthetic dataset information, the size of the datasets is
ASize3. Each data set is centrally symmetric around the axis given by
ARotation. Faces of the Cube and TwoCube datasets are orthogonal or
parallel to the axis given by ARotation.

We tested our algorithm on a large number of synthetic datasets
with varying spacings and axis rotations. Table 1 and Figure 1 show
six representative elements.

Description: The Cube dataset samples a scalar field f : : R3 →
R, where f (p) is the minimum of the L∞ distance to a single point.
Tilted cubes are made from orthogonal frames other than the standard
x,y and z axis. The isosurfaces in the TwoCube dataset contain sharp
corners and sharp saddle points. The Annulus dataset is minimum of
the distance to a cylinder and the distance to a plane orthogonal to
the cylinder. By adding constants to these distances, we can create
annulli with arbitrary heights and radii. The Flange datasets is the
minimum of two Annulus data sets, one with flat, wide annulii and one
with tall thin annulii. Isosurfaces in these datasets are flanges with
sharp concave and convex edges. The Cone data set is the minimum
of the distance to a cone and to an orthogonal plane. The distance to

(a) Correct Gradients (b) Edge dist. 1 predic-

tions

(c) Edge dist. 2 predic-

tions

(d) Central Difference (e) ReliGrad

Fig. 7: Gradient results on a part of the Annulus dataset (Figure 1(c)).
(a) Correct gradients. (b) Gradients marked correct by Algorithm 1
which uses nv′′ and nv′ to predict nv. (c) Gradients marked correct by
Algorithm 2 which uses nv′′′ , nv′′ , and nv′ to predict nv. (d) Central
difference gradients. The blue inset on the right contains a magnified
view. (e) Gradients marked correct by RELIGRAD. The cyan inset
shows a magnified view.

(a) Correct (b) CDiff (c) FindReliable (d) Religrad

Fig. 8: Cannon dataset gradients (Curved edge, non 90◦ angles). (a)
correct gradients, (b) central difference gradients, (c) gradients marked
correct by FindReliable. (d) gradients at grid vertices marked correct
by RELIGRAD. Inaccurate CDiff gradients Figure(b) across the dis-
continuity are not marked correct, hence not shown.

the cone near the tip is the distance to the point at the tip of the cone.
The isosurface around the tip is part of a sphere. The Cone dataset has
acute dihedral angles of 60◦. The Cannon dataset is the combination
of the distance to a cone, the distance to an orthogonal plane and the
distance to a point. The Cannon dataset has obtuse dihedral angles of
120◦ . Flange and TwoCube are challenging datasets, the spacings on
these are not uniform and they are not axis aligned. Cone and Cannon
are also not axis aligned (Table1).

Reliable Gradients: Figure 7 shows gradients at grid vertices for
grid cubes which intersect the isosurface on a zoomed in section of
the Annulus dataset. To get the colormap for the gradient vectors, we
projected all gradient vectors on to the XY plane, the angle of the re-
sulting vector to the X-Axis is mapped between red-green. Gradients
close to X-Axis are red, those perpendicular are green. Figure 7(a)
shows the known correct gradients at all the grid vertices. Figure 7(d),
shows the central difference (CDiff) gradients at all the grid vertices.
The blue inset shows a magnified view: CDiff gradients are inaccu-
rate along discontinuities. Figure 7(b) shows gradients only at vertices
marked correct by Algorithm 1, which uses nv′′ and nv′ to predict nv.
Figure 7(c) shows results from Algorithm 2, which uses nv′′′ , nv′′ , and
nv′ to predict nv. Figure 7(e) shows gradients marked reliable by RE-
LIGRAD, the cyan inset shows a close-up, the inaccurate gradients are
marked unreliable by RELIGRAD and not shown.

Figure 8 shows the gradients around the edge of the Cannon dataset
(Figure 8(a) red rectangle shows the location). The dataset is not axis-
parallel, the dihedral angle around the curved edge is 120◦ . Figure 8(a)
shows known correct gradients at grid vertices which are intersected
by the isosurface. Figure 8(b) shows the central difference gradients,
at grid vertices of the intersected cubes. Note that along the discon-

(a) (b) (c) (d)

Fig. 9: Effect of uniform noise on cube gradients. Uniform 0.1 noise
was added to vertex scalars. (a) central difference gradients on the
original cube, (b) central difference gradients computed on the noisy
cube. (c) gradients marked correct by RELIGRAD on the original
cube. (d) gradients at the vertices marked correct by RELIGRAD on
the noisy cube.

tinuity the central difference gradients are inaccurate compared to the
correct gradients (Figure 8(a)). Figure 8(c) shows gradients at grid
vertices marked reliable by FINDRELIABLE. Figure 8(d) shows gra-
dients marked correct by RELIGRAD. Figure 9 shows the gradients
at corner of the cube dataset. Figure 9(a) shows the central difference
gradients. As expected, the gradients across the discontinuity are er-
roneous. Figure 9(c) shows gradients at grid vertices marked correct
by RELIGRAD. The problems of central difference gradients becomes
compounded if the scalar values are noisy. We added 0.1 uniform
noise to grid vertex scalars of cube. Figure 9(b) shows the central dif-
ference gradients computed from the noisy scalars, Figure 9(d) shows
the result from RELIGRAD.

7.2 Quantitative Analysis

For the synthetic tests cases we know the correct gradients at each grid
vertex. Consequently, we can quantitatively compare them with reli-
able gradients results. Table 2 shows the maximum angle difference

Dataset CDiff Algo 1 Algo 2
Find
Reliable

Reli
Grad

Cube 48.3 0.7 0.0 0.0 0.0
Annulus 44.03 2.79 0.02 0.02 0.02
Flange 45.4 2.1 0.04 0.04 9.8

TwoCube 61.86 6.1 0.0 0.0 19.8
Cannon 29.7 12.3 0.5 0.5 0.5
Cone 57.5 1.6 1.11 1.11 13.1

Table 2: Maximum Angle difference compared to correct gradients
in◦s. α ,α2 is set to 20◦. A large number of vertices with high angle
difference to the correct gradients, means erroneous gradients are be-
ing marked correct. Low angles mean the gradients marked reliable
are very close to the correct gradient which is desired outcome.

between the known correct gradients and those computed as reliable
gradients at each grid vertex v. Intuitively this captures false positives.
Large maximum angle would mean poor gradients are being marked
as correct. Algorithm 2 which uses vertices at edge distance 3 for nv

has lower angles than Algorithm 1 for all the test cases thus perform-
ing better. Figure 7(b) (Algorithm 1) showed one particular example
where gradients near the discontinuity were marked correct compared
to (Algorithm 2) Figure 7(c). Central difference as expected generates
erroneous gradients near the edges. For the synthetic datasets, FIND-
RELIABLE, performs similarly to Algorithm 2. RELIGRAD which ex-
tends the FINDRELIABLE gradients by using Algorithm 6 generates
larger maximum angle than FINDRELIABLE.

Next we look at the maximum of the L1 distances from each vertex
v to the closest grid vertex with a reliable gradient. Table 3 shows the
results. This test intuitively captures false negatives. Large distances
mean more vertices with reliable gradients are being marked unreli-
able. It is desirable for algorithms which use the reliable gradients
results, that the L1 distance of an unreliable vertex v to its closest re-
liable vertex v2 be as small as possible. For Annulus there is a grid
vertex at maximum L1 edge distance of 4 from each v when using Al-
gorithm 2. For Cube there is a vertex with correct gradient within L1

Dataset Algorithm 1 Algorithm 2 RELIGRAD

Annulus 3 4 2
Cube 3 4 3

Flange 4 6 4
Cannon 2 4 2

Cone 3 4 2
TwoCube 4 5 3

Table 3: Maximum of L1 distances to closest grid vertices with exact
gradients.

edge distance 4 from each v when using Algorithm 2. When we extend
the reliable gradients and use RELIGRAD, the maximum L1 distance
decreases to 2 and 3 respectively. Experimentally we found that the
distances for Cube is maximum near the corners. (See Figure 9(c).)

Noise: To test the effect of noise on RELIGRAD, uniform noise
was added to the datasets. Table 4 shows the results. With 0.1 uniform
noise RELIGRAD performs well. The maximum L1 distance to reliable
gradients in the Cube dataset is 5. This distance was achieved at a
vertex near the isosurface corner (Figure 9(d).) With a high uniform
noise of 0.2 and α2 set to 30 degrees, RELIGRAD performs reasonably
well.

dataset noise
α2

in ◦
Max
AngleDiff in ◦

Dist
2Grad

cube 0.1 20 7.5 5

annulus 0.1 20 8.1 3

cone 0.1 20 12.7 3

cube 0.2 30 12.8 7

annulus 0.2 30 14.1 5

cone 0.2 30 19 6

Table 4: Results after adding 0.1 and 0.2 uniform noise to the datasets
using RELIGRAD. To handle 0.2 noise we set α2 to be 30◦s. MaxAn-
gleDiff, measures the maximum angle difference between known cor-
rect gradients and those marked correct by RELIGRAD. Dist2Grad
measures the maximum of the l1 distance of the unreliable vertices to
vertices marked correct by RELIGRAD.

7.3 Industrial CT data

We also evaluate our algorithm on a number of industrial CT data sets
(table 5).

Description: The CMM dataset is a CT of solid alumimum shape
used to calibrate CT devices. CMM stands for “coordinate measuring
machine”. Figure 15(b) shows an isosurface from this data set. Fig-
ure 15(a) shows a single slice along the XY plane. The Engine Cylin-
der dataset is the CT of two motorcycle engine cylinders. Figure 13(a)
shows a single slice in an XY plane. The slice exhibits streaking ar-
tifacts caused by beam hardening. The Intake dataset is a CT of a
motorcycle engine intake valve. Figure 17(b) shows an isosurface of
dataset, along with a single slice in an XY plane. The Socket dataset is
a CT of 440 volt converter. Figure 16(c) shows a single slice in the YZ
plane using the hsv color scale. Table 5 provides the size and spacing
info on all these data sets.

Reliable Gradients Figure 10 shows the central difference gradi-
ents at all grid vertex location around an edge of the engine cylinder

Name Axis Size Spacing

CMM 500 500 196 0.2 0.2 0.31
Engine cylinder 201 130 63 0.27 0.27 0.68

Intake 150 220 201 0.27 0.27 0.68
Socket 411 431 61 1 1 1

Table 5: CT dataset information

Fig. 10: All the central difference gradients on grid vertices of a small
portion of the engine cylinder dataset (Figure 3 shows the same re-
gions, but only the gradients at vertices intersected by isosurface). The
gradient magnitudes are proportional to length of the vectors. On the
right we see a magnified section of the cyan rectangle. The grid mag-
nitudes drop off quickly, and the gradient directions become meaning-
less especially along the Z-axis.

(a) (b) (c)

Fig. 11: (a) Sharp mesh of a part of (Figure 13). (b) All the sharp edge
vertices generated. (c) Sparse sharp vertex set

dataset. The length of the vectors are proportional to the magnitude of
the gradients. Note that the gradients quickly fall off away from the
isosurface. The problem is more severe along the Z-Axis. The mag-
nified portion shows that there are about two good columns of gra-
dients after which the gradient magnitude becomes too small and the
gradient directions meaningless. Figure 12(a), 12(b) show the results
of Algorithm 1 and Algorithm 2 respectively. Unlike the simulated
datasets, almost no gradients along the Z axis are marked as reliable.
This shows the need for dividing the vertex set into tangential and or-
thogonal neighbor sets. This lead us to Algorithm 7. Figure 12(c)
shows the corresponding gradients of the FINDRELIABLE technique.
Figure 12(d) shows the RELIGRAD gradients. For reference, Figure 3
shows the Central Difference gradients.

7.4 Visualization

7.4.1 Sparse feature point detection

From the reliable gradients, we can select a subset in the neighbor-
hood of each cube (Section 4), compute points on the sharp features
(Section 5), and select a well-spaced subset of those points (Section 6).

Figure 11(b) shows the points on a portion of the engine cylinder

(a) Algorithm 1 (b) Algorithm 2 (c) FindReliable (d) ReliGrad

Fig. 12: The gradients generated on a portion of the engine cylinder

dataset. The red rectangle shows the size of a grid cube with spacing
(0.27, 0.27, 0.68). (a) Gradients marked reliable by Algorithm 1. (b)
Gradients marked reliable by Algorithm 2. (c) Gradients marked reli-
able by FINDRELIABLE (Algorithm 5). (d) Gradients marked reliable
by RELIGRAD.

(a) Single image slice,

original machine part

(b) Sharp Isosurface (c) Sparse feature

points

Fig. 13: Engine Cylinder dataset. (a) a slice of the original CT image,
note the streaking artifacts introduced during the scanning process.
The inset shows the original machine part. Figure (b), (c), shows the
sharp mesh, and the extracted sparse feature points.

(a) Annulus (b) Twocube

Fig. 14: Integrating results into ParaView [5]. Volume rendering of the
Annulus and TwoCube dataset, overlayed with sparse feature skeleton.

dataset. Figure 11(c) shows a well-spaced subset of those points.

7.4.2 Point Skeleton Visualization

The sparse feature vertices are used to create a sharp feature point
skeleton. The point set skeleton is visualized for the synthetic dataset
in Figure 1. The number of large Eigenvalues determines if the sharp
feature is on an edge or on a corner. Points on the edges are marked in
green and corner points in red. The skeleton is correctly extracted on
challenging non-axis aligned datasets. We also do well on acute and
obtuse angles (Figure 1(e), 1(d)).

Figure 13(c) shows the extracted sparse point skeleton of a part of
the engine cylinder dataset. Figure 15(c) shows the point skeleton the
CMM dataset. Figure 16(b) shows the point skeleton of the socket
dataset.

Apart from direct point visualization, The extracted feature points
can be quickly integrated into commonly used frameworks. For exam-
ple, Figure 14(a), 14(b) shows the volume rendering of the datasets us-
ing ParaView [5], overlay-ed with the detected edge and corner points.
The simple addition of the edge points makes the rendering more com-
prehensible.

7.5 Isosurface Reconstruction

The point skeleton generated by our algorithm can be input to mesh
generation algorithms to construct an isosurface mesh. All the meshes
in Figure 1 are generated using MERGESHARP applied to the sharp
points from our algorithm. Figure 13b shows the extracted isosur-
face of a part of the engine cylinder dataset. Figure 15(b) shows the

(a) Single XY slice, hsv

color scale. Intensity

range is 0-41000

(b) MergeSharp Sur-

face

(c) Close Up of red

square

Fig. 15: CMM dataset, (a) single slice XY plane. (b) MergeSharp iso-
surface. (c) magnified red rectangle. Table 5 provides size and spacing.

(a) Socket (b) Socket Close-up (c) XY Slice

Fig. 16: (a) sharp mesh of a part of the socket dataset. (b) Close up.
Corners are marked in red, sparse selected edge vertices are marked in
green. (c) XY slice (hsv color scale, ParaView).

isosurface generated from the CMM data set. Figure 15(c) shows
close up of the red rectangle in Figure 15b. The corner vertices are
marked in red and the sparse edge vertices are marked in green. Fig-
ure 16(a), 16(b) shows an extracted isosurface of the socket dataset.
Figure 17(a) shows a MERGESHARP extracted mesh along with the
sparse feature point skeleton of the intake dataset.

The algorithm, WeightedCocone, by Dey et al. [9] constructs a sur-
face mesh from a point cloud which includes as input an identified set
of points on sharp features. We applied WeightedCocone on the point
skeleton from the flange dataset. We also supplied sample points on
the smooth parts of the surface. Figure 18(a) shows the sparse point
skeleton and the resulting surface. Other techniques which take as
input feature curves/point can also potentially use our results.

7.6 Parameters

Algorithm RELIGRAD has three parameters. Among these α2 is the
major parameter. α2 is a bound on the error in our prediction of a gra-
dient at a grid vertex against the actual gradient at the vertex location.
This includes the inherent noise in the data and the change in curva-
ture. Table 6 shows the effect of changing α2 on maxAngleDiff and

α2

in ◦
Flange TwoCube
MaxAngleDiff
in ◦s

Dist
2Grad

MaxAngleDiffin ◦s Dist
2Grad

5 4.11 5 3.3 5

10 9.8 5 8.0 5

15 14.2 4 14.4 4

20 19.7 4 19.2 3

25 21.9 4 37.3 3

30 25.0 4 73.1 3

Table 6: Effect of changing parameter α2 in RELIGRAD.

Dist2Grad on the flange and TwoCube dataset. As expected, the maxi-
mum angle difference to the known correct gradients increases with in-
creasing α2. While the maximum angle is 73.1 degrees, for TwoCube
with α2 set to 30 degrees, there were only 2 vertices with angle greater
than 30 degrees. The MERGESHARP reconstruction showed no visible
errors. α1 decides if gradients at two vertices agree with each other.
This is a much tighter threshold. For all our experiments this was set
to 5◦s. We also always fixed the numIter, which decides how many
times the reliable gradients are extended to 2, for all our tests. The
time to run the algorithm on all the datasets is in seconds.

8 CONCLUSION

We showed that sharp features can be extracted directly from industrial
CT scalar data, without extra information. This is a major improve-
ment over previous algorithms which require exact surface normals
or gradients. We stress on this being a complete framework, start-
ing directly from the CT scan, to constructing isosurface meshes with
good representation of sharp edges and corners. Figure 18(b) shows
a 3D printing of a part of the cylinder engine dataset from the mesh
extracted in Figure 13(b).

(a) intake valve (b) Slice (c) Context

Fig. 17: (a) sharp surface and point skeleton of the socket dataset. (b)
a single slice of the YZ axis using the hsv color scale. (c) the slice
along with the dataset, to provide context.

(a) (b)

Fig. 18: 18(a) shows the result of SingularCocone using the sparse
selected vertices as input and the corresponding output mesh on the
Flange dataset. Figure 18(b) shows a 3D print of Figure 13(b).

REFERENCES

[1] A.Bhattacharya, R.Wenger. Constructing isosurfaces with sharp edges

and corners using cube merging. Computer Graphics Forum, 32:11–20,

2013.

[2] U. Alim, T. Moller, and L. Condat. Gradient estimation revitalized. IEEE

Transactions on Visualization and Computer Graphics, 16(6):1495–

1504, Nov. 2010.

[3] K. Ashida and N. I. Badler. Feature preserving manifold mesh from an

octree. In Proceedings of the Eighth ACM Symposium on Solid Modeling

and Applications, pages 292–297. ACM Press, 2003.

[4] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or. L 1-sparse reconstruc-

tion of sharp point set surfaces. ACM Transactions on Graphics (TOG),

29(5):135, 2010.

[5] U. Ayachit. The ParaView Guide: A Parallel Visualization Application.

Kitware Clifton Park, NY, 2015.

[6] C. L. Bajaj and G. Xu. Anisotropic diffusion of surfaces and functions on

surfaces. ACM Trans. Graph., 22:4–32, January 2003.

[7] E. W. Cheney and D. R. Kincaid. Numerical Mathematics and Comput-

ing. Brooks/Cole Publishing Co., Pacific Grove, CA, USA, 2007.

[8] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffu-

sion in surface processing. In Proc. of IEEE Visualization 2000 (VIS’00),

pages 397–405, Los Alamitos, CA, USA, 2000. IEEE Computer Society

Press.

[9] T. K. Dey, X. Ge, Q. Que, I. Safa, L. Wang, and Y. Wang. Feature-

preserving reconstruction of singular surfaces. Comp. Graph. Forum,

31(5):1787–1796, Aug. 2012.

[10] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares

fitting with sharp features. ACM Trans. Graph., 24:544–552, July 2005.

[11] A. Greß and R. Klein. Efficient representation and extraction of 2-

manifold isosurfaces using kd-trees. Graphical Models, 66(6):370–397,

2004.

[12] C. Ho, F. Wu, B. Chen, and M. Ouhyoung. Cubical marching squares:

Adaptive feature preserving surface extraction from volume data. Com-

puter Graphics Forum, 24:2005, 2005.

[13] Z. Hossain, U. R. Alim, and T. Moller. Toward high-quality gradient

estimation on regular lattices. IEEE Transactions on Visualization and

Computer Graphics, 17(4):426–439, 2011.

[14] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite

data. ACM Transactions on Graphics, 21(3):339–346, 2002.

[15] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sen-

sitive surface extraction from volume data. In Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 2001, pages 57–66. ACM Press, 2001.

[16] P. Lindstrom. Out-of-core simplification of large polygonal models.

In Proceedings of the 27th Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH 2000, pages 259–262. ACM

Press/Addison-Wesley Publishing Co., 2000.

[17] J. Manson and S. Schaefer. Isosurfaces over simplicial partitions of mul-

tiresolution grids. Computer Graphics Forum, 29(2):377–385, 2010.

[18] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A comparison of

normal estimation schemes. In Proceedings of the 8th conference on Vi-

sualization ’97, VIS ’97, pages 19–ff., Los Alamitos, CA, USA, 1997.

IEEE Computer Society Press.

[19] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature preserving point

set surfaces based on non-linear kernel regression. In Computer Graphics

Forum, volume 28, pages 493–501. Wiley Online Library, 2009.

[20] N. Salman, M. Yvinec, and Q. Merigot. Feature preserving mesh genera-

tion from 3d point clouds. Computer Graphics Forum, 29(5):1623–1632,

2010.

[21] S. Schaefer and J. Warren. Dual contouring: The secret sauce. Technical

Report TR 02-408, Dept. of Computer Science, Rice University, 2002.

[22] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of

dual grids. In Proceedings of the Computer Graphics and Applications,

12th Pacific Conference, pages 70–76. IEEE Computer Society, 2004.

[23] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface

smoothing via anisotropic diffusion of normals. In Proceedings of the

conference on Visualization ’02, VIS ’02, pages 125–132, Washington,

DC, USA, 2002. IEEE Computer Society.

[24] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface

processing via normal maps. ACM Trans. Graph., 22(4):1012–1033, Oct.

2003.

[25] T. Tasdizen and R. T. Whitaker. Anisotropic diffusion of surface normals

for feature preserving surface reconstruction. In 4th International Confer-

ence on 3D Digital Imaging and Modeling (3DIM 2003), pages 353–360,

2003.

[26] G. Varadhan, S. Krishnan, Y. J. Kim, and D. Manocha. Feature-sensitive

subdivision and isosurface reconstruction. In Proceedings of IEEE Visu-

alization 2003, pages 99–106. IEEE Computer Society, 2003.

[27] N. Zhang, W. Hong, and A. Kaufman. Dual contouring with topology-

preserving simplification using enhanced cell representation. In Proceed-

ings of IEEE Visualization 2004, pages 505–512. IEEE Computer Soci-

ety, 2004.

n

n′
n′′

φ(n,n′)
φ(n′′,n′)

∆1 ∆2

∆′′1

∆′′2

O

n n′

ñ

ñ′

φ(n,n′)

φ(ñ,n′)

φ(n, ñ′)

O

L

(a) (b)

Fig. 19: (a) Triangles ∆1, ∆2, ∆′′1 and ∆′′2 . (b) Rotating n and ñ′ around
line L.

A PROOFS

A.1 Angle Lemmas

Let n and n′ be unit vectors in R
3. Recall the following definitions,

from Section 3.3.

Orth(n,n′) = n− (n ·n′)n′

φ(n,n′) = n−2×Orth(n,n′) = 2(n ·n′)n′−n.

Vector Orth(n,n′) is the component of n orthogonal to n. Vector
φ(n,n′) is the vector predicted by n and n′.

cos(∠(φ(n,n′),n′)) = (2(n ·n′)n′−n) ·n′

= 2(n ·n′)(n′ ·n′)− (n ·n′)
= 2(n ·n′)− (n ·n′) (since n′ is a unit vector)

= n ·n′ = cos(∠(n,n′)).

Thus, ∠(φ(n,n′),n′) equals ∠(n,n′).

Lemma 4. If n, n′ and n′′ are unit vectors, then

1. Λ(n,n′,n′′) = Λ(n′′,n′,n), and

2. ∠(n,n′′) = ∠(φ(n,n′),φ(n′′,n′)).

Proof. Let O be the origin (0,0,0). Let ∆1, ∆2, ∆′′1 and
∆′′2 be the triangles ∆(O,n′,n), ∆(O,n′,φ(n,n′)), ∆(O,n′,n′′) and
∆(O,n′,φ(n′′,n′)), respectively. (See Figure 19.(a).)

As noted above, ∠(n,n′) equals ∠(φ(n,n′),n′). Similarly, ∠(n′,n′′)
equals ∠(φ(n′′,n′),n′). Since n, n′ and φ(n,n′) have the same (unit)
length, triangles ∆1 and ∆2 are congruent. Since n′, n′′ and φ(n′′,n′)
have the same (unit) length, triangles ∆′′1 and ∆′′2 are congruent.

Since n, n′ and φ(n,n′) are co-planar and n′′, n′ and φ(n′′,n′) are co-
planar, the dihedral angles between ∆1 and ∆′′2 equals the dihedral an-
gle between ∆2 and ∆′′1 . Thus, tetrahedron (O,n,n′,φ(n′′,n′)) is con-
gruent to tetrahedron (O,n′,n′′,φ(n,n′)) and ∠(n,φ(n′′,n′)) equals
∠(n′′,φ(n,n′)) and ∠(n,n′′) equals ∠(φ(n,n′),φ(n′′,n′)).

The following corollary describes how ∠(φ(n,n′)) and Λ(n,n′,n′′)
change when unit vector n is replaced by ñ.

Corollary 4.1. If n, ñ, n′ and n′′ are unit vectors and ∠(n, ñ) ≤ µ ,
then

1. ∠(φ(n,n′),φ(ñ,n′))≤ µ;

2. |Λ(n,n′,n′′)−Λ(ñ,n′,n′′)| ≤ µ .

Proof. By Lemma 4, angle ∠(n, ñ) equals ∠(φ(n,n′),φ(ñ,n′)). (Let
n′′ represent ñ in Lemma 4.) Thus,

∠(φ(n,n′),φ(ñ,n′)) =∠(n, ñ)≤ µ, and

|Λ(n,n′,n′′)−Λ(ñ,n′,n′′)|= |∠(φ(n,n′),n′′)−∠(φ(ñ,n′),n′′)|
≤∠(φ(n,n′),φ(ñ,n′))≤ µ.

In the following corollary, vector n′ is replaced by ñ′. The bounds
are slightly different than the bounds in the previous corollary.

Corollary 4.2. If n, n′, ñ′, n′′ and n′′′ are unit vectors and ∠(n′, ñ′)≤
µ and ∠(φ(n,n′),n′′)≤ γ , then

1. ∠(φ(n,n′),φ(n, ñ′))≤ 2µ;

2. |Λ(n,n′,n′′)−Λ(n, ñ′,n′′)| ≤ 2µ;

3. |Λ(n′,n′′,n′′′)−Λ(n′,φ(n,n′),n′′′)≤ 2γ .

Proof. Let L be the line through the origin orthogonal to n′ and ñ′.
Rotating ñ′ and n by angle ∠(ñ′,n′) around L maps ñ′ to n′ and n
to a unit vector ñ where ∠(n, ñ) ≤ µ (Figure 19.(b).) By Corol-
lary 4.1, ∠(φ(n,n′),φ(ñ,n′))≤ µ . Rotating ñ, n′ and φ(ñ,n′) by angle
−∠(ñ′,n′) around L maps ñ back to n, vector n′ to ñ′ and φ(ñ,n′)
to φ(n, ñ′). Since | −∠(ñ′,n′)| ≤ µ , angle ∠(φ(ñ,n′),φ(n, ñ′)) ≤ µ .
Thus,

∠(φ(n,n′),φ(n, ñ′))≤ ∠(φ(n,n′),φ(ñ,n′))+∠(φ(ñ,n′),φ(n, ñ′))
≤ 2µ,

and

|Λ(n,n′,n′′)−Λ(n, ñ′,n′′)|= |∠(n′′,φ(n,n′))−∠(n′′,φ(n, ñ′))|
≤ ∠(φ(n,n′),φ(n, ñ′))≤ 2µ.

Replacing n, n′, ñ′, n′′ and µ by n′, n′′, φ(n,n′), n′′′ and γ in the
formula above, gives

|Λ(n′,n′′,n′′′)−Λ(n′,φ(n,n′),n′′′)| ≤ 2γ .

Lemma 5. If n, n′ and n′′ are unit vectors, then

1. φ2(n,n
′) = φ1(n

′,φ1(n,n
′), and

2. Λ2(n,n
′,n′′) = Λ1(n

′,φ1(n,n
′),n′′)).

Proof. By definition,

φ2(n,n
′) = φ1(φ0(n,n

′),φ1(n,n
′)) = φ1(n

′,φ1(n,n
′)).

Thus,

Λ2(n,n
′,n′′) = ∠(φ2(n,n

′),n′′)

= ∠(φ1(n
′,φ1(n,n

′)),n′′) = Λ1(n
′,φ1(n,n

′),n′′).

Corollary 5.1. If n, n′ and n′′ are unit vectors and ∠(n, ñ) ≤ µ , then
|Λ2(n,n

′,n′′)−Λ2(ñ,n
′,n′′)| ≤ 2µ .

Proof. By Lemma 4,

∠(φ1(n,n
′),φ1(ñ,n

′)) = ∠(n, ñ)≤ µ.

Thus,

Λ2(n,n
′,n′′) = Λ1(n

′,φ(n,n′),n′′) (Lemma 5)

≤ Λ1(n
′,φ(ñ,n′),n′′)+2µ (Corollary 4.2)

= Λ2(ñ,n
′,n′′)+2µ.

Swapping n and ñ gives Λ2(ñ,n
′,n′′) ≤ Λ2(n,n

′,n′′)+ 2µ . Thus,
|Λ2(n,n

′,n′′)−Λ2(ñ,n
′,n′′)| ≤ 2µ .

Corollary 5.2. If n, n′ and n′′ are unit vectors and ∠(n′, ñ′)≤ µ , then
|Λ2(n,n

′,n′′)−Λ2(n, ñ
′,n′′)| ≤ 3µ .

Proof. By Lemma 4,

∠(φ1(n,n
′),φ1(n, ñ

′)) =∠(n′, ñ′)≤ µ.

Thus,

Λ2(n,n
′,n′′) = Λ1(n

′,φ(n,n′),n′′) (Lemma 5)

≤ Λ1(ñ
′,φ(n,n′),n′′)+µ (Corollary 5.1)

≤ Λ1(ñ
′,φ(n, ñ′),n′′)+2µ +µ (Corollary 4.2)

= Λ2(n, ñ
′,n′′)+3µ.

Swapping n′ and ñ′ gives Λ2(n,n
′,n′′) ≤ Λ2(n, ñ

′,n′′)+3µ . Thus,
|Λ2(n, ñ

′,n′′)−Λ2(n, ñ
′,n′′)| ≤ 3µ .

Corollary 5.3. If n, n′, n′′ and n′′′ are unit vectors and Λ(n,n′,n′′)≤ γ
and Λ(n′,n′′,n′′′)≤ γ , then Λ2(n,n

′,n′′′)≤ 3γ .

Proof. By assumption, Λ1(n,n
′,n′′)≤ γ , so ∠(φ1(n,n

′),n′′)≤ γ .

Λ2(n,n
′,n′′′) = Λ1(n

′,φ1(n,n
′),n′′) (Lemma 5)

≤ Λ1(n
′,n′′,n′′′)+2γ (Corollary 4.2)

≤ 3γ .

A.2 Angle bounds

We now give bounds on Λ and on the angles between the exact and
approximated normals.

Proposition 1. Let (v,v′,v′′) be a collinear sequence of adjacent ver-
tices contained in Ai for some smooth region Ai.

1. If v,v′,v′′ ∈ IV (Ai), then
Λ(ñv, ñv′ , ñv′′)≤ Λ(nv,nv′ ,nv′′)+4µ ≤ λ +4µ .

2. If v,v′ ∈ IV (Ai), then ∠(nv′′ , ñv′′)≤ Λ(ñv, ñv′ , ñv′′)+3µ +λ .

Proof of 1.1. Since v, v′ and v′′ are interior vertices, angles ∠(nv, ñv),
∠(nv′ , ñv′) and ∠(nv′′ , ñv′′) are all less than µ .

Λ(ñv, ñv′ , ñv′′)≤ Λ(ñv, ñv′ ,nv′′)+µ

≤ Λ(nv, ñv′ ,nv′′)+µ +µ (Corollary 4.1)

≤ Λ(nv,nv′ ,nv′′)+2µ +µ +µ (Corollary 4.2)

= Λ(nv,nv′ ,nv′′)+4µ ≤ λ +4µ.

Proof of 1.2.

∠(nv′′ , ñv′′)≤ ∠(φ(nv,nv′),nv′′)+∠(φ(nv,nv′), ñv′′)

≤ λ +Λ(nv,nv′ , ñv′′).

Since ∠(nv, ñv)≤ µ ,

Λ(nv,nv′ , ñv′′)≤ Λ(ñv,nv′ , ñv′′)+µ. (Corollary 4.1)

Since ∠(nv′ , ñv′)≤ µ ,

Λ(ñv,nv′ , ñv′′)≤ Λ(ñv, ñv′ , ñv′′)+2µ. (Corollary 4.2)

Thus,

Λ(nv,nv′ , ñv′′)≤ Λ(ñv,nv′ , ñv′′)+µ ≤ Λ(ñv, ñv′ , ñv′′)+3µ, and

∠(nv′′ , ñv′′)≤ λ +Λ(nv,nv′ , ñv′′)≤ λ +Λ(ñv, ñv′ , ñv′′)+3µ

= Λ(ñv, ñv′ , ñv′′)+3µ +λ .

The following corollary follows directly from Proposition 1.1.

Corollary 5.4. Let (v,v′,v′′) be a collinear sequence of adjacent grid
vertices where vertices v,v′,v′′ ∈ A1 and v′ and v′′ are interior vertices
in A1. If Λ(ñv, ñv′ , ñv′′)≤ α , then

∠(nv′′ , ñv′′)≤ α +3µ +λ .

The proofs of Proposition 3 are similar to the proofs of Proposi-
tion 1.

Proposition 3. Let (v,v′,v′′,v′′′) be a collinear sequence of adjacent
vertices contained in Ai for some smooth region Ai.

1. If v,v′,v′′,v′′′ ∈ IV (Ai), then
Λ2(ñv, ñv′ , ñv′′′)≤ Λ2(nv,nv′ ,nv′′′)+4µ ≤ 3λ +6µ .

2. If v,v′ ∈ IV (Ai), then
∠(nv′′′ , ñv′′′)≤ Λ(ñv, ñv′ , ñv′′′)+3λ +5µ .

Proof of 3.1. Since v, v′, v′′ and v′′′ are interior vertices, angles
∠(nv, ñv), ∠(nv′ , ñv′), ∠(nv′′ , ñv′′) and ∠(nv′′′ , ñv′′′) are all less than µ .

Λ2(ñv, ñv′ , ñv′′′)≤ Λ2(ñv, ñv′ ,nv′′′)+µ

≤ Λ2(nv, ñv′ ,nv′′′)+µ +2µ (Corollary 5.1)

≤ Λ2(nv,nv′ ,nv′′′)+3µ +2µ +µ (Corollary 5.2)

= Λ2(nv,nv′ ,nv′′′)+6µ

≤ 3λ +6µ. (Corollary 5.3)

Proof of 3.2.

∠(nv′′′ , ñv′′′)≤ ∠(φ2(nv,nv′),nv′′′)+∠(φ2(nv,nv′), ñv′′′)

= Λ2(nv,nv′ ,nv′′′)+∠(φ2(nv,nv′), ñv′′′)

≤ 3λ +Λ2(nv,nv′ , ñv′′′). (Lemma 5)

Since ∠(nv, ñv)≤ µ ,

Λ2(nv,nv′ , ñv′′′)≤ Λ2(ñv,nv′ , ñv′′′)+2µ. (Corollary 5.1)

Since ∠(nv′ , ñv′)≤ µ ,

Λ2(ñv,nv′ , ñv′′′)≤ Λ2(ñv, ñv′ , ñv′′′)+3µ. (Corollary 5.2)

Thus,

Λ2(nv,nv′ , ñv′′′)≤ Λ2(ñv,nv′ , ñv′′′)+2µ ≤ Λ2(ñv, ñv′ , ñv′′′)+5µ, and

∠(nv′′′ , ñv′′′)≤ 3λ +Λ2(nv,nv′ , ñv′′′)≤ 3λ +Λ2(ñv, ñv′ , ñv′′′)+5µ

= Λ2(ñv, ñv′ , ñv′′′)+3λ +5µ.

We also give bounds on ∠(ñv, ñv′) and on ∠(nv′ , ñv′). We first define
a bound κ on ∠(nv,nv′) in smooth regions of f .

κ = max{∠(nv,nv′)v,v
′ ∈ Ai for some Ai}.

Value κ can be viewed as a bound on the curvature of the field within
smooth regions. In comparison, λ is a bound on the change in curva-
ture of the field within smooth regions.

The following proposition gives bounds on ∠(nv′ , ñv′) based on
∠(ñv, ñv′).

Proposition 6. Let v and v′ be adjacent vertices contained in Ai for
some smooth region Ai.

1. If v,v′ ∈ IV (Ai), then ∠(ñv, ñv′)≤∠(nv, ñv′)+2µ ≤ κ +2µ .

2. If v ∈ IV(Ai), then ∠(nv′ , ñv′)≤ ∠(ñv, ñv′)+κ +µ .

Proof of 6.1.

∠(ñv, ñv′)≤∠(nv, ñv′)+∠(nv, ñv)≤∠(nv, ñv′)+µ

≤∠(nv,nv′)+∠(nv′ , ñv′)+µ

≤∠(nv,nv′)+µ +µ = ∠(nv,nv′)+2µ ≤ κ +2µ.

Proof of 6.2.

∠(nv′ , ñv′)≤∠(nv, ñv′)+∠(nv,nv′)≤ ∠(nv, ñv′)+κ

≤∠(ñv, ñv′)+∠(nv, ñv)+κ ≤∠(ñv, ñv′)+µ +κ.

A.3 Containment bounds

To prove Proposition 2, we show that if a sufficiently large ball B con-
tains vertex v, then B contains N(v′′) and N(v′′′) for some collinear
sequence (v,v′,v′′,v′′′).

Lemma 7. Let Γ be a regular grid whose edges all have the same

length L. If some ball B of radius (5/2)
√

3L contains grid vertex v,
then there is a collinear sequence (v,v′,v′′,v′′′) of adjacent grid ver-
tices such that B contains N(v′′) and N(v′′′).

Proof. Let B be a ball of radius (5/2)
√

3L containing grid vertex v.
Let q be the center of B. Without loss of generality assume vertex v is
at the origin (0,0,0), that the edge length L equals 1, and that q lies in

the positive x, y and z orthant. Let D≤ (5/2)
√

3 be the distance from
the origin to q. The coordinates of q can be expressed as D(ux,uy,uz)
where (ux,uy,uz) is a unit vector.

Without loss of generality, assume that q is closest to the x-axis, i.e.,
ux ≥ uy and ux ≥ uz. Let v′′ be (2,0,0) and v′′′ be (3,0,0). We claim
that Nv′′ and Nv′′′ are in B.

Let p be the grid vertex with coordinates (3,−1,0). Point p is in

Nv′′ . Let R equal (5/2)
√

3. Since ball B contains the origin, distance
D is at most R.

|q− p|2 = (Dux−3)2 +(Duy +1)2 +(Duz)
2

= D2u2
x −6Dux +9+D2u2

y +2Duy +1+D2u2
z

= D2(u2
x +u2

y +u2
z)+10−6Dux +2Duy

= D2 +10−6Dux +2Duy

≤ D2 +10−4Dux (since uy ≤ ux)

= (R+D−R)2 +10−4(R+D−R)ux

= R2 +2R(D−R)+(D−R)2 +10−4Rux−4(D−R)ux

= R2 +(10−4Rux)+(D−R)(2R+D−R−4ux)

= R2 +(10−4Rux)− (R−D)(D+R−4ux).

Since ux ≥ uy and ux ≥ uz, coordinate ux is at least 1/
√

3.

10−4Rux = 10−4(5/2)
√

3ux

≤ 10−10
√

3(1/
√

3) since ux ≥ 1/
√

3

= 10−10 = 0.

D+R−4ux ≥ R−4 = (5/2)
√

3−4≥ 4.3−4 > 0.

SinceB contains the origin, distance D is at most R and (R−D)≥ 0.
Thus,

|q− p|2 = R2 +(10−4Rux)− (R−D)(D+R−4ux)

≤ R2 +0− (R−D)(D+R−4ux) (since (10−4Rux)≤ 0)

≤ R2 (since (R−D)> 0 and (D+R−4ux)> 0.)

so B contains (3,−1,0).
A similar analysis shows that B contains (3,0,−1), (3,1,0),

(3,0,1), (2,0,0) and (4,0,0). Thus, B contains N(v′′′).
A similar analysis shows that B contains N(v′′).

The bound (5/2)
√

3L is tight. If we place a ball B of radius (2.5−
ε)
√

3L at the point (2.5− ε,2.5− ε,2.5− ε)L, then ball B contains
the origin. However, ball B does not contain N(v′′) or N(v′′′) for any
collinear sequence (v,v′,v′′,v′′′).

As before, X =∪A j
∂A j is the union of all the boundaries of smooth

regions A j. Proposition 2 follows directly from Lemma 7.

Proposition 2. Let Γ be a regular grid whose edges all have the same

length L. If some ball B of radius (5/2)
√

3L contains grid vertex
v ∈ Ai and does not intersect X , then there is a collinear sequence
(v,v′,v′′,v′′′) of adjacent grid vertices such that v′′ ∈ IV (Ai) and v′′′ ∈
IV (Ai).

Proof. By Lemma 7, ball B contains N(v′′) and N(v′′′) for some
collinear sequence (v,v′,v′′,v′′′). Since ball B does not intersect X ,

N(v′′)⊆ B⊆ Ai, and

N(v′′′)⊆ B⊆ Ai.

Thus, v′′ ∈ IV (Ai) and v′′′ ∈ IV (Ai).

We can also give a reformulation of Lemma 7 to handle the tangent
and orthogonal directions separately.

Lemma 8. Let Γ be a regular grid whose edges all have the same
length L. If some ball B of radius 7L contains grid vertex v, then either
there is a collinear sequence (v,v′,v′′,v′′′) of adjacent grid vertices

such that v′ ∈ NT (v) and B contains N(v′′) and N(v′′′) or there is a

vertex v′ ∈ NO(v) such that B contains N(v′).

The proof is similar to the proof of Lemma 7, and is omitted.

The radius 7L is an upper bound on (
√

179/2)L which is tight. If we

place a ball B of radius ((
√

179/2)− ε)L at the point (3.5− ε,3.5−
ε,3.5− ε)L, then ball B contains the origin. However, ball B does
not contain N(v′′) or N(v′′′) for any collinear sequence (v,v′,v′′,v′′′)
where v′ equals (1,0,0) or (−1,0,0) or (0,1,0) or (0,−1,0). Ball B
also does not contain N(v′) for v′ equal to (0,0,1) or (0,0,−1).

Let A j be the smooth region containing vertex v. Let X = ∪A j
∂A j

be the union of all the boundaries of smooth regions A j. Lemma 8
leads to the following proposition.

Proposition 9. Let Γ be a regular grid whose edges all have the
same length L. If some ball B of radius 7L contains grid vertex
v ∈ Ai and does not intersect X , then either there is a collinear se-
quence (v,v′,v′′,v′′′) of adjacent grid vertices such that v′ ∈ NT (v)
and v′′ ∈ IV (Ai) and v′′′ ∈ IV(Ai) or there is a vertex v′ ∈ NO(v) such
that B contains N(v′).

Proof. By Lemma 7, either ball B contains N(v′′) and N(v′′′) for some

collinear sequence (v,v′,v′′,v′′′) where v′ ∈ NT (v) or ball B contains

N(v′) where v′ ∈ NO(v).
In the first case,

N(v′′)⊆ B⊆ Ai, and

N(v′′′)⊆ B⊆ Ai.

Thus, v′′ ∈ IV (Ai) and v′′′ ∈ IV (Ai).
In the second case,

N(v′)⊆ B⊆ Ai.

Thus, v′ ∈ IV (Ai).

A.4 The Central Difference Formula

In the following proposition, we claim that the the central difference
formula is exact under appropriate conditions. Let ud be the vector
from each vertex to the adjacent vertex in direction d.

Proposition 10. Let f : R3→ R be a smooth function. If the second
order partial derivatives of f are all constant, then the gradient of f
at point x is exactly equal to (g̃1, g̃2, g̃3) where

g̃d = (f (x+ud)− f (x−ud))/2|ud |.

Proof. Since ∂ 2 f /(∂ (xd))
2 is constant, the third order partial deriva-

tive ∂ 3 f /(∂ (xd))
3 is zero. By Taylor’s Theorem,

f (x+ tud) = f (x)+ t|ud |
d f (x+ tud)

dt
+(t2/2)|ud |2

d2 f (x+ tud)

dt2

+(t3/6)|ud |3
d3 f (x+ tud)

dt3
+ . . .

= f (x)+ t|ud |
∂ f

∂ (xd)
+(t2/2)|ud |2

∂ 2 f

∂ (xd)2

+(t3/6)|ud |3
∂ 3 f

∂ (xd)3
+ . . .

= f (x)+ t|ud |
∂ f

∂ (xd)
+(t2/2)|ud |2

∂ 2 f

∂ (xd)2

(since ∂ 3 f /∂ (xd)
3 is zero.)

Thus,

g̃d =
f (x+ud)− f (x−ud)

2|ud |

=

(

f (x)+ |ud | ∂ f

∂ (xd)
+(1/2)|ud |2 ∂ 2 f

∂ (xd)2

)

2|ud |

−

(

f (x)−|ud | ∂ f
∂ (xd)

+(1/2)|ud |2 ∂ 2 f

∂ (xd)2

)

2|ud |

=
2|ud | ∂ f

∂ (xd)

2|ud |
=

∂ f

∂ (xd)
.

The gradient of f is is:

(
∂ f

∂ (x1)
,

∂ f

∂ (x2)
,

∂ f

∂ (xd)
) = (g̃1, g̃2, g̃3) = g̃.

Thus the gradient of f equals g̃.

B COMPUTING POINTS ON SHARP FEATURES

Given a set {(pi,gi,si)} of k points and their associated gradients and
scalar values, define a matrix M whose i’th row is gi/|gi| and a column
vector b whose i’th element is (σ − (gi · pi + si))/|gi|. (We divide by
|gi| so that all normal directions have equal weight.) This gives a set
of k equations

Mx = b

where M is a k×3 matrix and x and b are column vectors of length k.
In general, this system is over-determined so we wish to find the least
squares solution. The least squares solution is the solution to

MT Mx = MT b.

The 3×3 matrix A = MT M and the column vector b′ = MT b gives the
quadric error measure.

The singular valued decomposition (SVD) of A is A =UΣV T where

Σ =

σ1 0 0
0 σ2 0
0 0 σ3

 .

σ1, σ2, and σ3 are the singular values of A sorted in decreasing order.
If all three singular values of A are large, then the M and b define a
sharp corner. If two singular values are large, then M and b define a
sharp edge. Otherwise, M and b do not define a sharp feature.

σ ′i =
{

σi if σi/σ1 > ε
0 otherwise

where ε is a threshold parameter. Let A′ = UΣ′V T where Σ′ is the
diagonal matrix with diagonal entries (σ ′1,σ

′
2,σ
′
3).

When A has three large singular values, A′ = A and there is a single
point x such that A′x = b. When A has two large singular values, {x :
A′x = b′} is a line. When A has one large singular value, {x : A′x = b′}
is a plane.

Let

σ+
i =

{

1/σ ′i if σ ′i 6= 0
0 otherwise

Let Σ+ be the diagonal matrix with diagonal entries (σ+
1 ,σ+

2 ,σ+
3).

Let q be a point in R
3. Compute:

x = q+V Σ+UT (b′−Aq). (2)

When A has three large singular values, x is the point solving Ax = b.
When A has two large singular values, x is a the point closest to q on
the line A′x = b. When A has only one large singular value, x is a point
closest to q on the plane A′x = b.

The columns of U are the eigenvectors, u1, u2 and u3 of A′ where ui

corresponds to σ ′i . Note that σ ′i are sorted in decreasing order. When A
has one large singular value, the plane {x : A′x= b} is orthogonal to u1.
When A has two singular values, the direction of the line {x : A′x = b}
is the cross product, u1×u2, of u1 and u2.

We use Equation 2 to determine an isosurface vertex in or near each
active cube. To apply Equation 2, we need a point q. The center of
the cube is a reasonable choice for q. However, as reported in [21],
better results are given by computing an approximate location of the
isosurface vertex based on linear interpolation and using this approx-
imate location for q. More specifically, for each bipolar grid edge
c = (p, p′), we define:

wc = wc← (1−α)p+α p′

where α = (σ − sp)/(sp′ − sp). Point wc is an approximation of the
intersection of the isosurface and the grid edge.

Instead of the singular valued decomposition of the square matrix
MT M, we could have used the singular valued decomposition of M.
The condition number of MT M is the square of the condition number
of M so using the SVD of M is more numerically stable. However,
because the algorithm sets small eigenvalues to zero, the increased
numerical stability does not change the results of our algorithm.

	Introduction
	Related Work
	Determining Correct Gradients
	Definitions
	Central Difference Formula
	Reliable Gradients
	CT Data
	Extending Reliable Gradients
	Algorithm

	Selecting Gradients
	Computing Points on Sharp Features
	Sparsifying Isosurface Vertices
	Experimental Results
	Synthetic datasets
	Quantitative Analysis
	Industrial CT data
	Visualization
	Sparse feature point detection
	Point Skeleton Visualization

	Isosurface Reconstruction
	Parameters

	Conclusion
	Proofs
	Angle Lemmas
	Angle bounds
	Containment bounds
	The Central Difference Formula

	Computing Points on Sharp Features

