
Recent Trends in High Tail Latency

Aaron McCanty
The Ohio State University

Mccanty.1@osu.edu

1. INTRODUCTION
The amount of data stored by enterprises in the modern
world is staggering. If every business were to handle all of
their own data requests, their cost of operation would
skyrocket. Because of this, many large enterprises across
the world today utilize cloud infrastructures to process
their requests and data transfers. These cloud
infrastructures involve sending requests to large
warehouses full of servers for processing. To speed up the
data processing rates, these warehouses of servers utilize
large-scale parallel computing. R

Parallel computation involves breaking requests
up into many parts than can be executed simultaneously.
These parts are then sent out to many different servers
which perform the calculation, data retrieval, or other
service and return the necessary values. The result of this
type of speed up process is a drastic reduction in wait
times. However, there is a down side. The nature of these
parallel computations means that the request can only be
completed once all of its respective parts have finished
execution. So if one server has a drastically higher
response time, the entire request is slowed down as well.

Servers typically have extremely fast average
response times. For example, servers that have
implemented an optimized Memcached system have an
average response time of 100 µs [2]. A response time this
low is excellent in terms of completing requests without a
noticeable slowdown. Problems arise at the tail end of the
request speeds. The 99.9th percentile latency in the same
Memcached system discussed before is 5ms. This is an
enormous slowdown. Obviously being the 99.9 th

percentile, servers only experience this slow a speed in 1
out of every 1000 requests. This doesn’t seem to be very
frequent, but when you consider that a single Facebook
web request may access thousands of these Memcached
servers [5] and a Bing search may access 10,000 index
servers [6], these large latencies become very common and
relevant to request response time.

These large tail latencies can stem from several
sources; including hardware, operating system, application
level design, and configuration choices [2]. Large tail
latency can have a huge impact on a customer’s data
retrieval time, which in turn can lead to a decrease in
revenue for an enterprise. As a rule of thumb, delays
exceeding 100 ms decrease total revenue by 1% [7]. As
delays have the potential to negatively impact a business’
bottom line, there has been a tremendous shift in the world
of cloud infrastructure to reduce these large tail latencies.

2. RELATED WORK
There are several papers that attempt to take on the issue
of extremely large tail latencies in cloud computing.
Principle among them are: Tales of the Tail: Hardware,
OS, and Application-level Sources of Tail Latency [2], C3:
cutting Tail Latency in Cloud Data Stores via Adaptive
Replica Selection [1], Adaptive Performance-Aware
Distributed Memory Caching [3], and Zoolander:
Efficiently Meeting Very Strict, Low-Latency SLOs. Each
of these papers will now be examined in turn, and heir
findings will be reported,.

2.1 Tails of the Tail [2]

The easiest place to start this examination is with Tails of
the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. As the title would suggest, this paper
examines some of the causes of the extremely high tail
latencies experienced in the industry today. Once the
causes of high tail latency are identified, steps can be taken
to mitigate the impact they have on system performance.

Background Processes was the first cause of high
tail latency times examined in this study. To simplify the
problem, the researchers limited their experiments to a
single server, using a single cpu with a single core. With
this setup, there is absolutely no way two programs can run
in parallel with each other. Despite only running the test
application on each server, the scheduler still had to deal
with default background processes that all servers
encounter. When the scheduler allocates core time to one
of these other processes, it can greatly increase system
latency for the application. The versatility of Linux
allowed the researchers to change the priority of their test
application so that it was almost always given core
resources. This reduced the additional slow down, but on a
system less versatile this approach not be able to be used.

How the scheduling algorithm decides to allocate
core time can also affect tail latency. This paper showed
evidence that a First-in-First-Out(FIFO) scheduling

1

1.

mailto:Mccanty.1@osu.edu

algorithm reduces tail latency, but increases median
latency. The default scheduling algorithm on most linux
servers is a non-FIFO algorithm which negatively affects
tail latency.

Multicore processors were also tested and shown
to decrease tail latency for some systems. Moving from
single to multicore processors only reduced tail latency if
the systems have a single-queue model (i.e. any processor
can process any request). Some systems can be converted
to this model easily, while others cannot.

The research also showed that dedicating certain
cores in a multicore system to processing interrupts could
also reduce tail latency.

Scaling out systems beyond a single CPU was also
show to create problems with poor placement of threads
and memory on NUMA systems. This led to a higher tail
latency.

Lastly, the research showed that at low utilization
levels, the system encounters a situation where there is a
tradeoff between saving power and tail latency levels.

2.2 Adaptive Performance-Aware [3]

Adaptive Performance-Aware Distributed Memory
Caching examines how one technique of dealing with
large tail latencies can be improved upon to see noticeable
results. Memcached systems are used to greatly increase
performance on many web applications. Despite the gains
seen by these systems, inefficient partitioning schemes can
often lead to load imbalances, where one server or core is
tasked with more work than others. This leaves the door
open for further optimizations.

This paper presents an improvement for cache
management. This method adapts to changing situations
well, and ensures that the work load is evenly distributed
among resources, helping reduce tail latency.

2.3 C3 [1]

C3: Cutting Tail Latency in Cloud Data Stores via
Adaptive Replica Selection also explores some of the
causes of large tail latencies, further reiterating the need
for better optimized systems for handling large numbers of
requests. It presents many of the current methods for
sealing with these tail latencies but points out that these
are often minor improvements on methods that have
received a lot of attention in other studies.

C3 is an adaptive replica selection mechanism
used to determine which replica server is chosen to service
a request by a client. It is the authors view that using
methods commonly used to reduce tail latency on top of a
poor replica selection algorithm leaves a lot of room for
more errors and problems to arise. C3 aims to create a
solid replica selection foundation with which other
techniques can be built on to greatly improve tail latencies.

2.4 Zoolander [4]

Zoolander: Efficiently Meeting Very Strict, Low Latency
SLOs explores some of the ways computing services can

attain service level objectives (SLOs) set by their clients.
As responsiveness has been shown to impact revenue, it is
very important that enterprises try to attain very fast
response times for their customers, which is why they set
strict low latency SLOs on their computing service
providers.

This paper presents a technology called
Zoolander, which was developed specifically to help
computation service providers attain these strict SLOs.
Zoolander tackles the idea of replication for predictability
by utilizing a previously dismissed method: copying
requests to multiple nodes. This may seem counter-
intuitive, but these multiple requests reduce the risk of
hitting a high tail latency and, thanks to advances in
technology, it doesn’t negatively impact throughput.
Zoolander is also flexible enough to adjust its methodology
when the situation calls for it to remain efficient. If more
requests need to be distributed to more nodes, Zoolander
adjusts accordingly, but during periods of low requests, it
can also use under used nodes to reduce costly SLO
violations, thereby reducing operating costs overall.

3. DISSIMMILARITES
As discussed previously, each and every one of these
papers approached the issue of high tail latency in a
different way, finding varying measures of success.

Tails of the Tail examined three different servers
– a null RPC service, Memcached, and Nginx- trying to
find the best optimizations of the Hardware, OS, an
application-level issues that cause high tail latency. The
paper examines what exactly causes high tail latency, and
how each of these problems can be countered. By making
changes to these causes on each machine, they were able to
achieve a 99.9th percentile latency of 32 µs and a median
latency of 11 µs. These speedups were achieved without
adding any real kind of middleware.

Adaptive Performance on the other hand explores
an addition to a system currently in use in many
distributed computer systems. The paper focuses on
improving one particular issue causing high tail latency;
namely load balancing. By implementing a new method of
sending requests to servers, a higher hit rate and lower
response time were achieved. Tests were carried out on
Amazon EC2 servers.

C3 and Zoolander took yet another approach.
Both are essentially middleware, which were developed to
be installed on machines to help improve performance
using their own algorithms. Zoolander focuses on using
techniques to reduce high latency times to help cloud
computing services meet the strict SLOs their clients
require. Zoolander, similar to Adaptive Performance, tries
to reduce tail latency by addressing which servers are sent
specific request. It helps balance loads (like [3]) and also
creates some redundancy in the requests sent, reducing the
likelihood that long tail times are experienced. C3 also
discusses a similar middleware.

2

4. SIMMILARITES
All of these papers tackle the issue of large tail latency by
exploring the many ways of reducing tail latency to
improve performance. Despite the different approaches
taken in these papers, some similarities do appear.

First and foremost, all of these papers have
identified a real problem in the computing world today
that has not received much attention in the past. This is
partly because the issues seen with large tail latencies have
only become common in recent years with the advent of
large scale cloud computing facilities and the heavy use of
parallel computation. Regardless of how popular a subject
it is, all of these papers identify why it is a major cause for
concern in the industry today.

A recurring solution to high tail latencies was to
examine how requests are sent to different servers. Often,
many requests or very heavy requests are all sent to the
same server, overloading its resources while other servers
sit idle. Reducing these load imbalances is an easy way to
reduce potentially damaging high latency times.

In addition, the tests carried out in these papers
were performed on real machines that are used in the
industry (Amazon’s EC2 servers in particular). Some
theoretical analysis was conducted as well, but the results
were very concrete. The techniques or technologies
studied in these papers can very easily be applied by
companies in the very near future to tackle these problems.

Finally, despite the variety of techniques
examined throughout these papers, all of them managed to
see significant improvements in the tail latency. All four
approaches succeeded in finding a solution to a very real
problem, and the success experienced within the
techniques is very encouraging for future research. If
these early attempts at speedup can increase performance
by orders of magnitude, then the future truly is bright
when it comes to improving performance.

5. REFERENCES
[1] Canini, M., Feldmann, A., Schmid, S., and Suresh, L.

2015 C3: Cutting Tail Latency in Cloud Data Stores
via Adaptive Replica Selection. NSDI, 2015.

[2] J. Li, N. Sharma, D. Ports and S. Gribble. Tales of the
Tail: Hardware, OS, and Application-level Sources of
Tail Latency, Symposium on Cloud Computing
(SOCC) 2014

[3] J. Hwang and T. Wood. Adaptive Performance-Aware
Distributed Memory Caching. International
Conference on Autonomic Computing (ICAC), 2013

[4] C. Stewart, A. Chakrabarti and R. Griffith. Zoolander:
Efficiently Meeting Very Strict, Low-Latency SLOs.
International Conference on Autonomic Computing
(ICAC), 2013.

[5] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H.
Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek, P.
Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at Facebook. In Proceedings of the
10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), Lombard, IL,
USA, Apr. 2013.

[6]] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M.
Rybalkin, and C. Yan. Speeding up distributed
request-response work- flows. In Proceedings of ACM
SIGCOMM 2013, Hong Kong, China, Aug. 2013

[7] rigor.com. Why performance matters to your bottom
line. http://rigor.com/2012/09/ roi-of-web-
performance-infographic.

[8] cpu-world.com. Microprocessor/Co-
processor/Microcontroller families. http://www.cpu-
world.com/CPUs/.

3

http://www.cpu-world.com/

