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1. INTRODUCTION
The command line utility grep is a simple, but extremely useful
tool that has had a tremendous amount of value to the users of
Unix and Unix-like systems. The grep command, also known as
"global regular expression print", does precisely what it's formal
name  implies.  It  has  the  capability  of  searching  for  regular
expressions  across  a  global  domain,  in  this  case,  a  global  file
system,  and  printing  all  found  matching  lines.  The  internal
process of a grep command has not varied much over the course
of its  history.  Consisting  of three  general  steps,  the  first  step
takes the first line of a designated input file and copies the line
into a  buffer.  Then  a  comparison  between  each string is  made
with  the  regular  expression.  If  the  string  matches  the  regular
expression,  it  gets  printed  to  the  screen.  This  process  is  then
repeated until there are no more valid lines in the input file. This
entire  process  consists  of  only  reading  strings  and  does  not
modify or store any string values. 

Grep could be considered one of the most widely used
instances of a regular expression pattern matching algorithm. But
while  many implementations  of grep  have  been  made  such as
NR-grep  [5],  and  GPP-Grep  research  [15],  the  "regular
expression  pattern  matching"  or  "regular  expression  search"
problem, where matching regular expressions over large streams
of input  text  data  has  continued  to  be  a  progressing  area  for
improving algorithmic performance to many researchers.  Much
progress  has  been  made  in  creating  a  group of more  efficient
string pattern matching algorithms. Some of these algorithms that
have shown promise over the last  couple decades in increasing
the performance of string pattern matching have been the Aho-
Corasick  Algorithm  [1],  Parallel-Failureless  Aho-Corasick  [3]
and most recently, a Bitwise Parallelism approach to the problem
[12]. 

2. REVIEW OF AHO-CORASICK
The Aho-Corasick algorithm is a foundation in the finite  set  of
patterns classification of string pattern matching algorithms and
was  also  used  in  the  original  implementation  of  the  fgrep
command  in  Unix  systems.  This  classification  of  algorithms
allows for the search of multiple regular expressions. 

The  AC  algorithm  consists  of  building  a  non-
deterministic  finite  state  machine  from  a  set  of  regular
expressions and then loading input into the finite state machine
to  be  processed  for  regular  expression  matches.  The  state
machine  uses  several  types  of functions  to control  the  flow of
state transitions. The Goto function defines the mapping of state
transitions.  The  Output  function  defines  an  output  of a  valid
regular expression. The Fail function defines the state transition
that would be received by the Goto function when a mismatched
character is encountered.  Failure  transitions backtrack the state

machine  in  order  to  recognize  patterns  at  other  possible  start
locations. 

The time required to preprocess and construct the state
machine is  proportional  to the sum of string lengths of all  the
regular expressions in a given set.  Memory lookup has an  O(n)
runtime  where  n is  the  total  length  of  all  regular  expression
patterns.  Additionally,  the  number  of state  transitions  used  by
input  strings is  independent  of the number  of keywords in  the
set,  therefore  the  AC algorithm's  suggested  use  criteria  is  in
domains that  call  for searching large keywords sets  with  small
string lengths. [1] also discusses the idea of translating the non-
deterministic finite automaton in AC into a deterministic model
could potentially reduce the number of state transitions by half,
where a majority of the algorithm's time would be spent in the
first state and, therefore, was not recommended for practice. But
this observation is extremely important to the algorithm approach
summarized in the next section.

3. REVIEW OF PARALLEL-
FAILURELESS AHO-CORASICK
The AC algorithm was  an early milestone in  the research of a
better regular expression pattern matching algorithm, and it was
only  natural  that  due  to  such  a  prolific  reputation,  many
variations  were  implemented  such  as  algorithms  produced  by
Chen and Wang [2], Ando, Kinoshita, Shishibori and Aoe [7] and
Do, Kang and Kim [9]. In the algorithm approach discussed in
this  section,  the  use  of  parallel  computing  is  of  particular
interest. 

As  discussed  in  [3],  one  of the  pitfalls  of the  Data
Parallel  Aho-Corasick  approach  is  the  boundary  detection
problem. That is,  when input streams are divided into segments
and then each segment  is  ran through the  state  machine in  its
own thread, there is the case where a regular expression will not
get matched if portions of that regular  expression become split
amongst multiple  thread segments.  Typically, this issue is fixed
by extending segmented threads to search beyond their assigned
segment, but this causes large overhead as it is unknown how to
efficiently distinguish  by how much a  segment  would  need  to
over  search  into  another  segment  of  an  interleaved  regular
expression pattern. In the worst case each segment would need to
search in addition to the length of the longest regular expression
pattern  causing a runtime  of  O(n/s+m) where  m is  the longest
pattern  length,  n  is  the  total  length  and  s  is  the  number  of
segments.   Memory  lookup  requires  O(n+ms) complexity,  a
negative  byproduct  of  DPAC  compared  to  the  original  AC
algorithm with a memory lookup time of O(n).

 [3] presents  a new approach to the DPAC algorithm.
The algorithm, appropriately named as Parallel-Failureless Aho-
Corasick  or  PFAC,  completely  removes  the  use  of  failure
transitions  in  the  original  Aho-Corasick  algorithm.  Other  than
this,  the finite  state  machine is  built  and used similarly as the
traditional AC. PFAC works by assigning each byte to a thread.
The assigned byte is used as a marker of the start location in the
input stream in each thread. Each thread then proceeds to run the



modified  AC finite  state  machine,  moving in  a  linear  fashion
from their start location in the input stream to the next location.
As a result  of removing failure  transitions  from traditional  the
traditional AC algorithm, when an invalid state occurs, the thread
immediately terminates. Most of the threads end up terminating
early due to the low probability of starting at a valid pattern state
in the state  machine.  In addition to this  high chance of thread
termination, the number of valid state transitions will be minimal
since  each  regular  expression  pattern  in  the  state  machine  is
viewed  as  unique.  PFAC is  also  more  favorable  in  terms  of
efficiency in memory accesses compared to DPAC. Because each
thread is assigned to each byte in the input text  stream and all
threads  are running in parallel,   and by the algorithm's nature,
each byte data will  be read many times by neighboring threads.
Therefore preloading the input  text into shared memory greatly
decreases the need to fetch data from global memory.

A multitude  of optimizations  to  the  PFAC algorithm
were  recommended,  many  of  such  revolved  around  memory
efficient features offered in specifically Nvidia Fermi architecture
CUDA-enabled  GPUs.  To  reduce  memory  transfers  involving
global memory, memory coalescing reads are exploited to more
efficiently load input data from global to shared memory. Texture
memory  is  also  used  to  reduce  the  latency  associated  with
memory lookups of the state transition table as it is optimized for
2D spatial  locality.  The  state  transition  table  is  first  bound to
texture  memory  and  the  first  row  gets  allocated  into  shared
memory during the preprocessing stage of PFAC.

4. REVIEW OF BITWISE DATA 
PARALLELISM
Data level parallelism is a form of parallelization used in many
multi-core CPUs, and in almost all modern GPUs. Many of these
architectures  feature  "Single  Instruction  Multiple  Data"
operations  or  SIMD.  Because  of  the  presence  of  vector
processing  in  these  architectures,  using  SIMD operations,  the
compiler and programmer have the ability to apply a single set of
instructions to multiple data sets at the same time using parallel
threads.  In  [12],  the  Bitwise  Data  Parallelism  approach,  or
referred to as BDP in this paper, presented utilizes these parallel
techniques  in  addition  to  the  easily  parallelizable  nature  of
bitwise  functions  to  implement  a  completely new approach  to
regular expression matching.

 The BDP algorithm acknowledges the relevant work of
the  bit-parallel  XML  parser  using  128-bit  SSE2  SIMD
technology with a parallel  scanning primitive based on addition
[11]  and  similar  regular  expression  matching  in  each  parallel
stream as the classical algorithms of Navarro and Raffinot [6] ,
Baez-Yates and Gonnet [10] and Wu and Manber [13] as strong
contributions  to  its  creation.  This  approach  views  input  text
streams  as  very  large  integers  that  first  get  partitioned  into
blocks.  This  process  is  dependent  on  the  number  of  parallel
resources available. Bytes of data within blocks get processed by
an  instruction  set  that  involves  bitwise  logic  and  long stream
addition  that  must  be  scaled  to  each  block's  size.  Each  byte
stream is substituted with eight 8-bit parallel streams with a one-
to-one direct mapping from each stream i  to each  ith bit of each
byte. Due to this direct mapping, each bitstream is identifiable by
other parallel bit streams, such as the character class bit stream.
In the case of making necessary calculations such as whether  a
character  in  the  input  data  stream  is  in  a  class  or  not,  this
property becomes very useful. In addition to both character class
and  input  bitstreams,  marker  bitstreams  are  also  applied  to
specify positions of ongoing matches during the entire  process.
The heart of BDP is the MatchStar operation. MatchStar returns

all reachable positions by advancing the marker bitstream zero or
more  times  via  the  character  class  bit  stream.  This
implementation  of  MatchStar  is  similar  to  that  the  ScanThru
operation found in the Parabix tool chain [4], but it differs such
that it finds all valid matches, not only the longest [12].  

One  of  the  distinguishing  properties  of  BDP is  the
ability to process more than one byte at a time. Blocks are only
limited  by the  number  of parallel  resources  at  hand  and,  as  a
result, the number of bytes getting processed at the same time is
also  only  limited  by  this  factor.  In  revelation  to  the  recent
introduction  of  256-bit  SIMD  instructions  and  the  equivalent
AVX2 instructions offered in Intel's Haswell  chips, experiments
were  conducted  comparing  the  two  implementations  of  each
architecture  to  test  the  scalability  of the  BDP algorithm  with
results showing no discernible reduction in instruction count and
demonstrated  great  scalability.  Similar  procedures  were
conducted on a GPU to further assess the bounds of scalability of
BDP and results showed improvements up to 60% compared to
the non-GPU implementations using AVX2 and SSE. Differences
in improvements compare to either AVX2 and SSE depended on
factors such as hardware limitations such as register usage and
the fact that long stream addition is a more expensive operation
on GPUs than on SSE or AVX2 implementations.

RELATED-WORK COMPARISON
In this  section, a comparison of all  three mentioned algorithms
will be made to further offer any additional insightful analysis.

4.1 Similarities
Because PFAC is  an algorithm based  off of the  traditional  AC
algorithm they share many similarities between implementation.
The  use  of a  state  machine  is  the foundation of both of these
algorithms. They both build their state machines in memory and
then use those state machines to process an input text stream one
byte  at  a  time.  Since  memory-bound  applications  require  the
reading  and  writing  of  data  to  and  from  global  memory,
latency/throughput of memory accesses is an area of concern for
performance.  PFAC discusses  the use of GPU features  such as
memory  coalescing  and  texture  memory  to  dismiss  these
concerns, as well as the use of shared memory used naturally in
the  algorithm.  Many  of  PFAC's  memory  improvements  were
possible as a result  of the parallel approach the algorithm takes
as opposed to traditional AC.

The  increased  use  of parallel  computing to in  recent
years to improve the general efficiencies of traditional algorithms
is relevant as shown in algorithms PFAC and  BDP.  Both use
parallel  techniques  to  create  a  faster  algorithm.  PFAC uses  a
thread  from  each  byte  in  the  input  text  stream  while  BDP
partitions  bytes  into  blocks  based  on  the  number  of  parallel
resources  available. Both approaches aim to increase the number
bytes  processed  at  once using threads.  Memory efficiency is  a
common area of focus in terms of experimentation with different
implementations for both PFAC and BDP as well. The threads in
PFAC are able to advantageously use shared memory often due to
the close spatial locality of neighboring threads reading the same
data repeatedly. Whereas in BDP, the algorithm is able to store
all  intermediate  bitstreams  in  it's  loop body in  registers  while
outside  bitstreams  that  do need  to  be  stored  in  memory have
buffers  allocated to decrease  the  latency of fetching successive
memory locations [12].

4.2 Dissimilarities
As opposed  to  the  traditional  AC and  PFAC implementations,
BDP is of a completely new design and not based on traditional



sequential  algorithms  that  were  later  adapted  to  fit  parallel
architectures.  BDP  was  created  with  the  use  of  a  parallel
architecture first in mind. As a result, the algorithm does not rely
on finite automata to search for regular expression patterns and is
not restricted to processing input stream data at a rate of one byte
at  a  time.   By partitioning  the  input  stream  into  blocks  that
contain  more  than  one  byte,  only  limited  by  the  number  of
available parallel resources, the matching process instruction set
is applied to each byte in the block at once, resulting in a much
greater  amount  of throughput  compared  to  traditional  AC and
PFAC.

 While  both  PFAC and  BDP use  parallel  computing,
BDP does fall victim to performance loss due to load imbalance,
unlike PFAC. In order to gain significant optimizations in PFAC,
a Nvidia Fermi architecture GPU is used in their implementation
for the advantages memory coalescing and texture memory bring
to memory efficiency. As a result,  warps are  used to implement
the parallel  threading that occurs in PFAC. Because the overall
duration of a warp is determined by the longest duration thread,
PFAC is  vulnerable  to  cases  of great  load  imbalance  amongst
each thread in a warp. The BDP algorithm is not a victim of this
defect as individual thread durations do not rely on one another
due to the nature of SIMD/SIMT operations.

5. ARCHITECTURE COMPARISON
In  this  section,  we  will  compare  the  architectures  of  three
different  processors: the 2.66 GHz Intel  Xeon X3330, 2.2 GHz
Xeon E5-2660, and the 2.3 GHz AMD Opteron™ 6276.  All of
these  architectures  operate  on  a  64-bit  data  width,  are  SSE,
SSE2,  SSE3,  SSSE3 and SSE4 core instruction compliant,  and
have  multiple  cores.  It  is  also worth  noting that  all  compared
microarchitectures also are oriented towards the server market.

5.1 Microarchitecture
All  three  architectures  have  fundamentally  different
microarchitectures.  The  Intel  Xeon  X3330  has  a  Yorkfield
processor  core  which  implements  Intel's  Penryn
microarchitecture.  This  particular  chip  uses  a  45nm transistor
stepping  process  to  produce  a  cooler,  more  power  efficient
environment than it's predecessor, the Merom. The Xeon X3330
features two duo-core processors for a total of four cores capable
of running a total of four threads, a base frequency of 2.66 GHz,
a  1333  MHz  bus  speed  and  does  not  have  multiprocessor
capabilities.

The AMD Opteron 6276 has Interlagos processor cores
which operate on AMD's Bulldozer microarchitecture. Bulldozer's
architecture is very much focused on improving throughput as it
leverages  aspects  of  concurrent  multi-threading  and  has  an
increased  CPU pipeline  length  of 20  stages  in  order  to  reach
higher  clock  frequencies  with  scalable  IPU.  This  architecture
supports  AMD's Module  system which  is  equivalent  to that  of
Intel's  Hyper-Threading  technology  such  that  both  systems
implement  a  second  thread  in  a  single  core.  Specifically  the
AMD  Opteron  6276  has  sixteen  "cores"  capable  of  running
sixteen total  threads (AMD's definition of what is a "core" will
be further explained in section 6.3), a base frequency of 2.3 GHz,
a bus speed of 3200 MHz, and has a multiprocessor limit of four.

The  Intel  Xeon  E5-2660  has  a  Sandy  Bridge-EP
processor  that  implements  Intel's  Sandy  Bridge
microarchitecture. Sandy Bridge focuses on per-core performance
by integrating a dedicated section on chip for graphics processing
(the first  of it's kind), a micro-op cache to cache instructions as
they are decoded and a new branch prediction unit following the
standard  2-bit  predictor  with  modifications  to  use  1-bit  for

multiple  branches,  leading  to  more  accurate  predictions.  The
Intel  Xeon E5-2660 has eight  cores capable  of running sixteen
total threads, a base frequency of 2.2 GHz, a bus speed of 4000
MHz and has multiprocessor limit of two. This architecture also
has support for Intel's Hyper-Threading technology.

In general,  overall  the microarchitecture design of the
Intel Xeon E5-2660 and AMD Opteron 6276 have more focused
motivations to increase performance through instruction and data
level  methods  rather  than  relying  on  shrinking  transistor
technology like  the  Intel  Xeon X3330.  This  is  relevant  to  the
ending era of Moore's law as the Intel Xeon X3330 is an older
architecture,  being  introduced  in  2008,  while  the  other  two
architectures  are  more  recent  (AMD  Opteron  6276  was
introduced in 2011 and  Intel  Xeon E5-2660 was introduced in
2012).

5.2 Branch Prediction
When approaching performance improvements, creating a deeper
pipeline can be a lucrative area to work in. But a deeper pipeline
has a lot of negative setbacks such as branch mispredictions.

A  deep  pipeline  is  utilized  in  the  Bulldozer
architecture. With it's high branch misinterpretation penalty of 20
cycles, the performance of its branch predictor is vastly an area
of  performance  concern.  Intel's  Sandy Bridge  pipeline  is  not
much shorter than the Bulldozer's, so accurate branch predictions
are of also a concern. But the difference between the two is  that
Sandy Bridge introduced the use of a 6 KB micro-op cache that
caches  instructions  as  they  are  decoded.  This  cache  has  the
ability to  reduce its  branch misinterpretation  penalty from 17
cycles to 14 cycles depending on whether  or not an instruction
can be found in  the  cache.  Overall  Sandy Bridge  is  about  the
same  efficiency  in  terms  of  branch  prediction  compared  to
Bulldozer,  but  will  suffer  less  from branch  misinterpretations
with its micro-op cache. It should be noted that,  the Intel Xeon
X3330  does  not  have  an  as  comparable  pipeline  depth  (14
stages)  compared  to  the  other  two  architectures  (around  20
stages) therefore was excluded in this particular comparison.

5.3 Cache Layout
The  layout  difference  of  caches  on  each  processor  is  greatly
influenced by different performance motivations AMD and Intel
have in their architecture designs. The Intel Xeon X3330, being
the  older  Intel  processor  in  this  section,  has  each  dual  core
sharing a 3 MB L2 Cache for a total L2 cache size of 6 MB. The
L1 cache has 128 KB data cache and a 128 KB instruction cache
and does not implement  an L3 cache.  Compared the other two
architectures, the older Intel Xeon X3330 is outdated.

The  AMD  Opteron  6276  has  a  unique  "dual-core"
module  system that  shares  resources  such  as  a  2  MB 16-way
associative  L2  cache  and  a  8  MB  64-way set  associative  L3
cache.  With  eight  "dual-cores",  this  processor  has  a  total  of
16MB of L2 and L3 cache. It should be noted that these "dual-
core" modules are not really a dual-core product like that of Intel
because it does not physically have two CPUs inside the module,
AMD claims that each module should behave on par as if they
did  have  two  separate  CPUs  though.  A  64KB  2-way  set
associative  L1  instruction  cache  is  also  a  shared  resource
amongst "dual-core" modules, but each "core" has its own 16KB
4-way set associative L1 data cache. The very low associativity of
the instruction caches is an area of performance concern as in the
usage of  two threads on a single instruction cache can contribute
to higher cache miss rates.



 In  the  Intel  Xeon  E5-2660  architecture,  each
individual  core  has  its  own  32KB  8-way  set-associative
instruction and data cache and 256 KB 8-way set associative L2
cache,  but  a  20MB L3 cache is  shared  by all  cores.  Any data
residing in an L2 cache also resides in the L3 cache as this cache
also acts to speed up inter-core memory operations. The L3 cache
in  this  processor  fundamentally  acts  as  a  staging  area  and
switchboard for all  cores,  storing valuable  information such as
whether data has already been cached in another core's L2 cache
or data processed on one core must be handed off to another.

6. CONCLUSIONS
Research in the regular expression matching domain is important
as the applications of a more efficient algorithm has a vast reach
amongst fields such as Image Retrieval in Computer Vision [8],
bioinformatics [16] and file compression techniques [14]. And, in
general,  advancements  made in all  realms  of computer  science
and  technology alike  have  the  ability to  greatly influence  one
another  as  demonstrated  by the  work  written  about  in  earlier
sections.
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