
Parallellism in grep: A Case of Parallel Research to
Common Computing

Lisa Lau
Computer Science and Engineering

The Ohio State University

General Terms

Pattern matching, Aho-Corasick, parallel matching. parallel
computing, graphic processing units, grep, bitwise operations,
SIMD

1. INTRODUCTION
The command line utility grep is a simple, but extremely useful
tool that has had a tremendous amount of value to the users of
Unix and Unix-like systems. The grep command, also known as
"global regular expression print", does precisely what it's formal
name implies. It has the capability of searching for regular
expressions across a global domain, in this case, a global file
system, and printing all found matching lines. The internal
process of a grep command has not varied much over the course
of its history. Consisting of three general steps, the first step
takes the first line of a designated input file and copies the line
into a buffer. Then a comparison between each string is made
with the regular expression. If the string matches the regular
expression, it gets printed to the screen. This process is then
repeated until there are no more valid lines in the input file. This
entire process consists of only reading strings and does not
modify or store any string values.

Grep could be considered one of the most widely used
instances of a regular expression pattern matching algorithm. But
while many implementations of grep have been made such as
NR-grep [5], and GPP-Grep research [15], the "regular
expression pattern matching" or "regular expression search"
problem, where matching regular expressions over large streams
of input text data has continued to be a progressing area for
improving algorithmic performance to many researchers. Much
progress has been made in creating a group of more efficient
string pattern matching algorithms. Some of these algorithms that
have shown promise over the last couple decades in increasing
the performance of string pattern matching have been the Aho-
Corasick Algorithm [1], Parallel-Failureless Aho-Corasick [3]
and most recently, a Bitwise Parallelism approach to the problem
[12].

2. REVIEW OF AHO-CORASICK
The Aho-Corasick algorithm is a foundation in the finite set of
patterns classification of string pattern matching algorithms and
was also used in the original implementation of the fgrep
command in Unix systems. This classification of algorithms
allows for the search of multiple regular expressions.

The AC algorithm consists of building a non-
deterministic finite state machine from a set of regular
expressions and then loading input into the finite state machine
to be processed for regular expression matches. The state
machine uses several types of functions to control the flow of
state transitions. The Goto function defines the mapping of state
transitions. The Output function defines an output of a valid
regular expression. The Fail function defines the state transition
that would be received by the Goto function when a mismatched
character is encountered. Failure transitions backtrack the state

machine in order to recognize patterns at other possible start
locations.

The time required to preprocess and construct the state
machine is proportional to the sum of string lengths of all the
regular expressions in a given set. Memory lookup has an O(n)
runtime where n is the total length of all regular expression
patterns. Additionally, the number of state transitions used by
input strings is independent of the number of keywords in the
set, therefore the AC algorithm's suggested use criteria is in
domains that call for searching large keywords sets with small
string lengths. [1] also discusses the idea of translating the non-
deterministic finite automaton in AC into a deterministic model
could potentially reduce the number of state transitions by half,
where a majority of the algorithm's time would be spent in the
first state and, therefore, was not recommended for practice. But
this observation is extremely important to the algorithm approach
summarized in the next section.

3. REVIEW OF PARALLEL-
FAILURELESS AHO-CORASICK
The AC algorithm was an early milestone in the research of a
better regular expression pattern matching algorithm, and it was
only natural that due to such a prolific reputation, many
variations were implemented such as algorithms produced by
Chen and Wang [2], Ando, Kinoshita, Shishibori and Aoe [7] and
Do, Kang and Kim [9]. In the algorithm approach discussed in
this section, the use of parallel computing is of particular
interest.

As discussed in [3], one of the pitfalls of the Data
Parallel Aho-Corasick approach is the boundary detection
problem. That is, when input streams are divided into segments
and then each segment is ran through the state machine in its
own thread, there is the case where a regular expression will not
get matched if portions of that regular expression become split
amongst multiple thread segments. Typically, this issue is fixed
by extending segmented threads to search beyond their assigned
segment, but this causes large overhead as it is unknown how to
efficiently distinguish by how much a segment would need to
over search into another segment of an interleaved regular
expression pattern. In the worst case each segment would need to
search in addition to the length of the longest regular expression
pattern causing a runtime of O(n/s+m) where m is the longest
pattern length, n is the total length and s is the number of
segments. Memory lookup requires O(n+ms) complexity, a
negative byproduct of DPAC compared to the original AC
algorithm with a memory lookup time of O(n).

 [3] presents a new approach to the DPAC algorithm.
The algorithm, appropriately named as Parallel-Failureless Aho-
Corasick or PFAC, completely removes the use of failure
transitions in the original Aho-Corasick algorithm. Other than
this, the finite state machine is built and used similarly as the
traditional AC. PFAC works by assigning each byte to a thread.
The assigned byte is used as a marker of the start location in the
input stream in each thread. Each thread then proceeds to run the

modified AC finite state machine, moving in a linear fashion
from their start location in the input stream to the next location.
As a result of removing failure transitions from traditional the
traditional AC algorithm, when an invalid state occurs, the thread
immediately terminates. Most of the threads end up terminating
early due to the low probability of starting at a valid pattern state
in the state machine. In addition to this high chance of thread
termination, the number of valid state transitions will be minimal
since each regular expression pattern in the state machine is
viewed as unique. PFAC is also more favorable in terms of
efficiency in memory accesses compared to DPAC. Because each
thread is assigned to each byte in the input text stream and all
threads are running in parallel, and by the algorithm's nature,
each byte data will be read many times by neighboring threads.
Therefore preloading the input text into shared memory greatly
decreases the need to fetch data from global memory.

A multitude of optimizations to the PFAC algorithm
were recommended, many of such revolved around memory
efficient features offered in specifically Nvidia Fermi architecture
CUDA-enabled GPUs. To reduce memory transfers involving
global memory, memory coalescing reads are exploited to more
efficiently load input data from global to shared memory. Texture
memory is also used to reduce the latency associated with
memory lookups of the state transition table as it is optimized for
2D spatial locality. The state transition table is first bound to
texture memory and the first row gets allocated into shared
memory during the preprocessing stage of PFAC.

4. REVIEW OF BITWISE DATA
PARALLELISM
Data level parallelism is a form of parallelization used in many
multi-core CPUs, and in almost all modern GPUs. Many of these
architectures feature "Single Instruction Multiple Data"
operations or SIMD. Because of the presence of vector
processing in these architectures, using SIMD operations, the
compiler and programmer have the ability to apply a single set of
instructions to multiple data sets at the same time using parallel
threads. In [12], the Bitwise Data Parallelism approach, or
referred to as BDP in this paper, presented utilizes these parallel
techniques in addition to the easily parallelizable nature of
bitwise functions to implement a completely new approach to
regular expression matching.

 The BDP algorithm acknowledges the relevant work of
the bit-parallel XML parser using 128-bit SSE2 SIMD
technology with a parallel scanning primitive based on addition
[11] and similar regular expression matching in each parallel
stream as the classical algorithms of Navarro and Raffinot [6] ,
Baez-Yates and Gonnet [10] and Wu and Manber [13] as strong
contributions to its creation. This approach views input text
streams as very large integers that first get partitioned into
blocks. This process is dependent on the number of parallel
resources available. Bytes of data within blocks get processed by
an instruction set that involves bitwise logic and long stream
addition that must be scaled to each block's size. Each byte
stream is substituted with eight 8-bit parallel streams with a one-
to-one direct mapping from each stream i to each ith bit of each
byte. Due to this direct mapping, each bitstream is identifiable by
other parallel bit streams, such as the character class bit stream.
In the case of making necessary calculations such as whether a
character in the input data stream is in a class or not, this
property becomes very useful. In addition to both character class
and input bitstreams, marker bitstreams are also applied to
specify positions of ongoing matches during the entire process.
The heart of BDP is the MatchStar operation. MatchStar returns

all reachable positions by advancing the marker bitstream zero or
more times via the character class bit stream. This
implementation of MatchStar is similar to that the ScanThru
operation found in the Parabix tool chain [4], but it differs such
that it finds all valid matches, not only the longest [12].

One of the distinguishing properties of BDP is the
ability to process more than one byte at a time. Blocks are only
limited by the number of parallel resources at hand and, as a
result, the number of bytes getting processed at the same time is
also only limited by this factor. In revelation to the recent
introduction of 256-bit SIMD instructions and the equivalent
AVX2 instructions offered in Intel's Haswell chips, experiments
were conducted comparing the two implementations of each
architecture to test the scalability of the BDP algorithm with
results showing no discernible reduction in instruction count and
demonstrated great scalability. Similar procedures were
conducted on a GPU to further assess the bounds of scalability of
BDP and results showed improvements up to 60% compared to
the non-GPU implementations using AVX2 and SSE. Differences
in improvements compare to either AVX2 and SSE depended on
factors such as hardware limitations such as register usage and
the fact that long stream addition is a more expensive operation
on GPUs than on SSE or AVX2 implementations.

RELATED-WORK COMPARISON
In this section, a comparison of all three mentioned algorithms
will be made to further offer any additional insightful analysis.

4.1 Similarities
Because PFAC is an algorithm based off of the traditional AC
algorithm they share many similarities between implementation.
The use of a state machine is the foundation of both of these
algorithms. They both build their state machines in memory and
then use those state machines to process an input text stream one
byte at a time. Since memory-bound applications require the
reading and writing of data to and from global memory,
latency/throughput of memory accesses is an area of concern for
performance. PFAC discusses the use of GPU features such as
memory coalescing and texture memory to dismiss these
concerns, as well as the use of shared memory used naturally in
the algorithm. Many of PFAC's memory improvements were
possible as a result of the parallel approach the algorithm takes
as opposed to traditional AC.

The increased use of parallel computing to in recent
years to improve the general efficiencies of traditional algorithms
is relevant as shown in algorithms PFAC and BDP. Both use
parallel techniques to create a faster algorithm. PFAC uses a
thread from each byte in the input text stream while BDP
partitions bytes into blocks based on the number of parallel
resources available. Both approaches aim to increase the number
bytes processed at once using threads. Memory efficiency is a
common area of focus in terms of experimentation with different
implementations for both PFAC and BDP as well. The threads in
PFAC are able to advantageously use shared memory often due to
the close spatial locality of neighboring threads reading the same
data repeatedly. Whereas in BDP, the algorithm is able to store
all intermediate bitstreams in it's loop body in registers while
outside bitstreams that do need to be stored in memory have
buffers allocated to decrease the latency of fetching successive
memory locations [12].

4.2 Dissimilarities
As opposed to the traditional AC and PFAC implementations,
BDP is of a completely new design and not based on traditional

sequential algorithms that were later adapted to fit parallel
architectures. BDP was created with the use of a parallel
architecture first in mind. As a result, the algorithm does not rely
on finite automata to search for regular expression patterns and is
not restricted to processing input stream data at a rate of one byte
at a time. By partitioning the input stream into blocks that
contain more than one byte, only limited by the number of
available parallel resources, the matching process instruction set
is applied to each byte in the block at once, resulting in a much
greater amount of throughput compared to traditional AC and
PFAC.

 While both PFAC and BDP use parallel computing,
BDP does fall victim to performance loss due to load imbalance,
unlike PFAC. In order to gain significant optimizations in PFAC,
a Nvidia Fermi architecture GPU is used in their implementation
for the advantages memory coalescing and texture memory bring
to memory efficiency. As a result, warps are used to implement
the parallel threading that occurs in PFAC. Because the overall
duration of a warp is determined by the longest duration thread,
PFAC is vulnerable to cases of great load imbalance amongst
each thread in a warp. The BDP algorithm is not a victim of this
defect as individual thread durations do not rely on one another
due to the nature of SIMD/SIMT operations.

5. ARCHITECTURE COMPARISON
In this section, we will compare the architectures of three
different processors: the 2.66 GHz Intel Xeon X3330, 2.2 GHz
Xeon E5-2660, and the 2.3 GHz AMD Opteron™ 6276. All of
these architectures operate on a 64-bit data width, are SSE,
SSE2, SSE3, SSSE3 and SSE4 core instruction compliant, and
have multiple cores. It is also worth noting that all compared
microarchitectures also are oriented towards the server market.

5.1 Microarchitecture
All three architectures have fundamentally different
microarchitectures. The Intel Xeon X3330 has a Yorkfield
processor core which implements Intel's Penryn
microarchitecture. This particular chip uses a 45nm transistor
stepping process to produce a cooler, more power efficient
environment than it's predecessor, the Merom. The Xeon X3330
features two duo-core processors for a total of four cores capable
of running a total of four threads, a base frequency of 2.66 GHz,
a 1333 MHz bus speed and does not have multiprocessor
capabilities.

The AMD Opteron 6276 has Interlagos processor cores
which operate on AMD's Bulldozer microarchitecture. Bulldozer's
architecture is very much focused on improving throughput as it
leverages aspects of concurrent multi-threading and has an
increased CPU pipeline length of 20 stages in order to reach
higher clock frequencies with scalable IPU. This architecture
supports AMD's Module system which is equivalent to that of
Intel's Hyper-Threading technology such that both systems
implement a second thread in a single core. Specifically the
AMD Opteron 6276 has sixteen "cores" capable of running
sixteen total threads (AMD's definition of what is a "core" will
be further explained in section 6.3), a base frequency of 2.3 GHz,
a bus speed of 3200 MHz, and has a multiprocessor limit of four.

The Intel Xeon E5-2660 has a Sandy Bridge-EP
processor that implements Intel's Sandy Bridge
microarchitecture. Sandy Bridge focuses on per-core performance
by integrating a dedicated section on chip for graphics processing
(the first of it's kind), a micro-op cache to cache instructions as
they are decoded and a new branch prediction unit following the
standard 2-bit predictor with modifications to use 1-bit for

multiple branches, leading to more accurate predictions. The
Intel Xeon E5-2660 has eight cores capable of running sixteen
total threads, a base frequency of 2.2 GHz, a bus speed of 4000
MHz and has multiprocessor limit of two. This architecture also
has support for Intel's Hyper-Threading technology.

In general, overall the microarchitecture design of the
Intel Xeon E5-2660 and AMD Opteron 6276 have more focused
motivations to increase performance through instruction and data
level methods rather than relying on shrinking transistor
technology like the Intel Xeon X3330. This is relevant to the
ending era of Moore's law as the Intel Xeon X3330 is an older
architecture, being introduced in 2008, while the other two
architectures are more recent (AMD Opteron 6276 was
introduced in 2011 and Intel Xeon E5-2660 was introduced in
2012).

5.2 Branch Prediction
When approaching performance improvements, creating a deeper
pipeline can be a lucrative area to work in. But a deeper pipeline
has a lot of negative setbacks such as branch mispredictions.

A deep pipeline is utilized in the Bulldozer
architecture. With it's high branch misinterpretation penalty of 20
cycles, the performance of its branch predictor is vastly an area
of performance concern. Intel's Sandy Bridge pipeline is not
much shorter than the Bulldozer's, so accurate branch predictions
are of also a concern. But the difference between the two is that
Sandy Bridge introduced the use of a 6 KB micro-op cache that
caches instructions as they are decoded. This cache has the
ability to reduce its branch misinterpretation penalty from 17
cycles to 14 cycles depending on whether or not an instruction
can be found in the cache. Overall Sandy Bridge is about the
same efficiency in terms of branch prediction compared to
Bulldozer, but will suffer less from branch misinterpretations
with its micro-op cache. It should be noted that, the Intel Xeon
X3330 does not have an as comparable pipeline depth (14
stages) compared to the other two architectures (around 20
stages) therefore was excluded in this particular comparison.

5.3 Cache Layout
The layout difference of caches on each processor is greatly
influenced by different performance motivations AMD and Intel
have in their architecture designs. The Intel Xeon X3330, being
the older Intel processor in this section, has each dual core
sharing a 3 MB L2 Cache for a total L2 cache size of 6 MB. The
L1 cache has 128 KB data cache and a 128 KB instruction cache
and does not implement an L3 cache. Compared the other two
architectures, the older Intel Xeon X3330 is outdated.

The AMD Opteron 6276 has a unique "dual-core"
module system that shares resources such as a 2 MB 16-way
associative L2 cache and a 8 MB 64-way set associative L3
cache. With eight "dual-cores", this processor has a total of
16MB of L2 and L3 cache. It should be noted that these "dual-
core" modules are not really a dual-core product like that of Intel
because it does not physically have two CPUs inside the module,
AMD claims that each module should behave on par as if they
did have two separate CPUs though. A 64KB 2-way set
associative L1 instruction cache is also a shared resource
amongst "dual-core" modules, but each "core" has its own 16KB
4-way set associative L1 data cache. The very low associativity of
the instruction caches is an area of performance concern as in the
usage of two threads on a single instruction cache can contribute
to higher cache miss rates.

 In the Intel Xeon E5-2660 architecture, each
individual core has its own 32KB 8-way set-associative
instruction and data cache and 256 KB 8-way set associative L2
cache, but a 20MB L3 cache is shared by all cores. Any data
residing in an L2 cache also resides in the L3 cache as this cache
also acts to speed up inter-core memory operations. The L3 cache
in this processor fundamentally acts as a staging area and
switchboard for all cores, storing valuable information such as
whether data has already been cached in another core's L2 cache
or data processed on one core must be handed off to another.

6. CONCLUSIONS
Research in the regular expression matching domain is important
as the applications of a more efficient algorithm has a vast reach
amongst fields such as Image Retrieval in Computer Vision [8],
bioinformatics [16] and file compression techniques [14]. And, in
general, advancements made in all realms of computer science
and technology alike have the ability to greatly influence one
another as demonstrated by the work written about in earlier
sections.

REFERENCE
[1] Alfred V. Aho , Margaret J. Corasick, Efficient string

matching: an aid to bibliographic search, Communications
of the ACM, v.18 n.6, p.333-340, June 1975 DOI=
http://dl.acm.org/citation.cfm?doid=360825.360855

[2] C. Chen and S. Wang, An efficient multicharacter transition
string-matching engine based on the aho-corasick algorithm.
;In Proceedings of TACO. 2013, 25-25.

[3] C. Lin, C. Liu, L. Chien, and S. Chang, "Accelerating
Pattern Matching Using a Novel Parallel Algorithm on
GPUs," IEEE Transactions on Computers, vol.62, no.10,
pp.1906,1916, Oct. 2013. DOI=
http://dl.acm.org/citation.cfm?doid=2628071.2628079

[4] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R.
Cameron. Parabix: Boosting the efficiency of text processing
on commodity processors. In 18th International Symposium
on High Performance Computer Architecture (HPCA), pages
1{-12. IEEE, 2012.

[5] Gonzalo Navarro, NR-grep: a fast and flexible pattern-
matching tool, Software—Practice & Experience, v.31 n.13,
p.1265-1312, November 10, 2001 [doi>10.1002/spe.411]

[6] G. Navarro and M. Raffnot. A bit-parallel approach to suffix
automata: Fast extended string matching. In Combinatorial
Pattern Matching, pages 14-33.Springer, 1998.

[7] K. Ando, T. Kinoshita, M. Shishibori and J-I.Aoe. "An
Improvement of the Aho-Corasick Machine", Information
Sciences, Vol. 111, 1998, 139 - 151.

[8] Mei-Chen Yeh , Kwang-Ting Cheng, A string matching
approach for visual retrieval and classification, Proceedings
of the 1st ACM international conference on Multimedia
information retrieval, October 30-31, 2008, Vancouver,
British Columbia, Canada [doi>10.1145/1460096.1460107]

[9] P. Do, H. Kang, and S. Kim, Improving a hierarchical
pattern matching algorithm using cache-aware Aho-Corasick
automata. ;In Proceedings of RACS. 2012, 26-30.

[10] R. Baeza-Yates and G. H. Gonnet. A new approach to text
searching. Communications of the ACM, 35(10):74-82, 1992

[11] R. D. Cameron, E. Amiri, K. S. Herdy, D. Lin, T. C.
Shermer, and F. P. Popowich. Parallel scanning with
bitstream addition: An XML case study. In Euro-Par 2011
Parallel Processing, pages 2-13. Springer, 2011.

[12] Robert D. Cameron, Thomas C. Shermer, Arrvindh
Shriraman, Kenneth S. Herdy, Dan Lin , Benjamin R. Hull
and Meng Lin (2014) ' Bitwise data parallelism in regular
expression matching', PACT '14 Proceedings of the 23rd
international conference on Parallel architectures and
compilation, (), pp. 139-150 [Online]. DOI=
http://dl.acm.org/citation.cfm?doid=2628071.2628079

[13] S. Wu and U. Manber. Agrep - a fast approximate pattern-
matching tool. Usenix Winter 1992, pages 153-162, 1992.

[14] Tao Tao , Amar Mukherjee, Pattern Matching in LZW
Compressed Files, IEEE Transactions on Computers, v.54
n.8, p.929-938, August 2005 [doi>10.1109/TC.2005.133]

[15] V. C. Valgenti, J. Chhugani, Y. Sun, N. Satish, M. S. Kim,
C. Kim, and P. Dubey. GPP-Grep: High-Speed Regular
Expression Processing Engine on General Purpose
Processors. In Research in Attacks, Intrusions, and
Defenses, pages 334-353. Springer Berlin Heidelberg, 2012.

[16] Vidya Saikrishna, Akhtar Rasool and Nilay Khare, "String
Matching and its Applications in Diversified Fields",IJCSI
International Journal of Computer Science Issues, Vol. 9,
Issue 1, No 1, January 2012 Page-219-226. ISSN (Online):
1694-0814.

[17] N. Deng, C. Stewart, D. Gmach and M. Arlitt, “Policy and
mechanism for carbon-aware cloud applications,” Network
Operations and Management Symposium (NOMS), 2012

[18] N. Deng, C. Stewart, D. Gmach, M. Arlitt and J. Kelley,
“Adaptive Green Hosting,” International Conference on
Autonomic Computing (ICAC), 2012

http://dl.acm.org/citation.cfm?doid=2628071.2628079
http://doi.acm.org/10.1145/1460096.1460107
http://dl.acm.org/citation.cfm?id=1460107&CFID=665761478&CFTOKEN=81312751
http://dl.acm.org/citation.cfm?id=1460107&CFID=665761478&CFTOKEN=81312751
http://dl.acm.org/citation.cfm?id=1460107&CFID=665761478&CFTOKEN=81312751
http://dl.acm.org/citation.cfm?doid=2628071.2628079
http://dl.acm.org/citation.cfm?doid=360825.360855

