
New Pattern Matching Approaches Comparison
Nima Esmaili Mokaram

Ohio State University
78 W 10th Ave., Apt. A

Columbus, Ohio, 43201
(571)480-2053

esmailimokaram.1@osu.edu

ABSTRACT

In this paper, some of the newly researched and developed methods

and applications related to regular expression matching will be

described. In the past, there were a significant amount of effort on

making the regular expression matching problem faster using

different algorithms. There were a lot of success using different

techniques such as implementing the regular expressions based on

NFAs, DFAs, Backtracking, or Bitwise Representation. However

that has lost its momentum due to lack of improvement simply by

solving the problem using a different algorithm. An era has begun

were computing problems have started to scale out meaning using

multiple of many cores or changing the underlying architecture.

This paper will specifically go over scaling, algorithms,

performance measures, resources used, and the selection of

architecture discussed in three different papers.

Categories and Subject Descriptors

3.74, 3.71, 5.22, 5.25

General Terms

Verification, Reliability, Performance, Measurements,

Experimentation, Design, Algorithms.

Keywords

Comparison, grep, regular expression, architecture, comparisons,

GPUs, Aho-Corasick, DPAC, PFAC

1. INTRODUCTION

The use of parallelism has been dominating the world of

computer science because of many reasons that computer science

has been facing for the last decade such as power wall. One solution

and maybe the most feasible solution so far has been to “scale out”

meaning to do the same thing using more resources rather than

faster or better resources. As the result, computer architects

changed direction and started working on designing CPUs with

multiple cores and it has recently reached many-core designs.

This is great from an architecture point of view if you look at

it from a theoretical point of view. This means that theoretically,

we should get better performance using this new technology.

However, one of the main issues is that this new door that has been

opened to the world of computer science – multi-core/many-core

era – is still not quite adapted with all the existing software. All the

existing software to get the full benefit of this new technology must

be changed in a way to really take advantage of the available

resources. This will then introduce a whole wave of developers

starting to work on all the existing programs and software to make

them able to use all the capabilities of the new technology. This

includes the classical grep (global regular expression print)

program.

Grep is one of the most commonly used program for text

searching and there has been a lot of work and research done to

make it fast and efficient. Grep is no exception and has been the

subject to multiple groups of researchers and developers have been

working on parallelizing it and keeping its performance within the

current level of demand. A significant proportion of this research

will be spent on showing related works and trying to show the

similarities and differences between the different approaches to this

common problem from both an algorithmic and architectural stand

point.

2. Related Work

2.1 Bitwise Data Parallelism

In this paper, there are two main approaches to this problem.

Cameron et all [1] both approached it algorithmically and

architecturally. First they came up with an algorithm that used

bitwise operations that can outperform the existing grep

implementations. It is also designed in such a way that can be scaled

out using more resources. Some comparisons to other currently

used greps are shown using this algorithm on Intel AVX2 and using

GPUs.

This problem is usually approached with either representing

the actually regular expression using NFAs, or DFAs. However, in

this paper, they approach it using a completely different way.

Bitwise approach, they represent the text as series of bits based on

the character encoding and similarly with regular expressions. One

main different that was noticed in their approached was that they

store the class of regular expression and then just mark the input

text with only that particular class of regular expression all

throughout the input text and then move to the next class of regular

expressions and advance the currently marked input text until they

reach the end of classes of regular expression that was specified in

the input.

Obviously, this means that they need to divide up the input

text to many reasonably sized sections. In their algorithm, they use

bitwise operations to locate the matches for a particular regular

expression. This means that they will need to handle carry-outs and

carry-ins of different sections of the input. They used Parabix

Toolchain [2] to achieve this. Using Parabix was both beneficial

and somewhat hindering. This is due to the fact that using Parabix

allow them to make the parallelization of the problem a bit easier

to approach, but on the other hand, it introduced a new set of

difficulties. These difficulties include the limited field size of

vectors available in SIMT and SIMD instructions. This value is 64

bits for most new Instruction Set Architecture.

mailto:esmailimokaram.1@osu.edu

There are comparisons of this algorithm being implemented

for SSE2 (Streaming SIMD Extension 2), Intel’s AVX2, and on

GPU. All the comparisons are done with four different sets of

regular expressions.

- Simplest regular expressions

- Commonly used regular expressions

- Repeated regular expressions

- Very odd regular expression

Each of these categories express a certain feature of a program that

is written for such purpose. Main comparisons are done on

Instructions per Cycle and Cycles per byte and comparing the

bitstream grep with nrgrep and gre2p. These of two of the most

popular greps that are being used today.

Doing 5X better on average is a really performance increase for a

newly introduced algorithm. The complete details of the

comparison could be found on the paper [1].

2.2 Efficient String Matching

In this paper, they introduce a new algorithm to find all the

occurrences of keywords in a given text. There is no further

analysis as to how this algorithm can be improved on different

architectures or if they run in on multicore CPUs or GPUs. This is

indicating that the main focus of the paper is on the algorithm itself

and proving that the algorithm actually does find all the instances

of the keywords in the text with a certain time and space

complexity. There is a great deal of theorems, lemmas, and proofs

on those time complexity as well.

The paper is using a variant of the Knuth-Morris-Pratt along with

finite state machines to come up with a simple and efficient

algorithm to locate all the occurrences of any of a finite number of

keywords in a text. This implementation is used in a software for

bibliographic search in libraries and has improved the search speed

by a factor of 5 to 10 [3].

In the algorithm offered by Alfred Aho and Margaret Corasick the

keywords are not particularly regular expressions. They are a

restricted set of regular expressions which only consist of keywords

with no symbols. In this algorithm, what they are trying to solve is

if we are given a set of keywords {𝑦1, 𝑦2, … , 𝑦𝑘} namely 𝐾 and 𝑥

be an arbitrary string, find all the substrings of 𝑥 that are keywords

in 𝐾. In order to do this, they use three main functions:

1. Goto function: 𝑔

2. Failure function: 𝑓

3. Output function: 𝑜𝑢𝑡𝑝𝑢𝑡

2.2.1 Goto Function

This function is how the algorithm moves through the given text to

find the keywords. It is very similar to a Finite State Machine. The

goto function, 𝑔 will contain all the keywords in it. The best way

to visualize this function is a directed graph that the vertices are the

different states and the edges are the letters of the keywords. You

can see in figure 1, we have the goto function for the keywords

{ℎ𝑒, 𝑠ℎ𝑒, ℎ𝑒𝑟𝑠, ℎ𝑖𝑠}.

Figure 1. Goto Function

As you can see in the graph above, there is an edge connecting the

starting vertex to itself. This edge will help the algorithm to go

through the letters of the string that are no in the keywords without

stopping. An example of using the goto function will look like this

[5].

𝑔(1, 𝑒) = 2

This structure can be stored in many different ways and each will

have advantages and disadvantages. Some of the ways mentioned

include using 2D Arrays, linked lists along with lookup tables for

the more frequently used symbols, and binary tree.

2.2.2 Failure Function

The failure function without going into too much detail is a function

that will return the state that the algorithm should move to when it

fails to find its next state from the goto function. For example, in

the above graph, the failure function will look be as follow [3].

i 1 2 3 4 5 6 7 8 9

f(i) 0 0 0 1 2 0 3 0 3

The above table shows that for example if the algorithm is currently

at state 3 (the first letter read is an 𝑠) and the next letter is no ℎ, the

algorithm will start from the state 0. However, if the algorithm is

currently at state 4 (the first two letters read are 𝑠 and ℎ) and the

next input character is not an 𝑒, the algorithm does not have to start

over. Instead it can start from state 1 which is equivalent to having

read an ℎ (which was the last character read).

2.2.3 Output function

The output function simply is a mapping of states and what

keyword is found that that particular position. Going along with the

our example, the output function will be

i output(i)

2 {he}

5 {she, he}

7 {his}

9 {hers}

The paper goes into a great detail as to how these three functions

are generated, are getting their values, and even their pseudo

codes. It also talks about their time complexity and how the non-

printing portion of the algorithm can be implemented to process a

text of length 𝑛 in 𝑐𝑛 steps, where 𝑐 is independent of the number

of keywords.

There is further explanation on how the failure states can be

eliminated using the next move function of a deterministic finite

automaton (DFA) instead of the goto function. Using DFA, it

replaces both the goto function and the failure function as it

contains both of those in it. Using DFA could potentially decrease

the number of states transitions by 50% [3].

Finally at the end, show that they actually used this algorithm in a

real world application for a bibliography search at a public library.

The results from the comparisons of the old search and the newly

implemented search is shown in the table below. It’s worth noting

that he numbers in the table are in hours.

 15 keywords 24 keywords

Old 0.79 1.27

New 0.18 0.21

Table 1. CPU Time

2.3 Accelerating Pattern Matching Using a

Novel Parallel Programming Algorithm on

GPUs

In this paper from Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng

Chien, and Shih-Shieh Chang, they are focusing on the use of

pattering matching in Network Intrusion Detection Systems

(NIDS). NIDS have been using pattern matching algorithms for a

long time as way to identify and protect computer systems from

network attacks such at Denial-of-Service (DOS), port scans,

and/or malwares [4]. One reason for them to work on this problem

is the increasing speed of the networks. The higher the speed of the

networks get, we need faster ways to process these information to

find out if they are network attacks or not.

GPUs have been used for acceleration of the pattern matching

problems before. However, this paper brings in an algorithm that

use GPUs in their best. GPUs are for solving problems that are

highly parallelizable such as matrix manipulation for a lot of

graphics problems. The problem of pattern matching is not highly

parallelizable by nature.

In this paper, they use the idea of Aho-Corasick algorithm [3]

(section 2.2 of this paper) as the base of their algorithm. The closest

that other researchers have come to making the pattern matching

very parallel is to divide the text into multiple sections and giving

that portion if the input text to a thread or processers depending on

whether they are using OpenMP or GPUs. This approach will first

introduce a new problem called the “boundary problem” which is

explained in section 2.3.1 of this paper. The way that they are

approaching the problem is to take full advantage of the GPU

providing an enormous number of threads. By maximizing the

parallelism, they ultimately will be increasing the throughput of the

algorithm due to the fact that the GPU will not be doing no ops and

will always be doing something which would result in 100%

efficiency.

2.3.1 Boundary Problem
The boundary problem happens when the input string of the pattern

matching problem is divided into many section and is given to

different processes or threads.

Figure 2. Boundary Problem

As shown in figure 2, if separate threads are doing the different

sections of the input text, they won’t be able to recognize the

“BEDE” pattern (if that is one of the keywords).

Solution to this problem is not very hard, however it comes with a

cost. The boundary problem can be resolved by simply letting each

thread check some of the neighboring letters (length of the longest

pattern). Since we are doing this for all the threads, this will add to

the time complexity. The resulting time complexity will be

𝑂 ((
𝑛

𝑠
+𝑚) ∗ 𝑠) = 𝑂(𝑛 + 𝑚𝑠)

It is worth mentioning here that the bottleneck of most GPU

applications is the memory lookup time.

2.3.2 Parallel Failureless-AC Algorithm

Parallel failureless Aho-Corasick (PFAC) algorithm is what this

paper comes up with and uses with GPUs to improve the

performance of the pattern matching problem. The basic of the

PFAC is that each byte of the input text is given to a different

thread. This means that we start a new search at each letter of the

input string. Due to the fact that there is a search starting at each

letter, there is no need to the failure states in the state machine (the

goto function of the AC). This property allows each thread to

terminate when it cannot advance (where normally failure function

comes to play) figure 3. This behavior will result in an efficiency

of 𝑂(1) in the best case – when the thread terminates at the very

first state or finds the result in the very first state – or 𝑂(𝑚) where

m is the length of the longest pattern.

Figure 3. State Machine of PFAC

Similar the previous situation, the problem of boundary still exists

where threads go to each other’s search space. The problem now is

that it does not result in wrong results. It is simply an efficiency

issue. The total overhead could be calculated using the below

formula.

(𝑚 − 1) ∗ 𝑠 = (𝑚 − 1) ∗
𝑛

𝑤

Where n is the input length, m is the longest pattern length, s is the

number of chunks (which in this problem is equal to n), and w is

the chunk size (which is this problem is equal to 1).

As it was mentioned before, the dominating factor in the latency is

the memory access time, especially in GPUs. There are many ways

to decrease the memory latency when programming for GPUs.

Those include:

1. Using shared memory

2. Coalescing memory accesses

3. Binding the state transitions table to texture memory

From the list above the easiests are shared memory and coalescing

the memory accesses in GPUs. Since each threads is reading each

letter starting at its own location, this will result in different threads

loading the same memory location multiple times which will result

in a longer latency due to global memory accesses. One way to

improve this latency is to use the shared memory local to each

thread block. Each thread would load the corresponding letter from

the input text to the shared memory of the thread block. By loading

the data into the shared memory, all the threads from that block can

access that memory with a significantly lower latency compared to

the global memory. Another advantage of this method is that when

other threads are accessing the neighboring input characters it

would be in the shared memory and would not add to the global

memory access latency at all.

Another advantage of this method is that since the threads are

accessing the data from the input text in order – thread 1 is access

the first byte of the input data, thread 2 is accessing the second byte

and so on – it will result in data coalescing which will cause a large

chunk of the data to be brought to the shared memory instead of

byte by byte (this is a GPU hardware feature).

2.3.3 Experiment Setup

The experiments environments were setup such that the host was

running on an Intel Core i7 950 with 32KB of L1 cache per

Streaming Multiprocessor (SM), 256KB of L2 cache per SM, and

8MB of L3 cache for all SMs. The kernel was running on a

NVIDIA GTX580 with 16SMs and 512 cores and 1,536 threads per

SM. 16KB of L1 cache, 48KB of shared memory (per block), and

768KB of L2 cache for all the SMs.

There were four program implemented for the experiments:

1. CPU implementation of AC algorithm compiler

optimized. (𝐴𝐶𝐶𝑃𝑈)

2. CPU implementation of AC using OpenMP with 8

threads. (𝐷𝑃𝐴𝐶𝑂𝑀𝑃)

3. CPU implementation of AC using OpenMP with 𝑛

threads where 𝑛 is the length of input string. (𝑃𝐹𝐴𝐶𝑂𝑀𝑃)

4. GPU implementation of AC algorithm with 256 threads

per block (1D block of threads) – the grid size would be
𝑛

256
 in the x direction. (𝑃𝐹𝐴𝐶𝐺𝑃𝑈)

The results show that the system throughput of the GPU

implementation – PFAC – is 7.85, 1.55, 1.19 times higher than the

𝐴𝐶𝐶𝑃𝑈, 𝐷𝑃𝐴𝐶𝑂𝑀𝑃, and 𝑃𝐹𝐴𝐶𝑂𝑀𝑃 respectively.

This is showing that the algorithm also can be used for CPU

multithreaded programing and will show improvements over the

AC algorithm.

It is worth noting that most of the throughput is taken up by the data

transferring between the host and device (CPU and GPU). The

actual computation has a throughput of 143.16 and is 74.95, 14.74,

and 11.35 times higher than the 𝐴𝐶𝐶𝑃𝑈, 𝐷𝑃𝐴𝐶𝑂𝑀𝑃, and 𝑃𝐹𝐴𝐶𝑂𝑀𝑃

respectively.

3. Similarities

In this section, this paper describes the similarities between all three

papers described above (section 2). The most important similarity

between all three papers was that they all were trying to solve the

pattern matching problem. Each paper had a different approach

which we will further explain in section 4.

Between the second and third paper (Accelerating Pattern Matching

Using a Novel Parallel Algorithm on GPUs and the Efficient String

Matching: An Aid to Bibliographic Search), it can be seen that both

papers use the same technique. They are both based on the KMP

algorithms. These category of pattern matching algorithms are the

ones that take advantage finite state machines that allows them to

find the matches simply by one pass over the input string. This is

given that we have the finite state machine). Furthermore, the third

paper is basing its initial algorithms on the AC algorithm which is

what the second paper concluded (They have references to the

second paper).

Between the first and second paper, it can be seen that both of them

are approaching the problem of pattern matching using parallelism.

Both papers first come up with a new algorithm and then scale out

from there by applying that algorithm to multicore processors or

GPUs. They both use also GPUs to implement their algorithm. This

means that both algorithms can take advantage of high degrees of

parallelism. Both techniques can be applied to GPU programming

and multithreaded CPU programming even though the third paper

is really only written for GPUs.

In both the first and last paper, the GPU implementation had a

significant improvement over other approaches which shows that

the nature of the problem may not seem so parallelizable, but in

reality it may be (as you saw) a great candidates for high degrees

of parallelism.

4. Dissimilarities

This section of the paper will describe the differences between the

three different approaches to solving the same pattern matching

problem.

The biggest thing that can be seen is that the first paper (Bitwise

data Parallelism in Regular Expression Matching) is focusing on

the fact that the keywords are regular expressions. This by nature

means that the number of keywords increase due to the fact that you

can express many keywords by only few characters in a regular

expressions. This has caused the first paper to put extra emphasis

on how to turn regular expressions into data structure that can be

used into searching a text string. For that they have used different

bitwise operations to do so.

Another main different between the first paper and the other two is

that in the first paper, all the operations are bitwise which is first

citizen to computers and in the two other papers, they are left at

characters and are represented by bytes. This is causing the first

approach to be slightly harder to grasp at first.

In the third approach (GPU with AC algorithm), there has been a

significant more stress on memory accesses which is absolutely

necessary due to the slow nature of DRAM compared to GPUs and

CPUs. However, in the bitwise approach, there is very limited hints

to the problem of slow memory access time and potentially

solutions to it similar to the third paper.

Another big difference between the approaches is that in the second

paper the author is only mentioning the algorithm, the proofs

related to the algorithm, and some implementations of the

algorithm. On the other hand, in the first and third paper, the issue

of pattern matching is taken to a whole new level. Not only they

come up with a new algorithm (or an alteration of an existing

algorithm), but also they work on scaling out and making the

algorithm work on many cores. This is due to the high demands of

software, networks, and users. They both execute on the idea of

parallelism very well unlike the second paper.

5. Architectural Comparison

From an architectural stand point, the three approaches are

somewhat fundamentally different. The Bitwise data parallelism

approach is mainly focusing on SSE2 and AVX2 systems. Even

though they did implement their algorithm on GPUs (AMD), some

features of the algorithm were too complex to implement and

therefore were omitted. On the other hand, The Accelerating

Pattern Matching approach is putting almost all of its focus on

GPUs and is only really targeting GPUs. It turned out that their

algorithm is also beneficial when used on many core CPUs.

Similarly, the bitwise approach is trying avoid the problem of long-

time-taking global memory accesses by simply moving from

NVIDIA to AMD and using the zero-copy memory region. This

results in their analysis to not include the best throughput between

the CPU and GPU and vice versa.

In the second paper by Aho and Corasick, they really are not

involving themselves with architectures in the first place. They are

simply implemented a new approach/algorithm for solving the

pattern matching problem when the keywords are not regular

expressions.

6. Conclusion

In conclusion, after reading these three paper, each paper is really

targeting a specific area of the problem that if and is an answer to a

specific questions. For example, the “Efficient String Matching: An

Aid to Bibliography Search” is an approach that is an answer for

bibliography search for papers. The “Accelerating Pattern matching

Using a Novel Parallel Algorithm on GPUs” is the solution for the

pattern matching problem for Network Intrusion Detections

Systems due to its high throughput demanding. Finally the “Bitwise

Data Parallelism in Regular Expression Matching” is a great

solution for when the input can be regular expression for example

grep application and for personal computers.

References
1. R. D. Cameron, T. C. Shermer, A. Shriraman, K. S. Herdy, D.

Lin, B. R. Hull, M. Lin, “Bitwise Data Parallelism In Regular

Expression Matching,”

2. D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R.

Cameron. “Parabix: Boosting the efficiency of text processing

on commodity processors. In 18Th International Symposium

on High Performance Computer Architecture (HPCA), pages

1-12, IEEE, 2012

3. A. V. Aho and M. J. Corasick, “Efficient String Matching on

Bibliographic Search,” Comm. ACM, vol. 18, no. 6, pp. 333-

340, 1975.

4. C. Lin, C. Liu, L. Chien, and S. Chang. “Accelerating Pattern

Matching Using a Novel Parallel Program on GPUs,” IEEE,

Transactions on Computers, 62(10), 2013

5. Saima Hasib et al, / (IJCSIT) International Journal of

Computer Science and Information Technologies, Vol. 4 (3) ,

2013, 467-469 www.ijcsit.com 467

