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Abstract
Data races complicate programming language semantics,
and a data race is often a bug. Existing techniques detect data
races and define their semantics by detecting conflicts be-
tween synchronization-free regions (SFRs). However, such
techniques either modify hardware or slow programs dra-
matically, preventing always-on use today.

This paper describes Valor, a sound, precise, software-
only region conflict detection analysis that achieves high
performance by eliminating costly analysis on each read op-
eration that prior approaches require. Valor instead logs a
region’s reads and lazily detects conflicts for logged reads
when the region ends. We have also developed FastRCD, a
conflict detector that leverages the epoch optimization strat-
egy of the FastTrack data race detector.

We evaluate Valor, FastRCD, and FastTrack, showing
that Valor dramatically outperforms FastRCD and Fast-
Track. Valor is the first region conflict detector to provide
strong semantic guarantees for data races with under 2X
slowdown. We also show that Valor is an effective data
race detector, providing an appealing cost–coverage tradeoff
compared with FastTrack. Overall, Valor advances the state
of the art in always-on support for strong behavioral guaran-
tees for data races, and in sound, precise race detection.

1. Introduction
Data races are a fundamental barrier to providing well-
defined programming language specifications and to writ-
ing correct shared-memory, multithreaded programs. A data
race occurs when two accesses to the same memory loca-
tion are conflicting—executed by different threads and at
least one is a write—and concurrent—not ordered by syn-
chronization operations [4].

Data races can cause programs to exhibit confusing and
incorrect behavior. They can lead to sequential consistency
(SC), atomicity, and order violations [40, 53] that may cor-
rupt data, cause a crash, or prevent forward progress [25, 34,
51]. The Northeastern electricity blackout of 2003 [62] is a
testament to the danger posed by data races.

The complexity and risk associated with data races pro-
vide the two main motivations for this work: (1) systems

should provide strong data race semantics that programming
languages can rely on, and (2) developers require efficient
tools for detecting data races.

The risk presented by data races strongly suggests that
programming languages should provide strong semantic
guarantees for executions with data races, but doing so ef-
ficiently is complex and challenging. As a testament to that
complexity, modern languages such as Java and C++ sup-
port variants of DRF0, providing few or no guarantees for
executions with data races [2, 3, 9, 10, 42, 66] (Section 2).
These languages remain useful by providing strong seman-
tics with a guarantee of not only SC but also serializabil-
ity of synchronization-free regions in the absence of data
races [3, 11, 42, 43, 53]. Modern languages should provide
similarly strong semantics for executions with data races.

A promising approach to data race semantics is to detect
problematic data races and halt the execution with an excep-
tion [21, 42, 45]. Exceptional semantics for data races sim-
plify programming language specifications by limiting the
effects of executions that exhibit data races. A prerequisite
to treating data races as exceptions is having a mechanism
that dynamically detects problematic races with no false pos-
itives and is efficient enough for always-on use.

Such an efficient, precise data race detector is also valu-
able for finding and fixing data races, both before and after
deployment. During development, high overheads are prob-
lematic, wasting limited resources. Developers shy away
from using intrusive tools that do not allow them to test re-
alistic program executions [44]. Moreover, the manifestation
of a data race is dependent on an execution’s inputs, environ-
ments, and thread interleavings. A data race may not occur in
hours of program execution [69], sometimes requiring weeks
to reproduce, diagnose, and fix if it is contingent on specific
environmental conditions [29, 40, 62]. Detecting such data
races requires analyzing production executions, making per-
formance a key constraint.

Thus, providing strong semantic guarantees and detecting
data races each require precise, efficient techniques. Design-
ing such precise, efficient mechanisms is the central problem
we explore in this work.
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Existing approaches. Existing sound and precise dynamic
data race detectors slow program executions by an order of
magnitude or more in order to determine which conflicting
accesses are concurrent according to the happens-before re-
lation [21, 24, 36, 54] (Section 2). Other prior techniques
avoid detecting happens-before races soundly (no false nega-
tives), instead detecting conflicts only between operations in
concurrent synchronization-free regions (SFRs) [20, 42, 45].
Every SFR conflict corresponds to a data race, but not ev-
ery data race corresponds to an SFR conflict. Detecting SFR
conflicts provides the useful property that an execution with
no region conflicts corresponds to a serialization of SFRs.
This guarantee extends to executions with data races the
strong property that DRF0 already provides for data-race-
free executions [2, 3, 11, 43]. Unfortunately, existing region
conflict detectors are impractical, relying on custom hard-
ware or slowing programs substantially [20, 42, 45].

Our Approach
This work aims to provide a practical, efficient, software-
only region conflict detector that is useful for giving data
races clear semantics and for reporting real data races. Our
key insight is that tracking the last readers of each shared
variable is not necessary for sound and precise region con-
flict detection. As a result of this insight, we introduce a
novel sound and precise region conflict detection analysis
called Valor. Valor records the last region to write each
shared variable, but it does not record the last region(s) to
read each variable. Instead, it logs information about each
read in thread-local logs, so each thread can later validate its
logged reads to ensure that no conflicting writes occurred in
the meantime. Valor thus detects write–write and write–read
conflicts eagerly (i.e., at the second conflicting access), but
it detects read–write conflicts lazily. We note that some soft-
ware transactional memory (STM) systems make use of sim-
ilar insights about eager and lazy conflict detection, but their
mechanisms are imprecise, and they do not target providing
execution guarantees or detecting data races (Section 8.3).

Alongside Valor, we also developed FastRCD, which is
an adaptation of the efficient FastTrack happens-before de-
tector [24] for region conflict detection. FastRCD does not
track the happens-before relation, but it tracks the regions
that last wrote and read each shared variable. As such, Fast-
RCD provides somewhat lower overhead than FastTrack but
still incurs most of FastTrack’s costs by soundly and pre-
cisely tracking the last accesses to each shared variable.

Our purpose in developing FastRCD was to understand
the inherent costs of eager conflict detection and FastTrack-
like metadata tracking. Our main hypothesis regarding these
costs is that tracking the last read to each shared variable
is inherently expensive. Multiple threads’ concurrent re-
gions commonly read the same shared variable; updating
per-variable metadata at program reads leads to communica-
tion and synchronization costs not incurred by the original
program execution.

Both FastRCD and Valor report region conflicts when
an access in one thread conflicts with an access that was
executed by another thread in an ongoing region—which
is a sufficient condition for detecting every data race that
could violate region serializability. We show that FastRCD
and Valor are still precise even if regions are bounded only
at synchronization release operations. FastRCD and Valor
thus detect conflicts between release-free regions (RFRs) by
default, which we show helps to amortize per-region costs.

We have implemented FastRCD and Valor, as well as
the state-of-the-art FastTrack analysis [24], in a high-perfor-
mance Java virtual machine. We evaluate and compare the
performance, characteristics, and race detection coverage of
these three analyses on a variety of large, multithreaded Java
benchmarks. Valor incurs the lowest overheads of any sound,
precise, software conflict detection system that we are aware
of, adding only 96% average overhead.

By contrast, our implementation of FastTrack adds 342%
average overhead over baseline execution, which is compa-
rable to the 8.5X slowdown (750% overhead) reported by
prior work [24]—particularly in light of implementation dif-
ferences (Section 7.2). FastRCD incurs most but not all of
FastTrack’s costs, adding 283% overhead on average. Valor
is not only substantially faster than existing approaches that
provide strong semantic guarantees, but its <2X slowdown
is fast enough for pervasive use during development and
testing, including end-user alpha and beta tests, and poten-
tially in some production systems. Valor thus represents a
significant advancement of the state of the art: the first ap-
proach with under 100% time overhead that provides useful,
strong semantic guarantees to existing languages for execu-
tions both with and without races on commodity systems.

2. Background and Motivation
Detecting data races soundly and precisely enables provid-
ing strong execution guarantees, but sound1 and precise dy-
namic analysis adds high run-time overhead [24]. Detecting
conflicts between synchronization-free regions (SFRs) pro-
vides strong execution guarantees, but existing approaches
rely on custom hardware [42, 45] or add high overhead [20].

Providing a strong execution model. Modern programming
languages (Java and C++) have memory models that are
variants of the data-race-free-0 (DRF0) memory model [3,
11, 43], ensuring data-race-free (DRF) executions are se-
quentially consistent [37] (SC). As a result, DRF0 also pro-
vides the stronger guarantee that DRF executions correspond
to a serialization of SFRs [2, 3, 42].

Unfortunately, DRF0 provides no semantics for execu-
tions with data races; the behavior of a C++ program that
permits a data race is undefined [11]. A recent study em-
phasizes the difficulty of reasoning about data races, show-
ing that a C/C++ program that permits apparently “benign”

1 A dynamic analysis is sound if it never incurs false negatives for the
current execution.
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data races may behave incorrectly due to compiler transfor-
mations or architectural changes [9]. Java attempts to pre-
serve memory and type safety for executions with data races
by avoiding “out-of-thin-air” (OOTA) values [43], but recent
work shows that it is difficult to prohibit OOTA values with-
out precluding common compiler optimizations [12, 66].

These deficiencies of DRF0 create an urgent need for sys-
tems to provide stronger guarantees about data race seman-
tics [2, 10, 16]. Recent work gives fail-stop semantics to data
races, treating a data race as an exception [16, 21, 42, 45].
Our work is motivated by these efforts, and our techniques
also give data races fail-stop semantics.

Detecting data races soundly and precisely. Sound and pre-
cise dynamic data race detection provides strong execution
guarantees by throwing an exception for every data race.
However, to detect races soundly and precisely, an analysis
must track the happens-before relation [36]. Analyses typ-
ically track happens-before using vector clocks [47]; each
vector clock operation takes time proportional to the number
of threads. In addition to tracking happens-before, an anal-
ysis must track when each thread last wrote and read each
shared variable, to check that each access happens after ev-
ery earlier conflicting access. FastTrack reduces the cost of
tracking happens-before, yet remains sound (no false nega-
tives), by tracking a single last writer and, in many cases, a
single last reader [24].

Despite this optimization, FastTrack still slows execu-
tions by nearly an order of magnitude on average [24]. Its
high run-time overhead is largely due to the cost of track-
ing shared variable accesses, especially reads. A program’s
threads may perform reads concurrently, but FastTrack re-
quires each thread to update shared metadata on each read.
These updates effectively convert the reads into writes, in-
creasing remote cache misses. Moreover, FastTrack must
synchronize to ensure that its happens-before checks and
metadata updates happen atomically. These per-read costs
fundamentally limit FastTrack and related analyses [28].

Hardware extensions (e.g., hardware vector clocks) have
the potential to improve performance, but they require in-
vasive architecture changes that are not applicable to to-
day’s systems. Furthermore, realistically bounded hardware
resources cannot efficiently detect data races that occur over
very long spans of dynamic instructions [4, 18, 48].

Our work is motivated by the challenge of designing a pre-
cise, software-only data race detector that is efficient enough
to be always-on.

Detecting region conflicts. Given the high cost of sound,
precise happens-before data race detection, prior work has
sought to detect the subset of data races that may violate se-
rializability of an execution’s SFRs—SFR serializability be-
ing the same guarantee provided by DRF0 for DRF execu-
tions. Several techniques detect conflicts between operations
in SFRs that overlap in time [20, 42, 45]. SFR conflict detec-

tion yields the guarantees that any conflict is a data race; a
conflict-free execution is a serialization of SFRs; and a DRF
execution produces no conflicts.

Prior work on Conflict Exceptions detects conflicts be-
tween overlapping SFRs [42] and treats data races as ex-
ceptions; its guarantees are the closest to the ones provided
by our FastRCD and Valor. Conflict Exceptions achieves
high performance via hardware support for conflict detection
that augments existing cache coherence mechanisms. How-
ever, its hardware support has several drawbacks. First, the
cache coherence mechanism becomes more complex. Sec-
ond, each cache line incurs a high space overhead for storing
metadata. Third, sending larger coherence messages that in-
clude metadata leads to coherence network congestion and
requires more bandwidth. Fourth, cache evictions and syn-
chronization operations for regions with evictions become
more expensive because of the need to preserve metadata by
moving it to and from memory. Fifth, requiring new hard-
ware bars such techniques from today’s systems.

DRFx detects conflicts between regions that are syn-
chronization free but also bounded, i.e., every region has
a bounded maximum number of instructions that it may ex-
ecute [45]. Bounded regions allow DRFx to use simpler
hardware than Conflict Exceptions [45, 61], but DRFx can-
not detect all violations of SFR serializability, although it
guarantees SC for conflict-free executions. Like Conflict Ex-
ceptions, DRFx is inapplicable to today’s systems because it
requires hardware changes.

IFRit detects data races for debugging by detecting con-
flicts between dynamically overlapping interference-free re-
gions (IFRs) [20]. An IFR is a region of one thread’s ex-
ecution that is associated with a particular variable, dur-
ing which another thread’s write to that variable is a data
race. IFRit comprises both static and dynamic analysis. A
whole-program static analysis places IFR boundaries con-
servatively, so IFRit is precise (i.e., no false positives). Con-
servatism in placing boundaries at data-dependent branches,
external functions calls, and other points causes IFRit to miss
some IFR conflicts. In contrast to our work, IFRit does not
aim to provide execution model guarantees, instead focusing
on detecting as many races as possible.

The next section introduces our analyses that are entirely
software based (like IFRit) and detect conflicts between full
SFRs (like Conflict Exceptions), with extensions to detect
and report data races (like IFRit).

3. Efficient Region Conflict Detection
The goal of this work is to develop a region conflict de-
tection mechanism that is useful both for providing guar-
antees to a programming language implementation and for
detecting bugs during development, and is efficient enough
for always-on use. We explore two different approaches for
detecting region conflicts. The first approach is FastRCD,
which, like FastTrack [24], uses epoch optimizations and ea-
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gerly detects conflicts at conflicting accesses. Despite being
the fastest such mechanism that we are aware of, Section 7.2
experimentally shows that FastRCD’s need to track last read-
ers imposes overheads that are similar to FastTrack’s and are
too high for always-on use.

In response to FastRCD’s high overhead, we develop
Valor,2 which is the main contribution of this work. Valor
detects write–write and write–read conflicts as in FastRCD.
The key to Valor is that it detects read–write conflicts lazily.
Lazy conflict detection is more efficient than eager conflict
detection because it need not track last reader information.
Instead, in Valor, each thread logs read operations locally. At
the end of a region, the thread validates its read log, checking
for read–write conflicts between those reads and any writes
in other threads’ ongoing regions. By lazily checking for
these conflicts, Valor can provide fail-stop data race seman-
tics without hardware support and with overheads far lower
than even our optimized FastRCD implementation.

Section 3.1 describes the details of FastRCD and the fun-
damental sources of high overhead that eager conflict detec-
tion imposes. Section 3.2 then describes Valor and the impli-
cations of lazy conflict detection. Sections 4 and 5 describe
extensions and optimizations for FastRCD and Valor.

3.1 FastRCD: Detecting Conflicts Eagerly in Software
This section presents FastRCD, a novel software-only dy-
namic analysis for detecting region conflicts. FastRCD re-
ports a conflict when a memory access executed by one
thread conflicts with a memory access that was executed by
another thread in a region that is ongoing. It provides es-
sentially the same semantics as Conflict Exceptions [42] but
without hardware support.

In FastRCD, each thread keeps track of a clock c that
starts at 0 and is incremented at every region boundary. This
clock is analogous to the logical clocks maintained by Fast-
Track to track the happens-before relation [24, 36].

FastRCD uses epoch optimizations based on FastTrack’s
optimizations [24] for efficiently tracking read and write
metadata. It keeps track of the single last region to write each
shared variable, and the last region or regions to read each
shared variable. For each shared variable x, FastRCD main-
tains x’s last writer region using an epoch c@t: the thread t
and clock c that last wrote to x. When x has no concurrent
reads from overlapping regions, FastRCD represents the last
reader as an epoch c@t. Otherwise, FastRCD keeps track of
last readers in the form of a read map that maps threads to
the clock values c of their last read to x. We use the following
notations to help with exposition:

clock(T) – Returns the current clock c of thread T.

epoch(T) – Returns an epoch c@T, where c represents the
ongoing region in thread T.

2 Valor is an acronym for Validating anti-dependences lazily on release.

Wx – Represents last writer information for variable x in
the form of an epoch c@t.

Rx – Represents a read map for variable x of entries t→ c.
Rx[T] represents the clock value c when T last read x (or
0 if not present in the read map).

We generally use T for the current thread and t for other
threads. For clarity, we use a common notation for read
epochs and read maps; a one-entry read map is a read epoch,
and an empty read map is the initial-state epoch 0@0.

Algorithms 1 and 2 show FastRCD’s analysis at program
writes and reads, respectively. At a write by thread T to pro-
gram variable x, the analysis first checks if the last writer
epoch matches the current epoch, indicating an earlier write
in the same region, in which case the analysis does noth-
ing (line 1). Otherwise, it checks for conflict with previous
writes (lines 3–4) and reads (lines 5–7). Finally, it updates
the metadata to reflect the current write (lines 8–9).

Algorithm 1 WRITE [FastRCD]: thread T writes variable x
1: ifWx 6= epoch(T) then . Write in same region
2: let c@t←Wx

3: if c = clock(t) then . t’s region is ongoing
4: Conflict! . Write–write conflict detected

5: for all t’→ c’ ∈ Rx do
6: if c’ = clock(t’) then
7: Conflict! . Read–write conflict detected

8: Wx ← epoch(T) . Update write metadata
9: Rx ← ∅ . Clear read metadata

At a read, the instrumentation first checks for an earlier
read by the same region, in which case the analysis does
nothing (line 1). Otherwise, it checks for a conflict with a
prior write by checking if the last writer thread t is still ex-
ecuting its region c (lines 3–4). Finally, the instrumentation
updates T’s clock in the read map (line 5).

Algorithm 2 READ [FastRCD]: thread T reads variable x
1: ifRx[T] 6= clock(T) then . Read in same region
2: let c@t←Wx

3: if c = clock(t) then . t’s region is ongoing
4: Conflict! . Write–read conflict detected

5: Rx[T]← clock(T) . Update read map

FastRCD’s analysis at a read or write must execute atom-
ically. Whenever the analysis needs to update x’s metadata
(Wx and/or Rx), it “locks” x’s metadata for the duration of
the action (not shown in the algorithms). Because the anal-
yses at reads and writes each read and write multiple meta-
data words, the analyses are not amenable to a “lock-free”
approach that updates the metadata using a single atomic op-
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log <x, v>
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(b)

Figure 1. (a) Valor eagerly detects a conflict at T2’s access be-
cause the last region to write x is ongoing. (b) Valor detects read–
write conflicts lazily. During read validation, T1 detects a write to
x since T1’s read of x.

eration.3 Note that the analysis and program memory access
need not execute together atomically because the analysis
need not detect the order in which conflicting accesses oc-
cur, just that they conflict.

FastRCD soundly and precisely detects every region con-
flict just before the conflicting access executes. FastRCD
guarantees that region-conflict-free executions are region se-
rializable, and that every region conflict is a data race. It suf-
fers from high overheads (Section 7.2) because it unavoid-
ably performs expensive analysis at reads.

3.2 Valor: Detecting Read–Write Conflicts Lazily
This section describes the design of Valor, a novel, software-
only region conflict detector that eliminates the costly analy-
sis on read operations that afflicts FastRCD (and FastTrack).
Like FastRCD, Valor reports a conflict when a memory ac-
cess executed by one thread conflicts with a memory access
previously executed by another thread in a region that is on-
going. Valor soundly and precisely detects conflicts that cor-
respond to data races and provides the same semantic guar-
antees as FastRCD. Valor detects write–read and write–write
conflicts exactly as in FastRCD, but detects read–write con-
flicts differently. Each thread locally logs its current region’s
reads and detects read–write conflicts lazily when the region

3 Intel’s Haswell architecture supports multi-word read–modify–write via
restricted transactional memory (RTM) [68]. Recent work shows that this
hardware support incurs substantial per-transaction costs [46, 57].

ends. Valor eliminates the need to track the last reader of
each shared variable, leading to its high performance.

3.2.1 Overview
During a region’s execution, Valor tracks each shared vari-
able’s last writer only. Last writer tracking is enough to ea-
gerly detect write–write and write–read conflicts. Valor does
not track each variable’s last readers, so it cannot detect
read–write conflicts at the conflicting write. Instead, Valor
detects these lazily, when the conflicting read’s region ends.

Write–write and write–read conflicts. Figure 1(a) shows an
example execution with a write–read conflict on the shared
variable x. Dashed lines indicate region boundaries, and the
labels j-1, j, k-1, etc. indicate threads’ clocks, incremented at
each region boundary. The grey text above and below each
program memory access (e.g., 〈v, p@T0〉) shows x’s last
writer metadata. Valor stores a tuple 〈v, c@t〉 that includes
the epoch c@t of the last write to x and a version, v, that the
analysis increments on a region’s first write to x. Valor needs
versions to detect conflicts precisely, as we explain shortly.

In the example, T1’s write to x triggers an update of its
last writer metadata to 〈v+1, j@T1〉. The analysis does not
detect a write–write conflict because the example assumes
that T0’s region p (not shown) has ended. At T2’s write or
read to x, the analysis detects that T1’s current region is j and
that x’s last writer epoch is j@T1. These observations imply
that T1’s ongoing epoch conflicts with T2’s access, trigger-
ing either a write–write or write–read conflict, depending on
the type of T2’s access.

Read–write conflicts. In Figure 1(b), T1 reads x, and the
last writer metadata remains unchanged because the example
assumes that x’s last writer was in a completed (i.e., non-
conflicting) region in another thread, T0. T1 records its read
in its thread-local read log. A read log entry, 〈x, v〉, consists
of the address of variable x and x’s current version, v.

When T2 writes x, it is a read–write conflict because T1’s
region j is ongoing. However, the analysis does not detect the
conflict at T2’s write, because Valor does not track x’s last
readers. Instead, the analysis simply updates the last writer
metadata for x, including incrementing its version to v+1.

When T1’s region j ends, Valor validates j’s reads to
lazily detect read–write conflicts. Read validation compares
each entry 〈x, v〉 in T1’s read log with x’s current version.
In the example, x’s version has changed to v+1, and the
analysis detects a read–write conflict. Note that even with
lazy read–write conflict detection, Valor guarantees that each
conflict-free execution is region serializable. In contrast to
eager detection, Valor’s lazy detection cannot deliver precise
exceptions. An exception for a read–write conflict is only
raised at the end of the region executing the read, not at the
conflicting write, which Section 3.2.3 argues is acceptable
for providing strong behavior guarantees.

Valor requires versions. Let us assume for exposition’s
sake that Valor tracked only epochs and not versions, and
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it recorded epochs instead of versions in read logs, e.g.,
〈x, p@T0〉 in Figure 1(b). In that case, Valor would still cor-
rectly detect the read–write conflict in Figure 1(b). So why
does Valor need versions as part of its last writer metadata?

Figures 2(a) and 2(b) illustrate why epochs alone are
insufficient. In Figure 2(a), no conflict exists. The analysis
should not report a conflict during read validation, even
though x’s epoch has changed from the value recorded in
the read log. Note that the reason there is no conflict, despite
the changed epoch, is that T1 itself is the last writer.

In Figure 2(b), T1 is again the last writer of x, but in
this case, T1 should report a read–write conflict because of
T2’s intervening write. However, using epochs alone, Valor
cannot differentiate these two cases during read validation.

Thus, Valor uses versions to differentiate cases like Fig-
ures 2(a) and 2(b). Read validation detects a conflict for x if
(1) its version has changed and its last writer thread is not the
current thread or (2) its version has changed at least twice,4

definitely indicating intervening write(s) by other thread(s).
Read validation using versions detects the read–write

conflict in Figure 2(b). Although the last writer is the current
region (j@T1), the version has changed from v recorded in
the read log to v+2, indicating an intervening write. Read
validation (correctly) does not detect a conflict in Figure 2(a)
because the last writer is the current region, and the version
has only changed from v to v+1.

The rest of this section describes the Valor algorithm in
detail: its actions at reads and writes and at region end, and
the guarantees it provides.

3.2.2 Analysis Details
Our presentation of Valor uses the following notations, some
of which are the same as or similar to FastRCD’s notations:

clock(T) – Represents the current clock c of thread T.

epoch(T) – Represents the epoch c@T, where c is the cur-
rent clock of thread T.

Wx – Represents last writer metadata for variable x, as a
tuple 〈v, c@t〉 consisting of the version v and epoch c@t.

T.readLog – Represents thread T’s read log. The read log
contains entries of the form 〈x, v〉, where x is the address
of a shared variable and v is a version. Without loss of
generality, one can consider it to be a sequential store
buffer (allows duplicates) or a set (no duplicates).

As in Section 3.1, we use T for the current thread and t for
other threads.

Analysis at writes. Algorithm 3 shows the analysis that
Valor performs at a write. It does nothing if x’s last writer
epoch matches the current thread T’s current epoch (line 2),
indicating that T has already written to x. Otherwise, the
analysis checks for a write–write conflict (lines 3–4) by

4 A region updates x’s version only at its first write to x.

Thread T1 Thread T2
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rd x
<v, p@T0>
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<v+1, j@T1>

wr x
<v, p@T0>

log <x, v>

k+1

read
validation

(a)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict 
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

<v+2, j@T1>

wr x
<v+1, k@T2>

log <x, v>

k+1

read
validation

(b)

Figure 2. Valor must maintain versions in order to detect conflicts
soundly and precisely.

checking if c = clock(t), indicating that x was last written
by an ongoing region in another thread (note that this condi-
tion implies t 6= T). Finally, the analysis updatesWx with an
incremented version and the current thread’s epoch (line 5).

Algorithm 3 WRITE [Valor]: thread T writes variable x
1: let 〈v, c@t〉 ←Wx

2: if c@t 6= epoch(T) then . Write in same region
3: if c = clock(t) then
4: Conflict! . Write–write conflict detected
5: Wx ← 〈v+1, epoch(T)〉 . Update write metadata

Analysis at reads. Algorithm 4 shows Valor’s read analysis.
The analysis first checks for a conflict with a prior write in
another thread’s ongoing region (lines 2–3). After that check,
the executing thread adds an entry to its read log (line 4). The
new entry consists of x’s address and its current version v.

Unlike FastRCD’s analysis at reads (Algorithm 2), Valor’s
analysis at reads does not update any shared metadata, such
as FastRCD’s read map Rx. FastRCD’s updates to read
metadata make reads much more expensive, requiring syn-
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Algorithm 4 READ [Valor]: thread T reads variable x
1: let 〈v, c@t〉 ←Wx

2: if t 6= T ∧ c = clock(t) then
3: Conflict! . Write–read conflict detected
4: T.readLog← T.readLog ∪ {〈x, v〉}

chronization and incurring remote cache misses on the read
metadata, which the original program would not incur.

Analysis at region end. Valor detects read–write conflicts
lazily at region boundaries, as shown in Algorithm 5. For
each entry 〈x, v〉 in the read log, the analysis compares v with
x’s current version v’. Differing versions are a necessary but
insufficient condition for a conflict. If x was last written by
the thread ending the region, then only a difference of more
than one (i.e., v’≥ v+2) indicates a conflict (as illustrated in
Figure 2 in Section 3.2.1).

Algorithm 5 REGION END [Valor]: thread T executes
region boundary

1: for all 〈x, v〉 ∈ T.readLog do
2: let 〈v’, c@t〉 ←Wx

3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Conflict! . Read–write conflict detected
5: T.readLog← ∅

We note that when Valor detects a write–write or write–
read conflict, it is not necessarily the first conflict to occur:
there may be an earlier read–write conflict waiting to be
detected lazily. To correctly report such read–write conflicts
first, Valor checks for and reports them first, by triggering
read validation just before reporting other types of conflicts.
As Section 3.2.3 explains, Valor can validate reads at any
point to detect outstanding read–write conflicts, and does so
before sensitive operations like system calls and I/O.

Atomicity of analysis operations. Similar to FastTrack
and FastRCD, Valor’s analysis at writes, reads, and region
boundaries must execute atomically in order to avoid miss-
ing conflicts and corrupting analysis metadata. Unlike Fast-
Track and FastRCD, Valor can use a lock-free approach be-
cause the analysis accesses a single variable,Wx. The write
analysis updatesWx (line 5 in Algorithm 3) using an atomic
operation (not shown). If the atomic operation fails because
another thread updates Wx concurrently, the write analysis
restarts from line 1. At reads and at region end, the analy-
sis does not update shared state, so it does not need atomic
operations.

3.2.3 Providing Valor’s Guarantees
Valor soundly and precisely detects each access that conflicts
with another access executed by an ongoing region. Unlike
FastRCD, Valor detects read–write conflicts lazily. Thus, it
cannot provide precise exceptions. A read–write conflict will
not be detected at the write but rather at the end of the region

that performed the read. Deferred detection does not com-
promise Valor’s semantic guarantees as long as the effects
of potentially conflicting regions do not become externally
visible. To prevent external visibility, Valor validates a re-
gion’s reads before all sensitive operations, like system calls
and I/O. Other conflict and data race detectors have detected
conflicts asynchronously [18, 45], providing imprecise ex-
ceptions and similar guarantees.

Valor must also handle behavior resulting from a region
conflict that would be impossible in any serializable execu-
tion. If a region tries to throw an exception that would termi-
nate a region, Valor should first validate the region’s reads,
throwing a conflict exception if it detects a conflict, instead
of the program exception. Similarly, Valor must periodically
validate a long-running region’s reads in case the code is
stuck in an infinite loop due to so-far-undetected unserializ-
able behavior. Similar issues apply to software transactional
memory systems that use lazy concurrency control and per-
mit so-called “zombie” transactions [32].

4. Detecting Data Races with Valor
The last section introduced the FastRCD and Valor anal-
yses in terms of arbitrarily defined regions. If the regions
are synchronization-free regions (SFRs), then FastRCD and
Valor provide a strong execution model that guarantees SFR
serializability. In this section, we seek to detect data races
using our analyses, by applying them to coarser regions and
extending them with source-level debugging information.

4.1 Region Size
Making regions larger helps detect more data races and can
potentially help amortize fixed per-region costs. We observe
that it is correct to bound regions only at synchronization
release operations (e.g., lock release, monitor wait, and
thread fork) because region conflicts are still guaranteed to
be true data races. We call these regions release-free regions
(RFRs). RFR conflicts that are detected by FastRCD and
Valor are actual data races.

We note that Valor and FastRCD define a region conflict
in the following way: an access executed by one thread that
conflicts with an access that was executed by another thread
in an ongoing region. This definition is in contrast to an
overlap-based region conflict definition that reports a con-
flict whenever two regions that contain conflicting accesses
overlap at all. Either region conflict definition supports con-
flict detection between SFRs with no false positives. How-
ever, the definition that we use in Valor and FastRCD also
supports conflict detection between RFRs without false data
races, whereas an overlap-based definition would yield false
data races. We have proved the absence of false data races
for our RFR detection scheme (Appendix A).

Figure 3 illustrates the difference between SFRs and
RFRs. We note that the boundaries of SFRs and RFRs are
determined dynamically (at run time) by the synchroniza-
tion operations that execute, as opposed to being determined
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Figure 3. Synchronization- and release-free regions.

statically at compile time. An RFR is at least as large as an
SFR, so an RFR conflict detector will detect more conflicts
than an SFR conflict detector. Larger regions potentially re-
duce fixed per-region costs, particularly the cost of updating
writer metadata on the first write in each region.

There are useful analogies between RFR conflict detec-
tion and prior work. Happens-before data race detectors in-
crement their epochs at release operations only [24, 54], and
some prior work extends redundant instrumentation analysis
past acquire, but not release, operations [27].

4.2 Reporting Races
We extend FastRCD and Valor to provide source-level de-
bugging information to improve data race reports. Our goal
is to provide the source-level sites, including the method and
line number, of both accesses involved in a data race.

Data race detectors such as FastTrack report sites in-
volved in data races by recording the access site alongside
every thread–clock entry. Whenever FastTrack detects a data
race, it reports the corresponding recorded site as the first
access and reports the current thread’s site as the second ac-
cess. FastRCD similarly records site for every thread–clock
entry, and reports the sites for every region conflict.

By recording sites for the last writer, Valor reports the
sites for write–write and write–read races. To report sites for
read–write races, Valor stores the read site with each entry in
the read log. When it detects a conflict, Valor reports the last
writer’s site and the site from the conflicting read log entry.

5. Alternate Metadata and Analysis for Valor
Valor maintains version and epoch information to track
writes, but doing so has a few disadvantages. Storing ver-
sions with epochs increases the space overhead beyond stor-
ing epochs alone and increases analysis latency for writes
because Valor must update both fields. The metadata should
fit in 64 but not 32 bits, which is problematic for 32-bit
implementations including ours (Section 6), since metadata
updates must be atomic (Section 3.2.2).

This section proposes an alternate metadata representa-
tion and algorithm modifications that reduce the space and
time costs of storing and accessing Valor’s metadata. For
clarity, the rest of this section refers to the version of Valor
described in Section 3.2 as Valor-E (Epoch) and the alternate

version introduced here as Valor-O (Ownership). We imple-
ment and evaluate Valor-O.

Versioned writes with ownership tracking. At a high level,
Valor must maintain, for each shared variable x, the num-
ber of writes to x (i.e., its version), and whether an ongo-
ing region has written x, which Valor-E tracks with a last
writer epoch. Valor-O instead tracks whether an ongoing re-
gion has written x by maintaining the current “owner thread”
of x, which is t if and only if t is currently executing a re-
gion that has written x; otherwise it is φ. Valor-O maintains
a last writer tuple 〈v, t〉 for each shared variable. The owner-
ship information indicates which ongoing region (if any) has
written the variable, and Valor-O uses it to detect conflicts
similarly to how Valor-E uses epochs to detect conflicts.

Analysis at writes. Algorithm 6 shows Valor-O’s analysis
at program writes. If T already owns the lock, it can skip
the rest of the analysis since the current region has already
written x (line 2). Otherwise, if the lock is owned by a
concurrent thread, it indicates a region conflict (lines 3–4).
T then updates x’s write metadata to indicate ownership by
T, and increments the version number (line 5).

Algorithm 6 WRITE [Valor-O]: thread T writes variable x
1: let 〈v, t〉 ←Wx

2: if t 6= T then . Write in same region
3: if t 6= φ then
4: Conflict! . Write–write conflict detected
5: Wx ← 〈v+1,T〉 . Update write metadata
6: T.writeSet← T.writeSet ∪ {x}

A thread relinquishes ownership of a variable only at the
next region boundary. To keep track of all variables owned
by a thread’s region, each thread T maintains a write set, de-
noted by T.writeSet (line 6), which contains all shared vari-
ables written by T’s current region. At a region boundary, the
locks for all variables stored in the write set are relinquished.

Analysis at reads. Algorithm 7 shows Valor-O’s analysis
at program reads, which checks for write–read conflicts by
checking x’s write ownership (lines 2– 3), but otherwise is
the same as Valor-E’s analysis (Algorithm 4 on page 7).

Algorithm 7 READ [Valor-O]: thread T reads variable x
1: let 〈v, t〉 ←Wx

2: if t 6= φ ∧ t 6= T then
3: Conflict! . Write–read conflict detected
4: T.readLog← T.readLog ∪ {〈x, v〉}

Analysis at region end. Algorithm 8 shows Valor-O’s anal-
ysis for validating reads at the end of a region. To check for
read–write conflicts, the analysis resembles Valor-E’s analy-
sis except that it checks each variable’s owner thread, if any,
rather than its epoch (line 3).
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Algorithm 8 REGION END [Valor-O]: thread T executes
region boundary

1: for all 〈x, v〉 ∈ T.readLog do
2: let 〈v’, t〉 ←Wx

3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Conflict! . Read–write conflict detected
5: T.readLog← ∅
6: for all x ∈ T.writeSet do
7: let 〈v, t〉 ←Wx . Can assert t = T
8: Wx ← 〈v, φ〉 . Remove ownership by T
9: T.writeSet← ∅

Finally, the analysis processes the write set by setting the
ownership of each owned variable to φ (lines 6–8) and then
clearing the write set (line 9).

6. Implementation
We have implemented FastTrack, FastRCD, and Valor in
Jikes RVM 3.1.3, a high-performance Java virtual ma-
chine [6]. Our implementations—which we will make pub-
licly available—share features as much as possible: they
instrument the same accesses, and FastRCD and Valor de-
marcate regions in the same way.

6.1 Features Common to All Implementations
The implementations target IA-32 and extend Jikes RVM’s
baseline and optimizing dynamic compilers, to instrument
synchronization operations and memory accesses. The im-
plementations instrument all code in the application context,
including application code and library code (e.g., java.*)
called from application code.5

Instrumenting program operations. The implementations
instrument synchronization operations to track happens-
before (FastTrack) and demarcate regions (FastRCD and
Valor). Acquire operations are lock acquire, monitor resume,
thread start and join, and volatile read. Release operations
are lock release, monitor wait, thread fork and terminate,
and volatile write. By default, FastRCD and Valor detect
conflicts between release-free regions (RFRs; Section 4.1)
and add no instrumentation at acquires.

The compilers instrument each load and store to a scalar
object field, array element, or static field, except in a few
cases: (1) final fields, (2) volatile accesses (which we treat
as synchronization operations), and (3) accesses to a few
immutable library types (e.g., String and Integer).

Tracking last accesses and sites. The implementations add
last writer and/or reader information to each potentially
shared scalar object field, array element, and static field.
The implementations lay out a field’s metadata alongside

5 Jikes RVM is itself written in Java, so both its code and the application
code call the Java libraries. We have modified Jikes RVM to compile and
invoke separate versions of the libraries for application and JVM contexts.

the fields; they store an array element’s metadata in a meta-
data array reachable from the array’s header.

The implementations optionally include site tracking in-
formation with the added metadata. Our evaluation of data
race coverage enables site tracking, and our performance
evaluation disables tracking of sites.

Eliminating redundant instrumentation. We have imple-
mented an intraprocedural dataflow analysis to identify re-
dundant instrumentation points. Instrumentation on an ac-
cess to a variable is redundant if there is already instrumen-
tation on an access to the same variable earlier in the same
region (cf. [14, 27]). Eliminating redundant instrumentation,
which we enable by default, reduces the overhead of Fast-
Track by 3%, FastRCD by 4%, and Valor by 5%.

6.2 FastTrack and FastRCD
Our FastRCD implementation shares many features with
our FastTrack implementation, which is faithful to prior
work’s implementation [24]. Both implementations incre-
ment a thread’s logical clock at each synchronization release
operation, and they track last accesses similarly. Both main-
tain each shared variable’s last writer and last reader(s) using
FastTrack’s epoch optimizations. In FastTrack, if the prior
read is an epoch that happens before the current read, the
algorithm continues using an epoch, and if not, it upgrades
to a read map. FastRCD uses a read epoch if the last reader
region has ended, and if not, it upgrades to a read map. Each
read map is an efficient, specialized hash table that maps
threads to clocks. We modify garbage collection (GC) to
check each variable’s read metadata and, if it references a
read map, to trace the read map.

We represent FastTrack’s epochs with two (32-bit) words.
We use 9 bits for thread identifiers, and 1 bit to differentiate a
read epoch from a read map. Encoding the per-thread clock
with 22 bits to fit the epoch in one word would cause the
clock to overflow, requiring a separate word for the clock.

FastRCD represents epochs using a single 32-bit word.
FastRCD avoids overflow by leveraging the fact that it is al-
ways correct to reset all clocks to either 0, which represents a
completed region, or 1, which represents an ongoing region.
To accommodate this strategy, we modify garbage collection
(GC) in two ways. First, every full-heap GC sets a variable’s
clock to 1 if it was accessed in an ongoing region and to 0
otherwise. Second, every full-heap GC resets each thread’s
clock to 1. Note that FastTrack cannot use this optimization.

Although we reset clocks at every full-heap GC, a thread’s
clock may still exceed 22 bits. FastRCD could handle that
overflow by immediately triggering a full-heap collection,
but we have not implemented that extension.

Atomicity of instrumentation. To improve performance, our
implementations of FastTrack and FastRCD eschew syn-
chronization on analysis operations that do not change the
last writer or reader metadata. When metadata must change,
the instrumentation ensures atomicity of analysis operations
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by locking one of the shared variable’s metadata words using
a reserved value set with an atomic operation.

Tracking happens-before. In addition to instrumenting ac-
quire and release synchronization operations as described in
Section 6.1, FastTrack tracks the happens-before edge from
each static field initialization in a class initializer to corre-
sponding uses of that static field [39]. Our FastTrack imple-
mentation instruments static (including final) field loads as
an acquire of the same lock used for class initialization, in
order to track those happens-before edges.

6.3 Valor
We implement the Valor-O design of Valor described in
Section 5.

Tracking the last writer. Valor tracks the last writer in a sin-
gle 32-bit metadata per variable: 23 bits for the version and 9
bits for the thread. Versions are unlikely to overflow because
variables’ versions are independent, unlike overflow-prone
clocks, which are updated at every region boundary. We find
that versions overflow in only two of our benchmark pro-
grams. A version overflow could, with low probability, lead
to a missed conflict (i.e., a false negative) if the overflowed
version happened to match some logged version. To miti-
gate version overflow, Valor could reset versions at full-heap
GCs, like how FastRCD resets its clocks (Section 6.2).

Access logging. We implement each per-thread read log
as a sequential store buffer (SSB). Valor is tolerant of the
duplicate entries inherent in using an SSB. Each per-thread
write set is also an SSB, which is naturally duplicate free
because only a region’s first write to a variable updates the
write set. To allow GC to trace read log and write set entries,
each variable is recorded in a log entry using both its base
object address and its metadata offset.

Handling large regions. A region’s read log can become
arbitrarily long because an executed region’s length is not
bounded. Our Valor implementation limits a read log’s
length to 216 entries. When the log becomes full, Valor does
read validation and resets the log.

The write set can also overflow, which is uncommon since
it is duplicate free. When the write set becomes full (>216

elements), Valor conceptually splits the region by validating
and resetting the read log (necessary to avoid false positives),
and relinquishing ownership of variables in the write set.

7. Evaluation
This section evaluates and compares the performance and
other characteristics of our implementations of FastTrack,
FastRCD, and Valor.

7.1 Methodology
Benchmarks. We evaluate our implementations of Valor,
FastRCD, and FastTrack using large, realistic, benchmarked
applications. Our experiments execute the DaCapo bench-
marks [7] with the large workload size, versions 2006-10-
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Figure 4. Run-time overhead added to unmodified Jikes RVM by
our implementations of FastTrack, FastRCD, and Valor.

MR2 and 9.12-bach (distinguished with names suffixed by
6 and 9); and fixed-workload versions of SPECjbb2000 and
SPECjbb2005.6 We omit programs with only one thread or
that Jikes RVM cannot execute.

Experimental setup. Each detector is built into a high-
performance 32-bit JVM configuration that does run-time
optimization and uses the default, high-performance, gen-
erational garbage collector (GC). All experiments use a 64
MB nursery for generational GC, instead of the default 32
MB, because the larger nursery improves performance of all
three detectors. The baseline (unmodified JVM) is negligibly
improved on average by using a 64 MB nursery.

We limit the GC to 4 threads instead of the default 64
because of a known scalability bottleneck in Jikes RVM’s
memory management toolkit (MMTk) [19]. Using 4 GC
threads improves performance for all configurations and the
baseline. This change leads to reporting higher overheads
for FastTrack, FastRCD, and Valor than with 64 GC threads,
since less time is spent in GC, so the time added for conflict
detection is a greater fraction of baseline execution time.

Platform. The experiments execute on an AMD Opteron
6272 system with eight 8-core 2.0-GHz processors (64 cores
total), running RedHat Enterprise Linux 6.6, kernel 2.6.32.

We have also measured performance on an Intel Xeon
platform with 32 cores, as summarized in Appendix B.

7.2 Performance
Figure 4 shows the overhead added over unmodified Jikes
RVM by the different implementations. Each bar is the me-
dian of 10 trials, in order to minimize the effect of any ma-
chine noise. Each bar has a 95% confidence interval that is
centered at the mean. The main performance result in this
paper is that Valor incurs only 96% run-time overhead on
average, far exceeding the performance of any prior conflict
detection technique. We discuss Valor’s performance result
in context by comparing it to FastTrack and FastRCD.

6 http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005
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Threads Reads Writes No metadata updates (%) Dyn. RFRs Avg. accessesReads Writes per RFRTotal Max live (×106) (×106) FastTrack FastRCD (×103)

eclipse6 18 12 12,800 3,310 83.5 69.6 64.8 196,000 82
hsqldb6 402 102 621 79 44.8 44.8 30.5 7,600 91
lusearch6 65 65 2,380 798 84.1 84.2 79.4 9,880 322
xalan6 9 9 11,200 2,160 49.8 48.8 23.7 288,000 46
avrora9 27 27 5,470 2,430 90.0 90.1 91.9 6,400 1,230
jython9 3 3 5,220 1,470 63.9 16.0 38.8 199,000 34
luindex9 2 2 316 100 87.3 86.0 71.1 267 1,560
lusearch9 64 64 2,380 693 84.9 85.0 77.3 6,050 508
pmd9 5 5 593 188 86.3 86.1 72.5 2,130 367
sunflow9 128 64 21,700 2,210 95.7 95.7 51.6 9 2,640,000
xalan9 64 64 10,200 2,100 56.1 55.4 28.4 108,000 114
pjbb2000 37 9 1,540 538 37.0 37.4 9.4 128,000 16
pjbb2005 9 9 6,390 2,650 57.3 29.9 9.8 277,000 33

Table 1. Run-time characteristics of our benchmarks and implementations of FastTrack, FastRCD, and Valor. Counts are rounded to three
significant figures and the nearest whole number. Percentages are rounded to the nearest 0.1%.

FastTrack. Our FastTrack implementation adds 342% over-
head on average (i.e., 4.4X slowdown). Prior work reports
an 8.5X average slowdown, but for an implementation with
many differences with ours [24]. Appendix C describes our
empirical comparison of FastTrack implementations to en-
sure that our FastTrack implementation performs well.

FastRCD. Figure 4 shows that FastRCD adds 283% over-
head on average. FastRCD tracks accesses similarly to Fast-
Track, but has lower overhead than FastTrack because it does
not track happens-before. We measured that around 70% of
FastRCD’s cost comes from tracking last readers; the re-
mainder comes from tracking last writers, demarcating re-
gions, and bloating objects with per-variable metadata. Ob-
serving the high cost of last reader tracking motivates Valor’s
lazy read validation mechanism.

Valor. Valor adds only 96% overhead on average, which is
substantially lower than the overheads of any prior software-
only technique, including our FastTrack and FastRCD im-
plementations. The most important reason for this improve-
ment is that Valor completely does away with updates to
last reader metadata. These updates lock and write metadata
word(s), both of which are costly operations.

Valor consistently outperforms FastTrack and FastRCD
for all programs except avrora9. As Table 1 shows, avrora9
has an unusually high proportion of reads for which Fast-
Track and FastRCD do not need metadata updates: they de-
tect these cases efficiently by maintaining last reader meta-
data. In contrast, Valor logs and validates every read.

7.3 Run-Time Characteristics
Table 1 characterizes the evaluated programs’ behavior.
Each value is the mean of 10 trials of a statistics-gathering
version of one of our implementations. The first two columns
report the total threads created and the maximum active
threads at any time.

The next columns, labeled Reads and Writes, report in-
strumented read and write operations that execute (in mil-
lions). The No metadata updates columns show the percent-
age of accesses for which instrumentation need not update
or synchronize on any metadata. For FastTrack, these are its
“same epoch” and “read shared same epoch” cases [24]. For
FastRCD and Valor, these are the cases where the analysis
does not update any per-variable metadata. For three pro-
grams, FastTrack and FastRCD differ significantly in how
many reads require metadata updates. The difference ex-
ists because the analyses decide differently when to upgrade
from a read epoch to a read map (Section 6.2). Minor differ-
ences for other programs are not statistically significant.

We report only FastTrack’s percentage of per-write meta-
data updates, since FastRCD and Valor usually report very
similar percentages. The exception is that FastRCD reports
significantly lower percentages for eclipse6. We are investi-
gating this difference.

The last two columns report (1) how many release-free
regions (RFRs), in thousands, each program executes and
(2) the average number of memory accesses executed in
each RFR. The RFR count is the same as the number of
synchronization release operations executed and FastTrack’s
number of epoch increments.

7.4 Data Race Detection Coverage
We compare the effectiveness of FastTrack, FastRCD, and
Valor as data race detectors. FastTrack detects every data
race in an execution. FastRCD and Valor detect every data
race that is also a region conflict, ensuring region serializ-
ability, but they miss races that span large windows of dy-
namic instructions. Note that FastRCD and Valor are config-
ured to detect conflicts between release-free regions (RFRs).

Table 2 shows how many data races each analysis detects.
A data race is defined as an unordered pair of static program
locations. If the same race is detected multiple times in an

11



FastTrack FastRCD Valor

eclipse6 37 (46) 3 (7) 4 (21)
hsqldb6 10 (10) 10 (10) 9 (9)
lusearch6 0 (0) 0 (0) 0 (0)
xalan6 12 (16) 11 (15) 12 (16)
avrora9 7 (7) 7 (7) 7 (8)
jython9 0 (0) 0 (0) 0 (0)
luindex9 1 (1) 0 (0) 0 (0)
lusearch9 3 (4) 3 (5) 4 (5)
pmd9 96 (108) 43 (56) 50 (67)
sunflow9 10 (10) 2 (2) 2 (2)
xalan9 33 (39) 32 (40) 20 (39)
pjbb2000 7 (7) 0 (1) 1 (4)
pjbb2005 28 (28) 30 (30) 31 (31)

Table 2. Data races reported by FastTrack, FastRCD, and Valor.
For each analysis, the first number is average distinct races reported
in each of 10 trials. The second number (in parentheses) is distinct
races reported at least once over all trials.

execution, we count it only once. The first number for each
detector is the average number of races reported in each
of 10 trials. Run-to-run variation is typically small: 95%
confidence intervals are consistently smaller than ±10% of
the reported mean, except for xalan9, which varied by±35%
of the mean. The number in parentheses is the count of races
reported at least once across all 10 trials.

FastTrack reports more data races than FastRCD and
Valor. On average across the programs, one run of either
FastRCD or Valor detects 58% of the true data races. Count-
ing data races reported at least once across 10 trials, the per-
centage increases to 63% for FastRCD and 73% for Valor,
respectively. Compared to FastTrack, FastRCD and Valor
represent lower coverage, higher performance points in the
performance–coverage tradeoff space. We note that Fast-
RCD and Valor are able to detect any data race, because any
data race can manifest as a region conflict [20].

We emphasize that although FastRCD and Valor do not
report some data races, the reported races involve accesses
that are dynamically “close enough” together to jeopardize
region serializability (Section 2). We (and others [20, 42,
45]) argue that region conflicts are therefore more harmful
than other data races, and it is more important to fix them.

Although FastRCD and Valor both report RFR conflicts
soundly and precisely, they may report different pairs of
sites. For a read–write race, FastRCD reports the first read
in a region to race, along with the racing write. If more than
two memory accesses race, Valor reports the site of all reads
that race, along with the racing write. As a result, Valor
reports more races than FastTrack in a few cases because
Valor reports multiple races between one write and multiple
reads in the same region, whereas FastTrack reports only the
read–write race involving the last read by the region.

Comparing SFR and RFR conflict detection. FastRCD and
Valor bound regions at releases only, potentially detecting

more races at lower cost as a result. We evaluated the benefits
of using RFRs in Valor by comparing with a version of Valor
that uses SFRs. For every evaluated program, there is no
statistically significant difference in races detected between
SFR- and RFR-based conflict detection (10 trials each; 95%
confidence). RFR-based conflict detection does, however,
outperform SFR-based conflict detection, adding 96% ver-
sus 104% overhead on average, respectively. The difference
is likely due to RFRs being larger and thus incurring fewer
metadata and write set updates (Section 4.1).

7.5 Summary
Overall, Valor substantially outperforms both FastTrack and
FastRCD, adding, on average, just a third of FastRCD’s
overhead. Valor outperforms FastTrack by 3.6X and Fast-
RCD by 3.0X, respectively. Valor’s overhead is potentially
low enough for use in alpha, beta, and in-house testing en-
vironments and potentially even some production settings,
enabling more widespread use of precise dynamic data race
detection. FastRCD and Valor detect a substantial fraction
of an execution’s data races, thus offering a cost–coverage
tradeoff that is particularly compelling for Valor. Further-
more, FastRCD and Valor detect every data race that might
violate SFR serializability, providing a solid semantic foun-
dation on which to specify a language.

8. Related Work
Section 2 covered the closest related work [20, 21, 24, 42,
45]. This section compares our work to other approaches.

8.1 Detecting and Eliminating Data Races
Software-based dynamic analysis. Happens-before analy-
sis soundly and precisely detects an execution’s data races,
but it slows programs by about an order of magnitude (Sec-
tion 2) [24]. An alternative is lockset analysis, which checks
for violations of a locking discipline (e.g., [17, 59, 63]).
However, lockset analysis reports false data races, limiting
its value for race detection and preventing it from use as
a strong execution model. Hybrids of happens-before and
lockset analysis tend to report false positives (e.g., [52]).

Goldilocks [21] detects races soundly and precisely and
provides exceptional, fail-stop data race semantics. The
Goldilocks paper reports 2X average slowdowns, but the
authors of FastTrack argue that a realistic implementation
would incur an estimated 25X average slowdown [24].

Other work gives up soundness, missing data races in ex-
change for performance, usually in order to target produc-
tion systems. Sampling and crowdsourcing approaches trade
coverage for performance by instrumenting only some ac-
cesses [13, 23, 35, 44]. These approaches incur the costs of
tracking the happens-before relation [13, 35, 44] and/or pro-
vide limited coverage guarantees [23, 44]. Since they miss
many data races, they are limited as race detectors and com-
pletely unsuitable for providing a strong execution model.
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Hardware support. Custom hardware can accelerate data
race detection by adding on-chip memory for tracking vector
clocks or locksets and extending cache coherence to identify
shared accesses [4, 18, 48, 67, 69]. However, manufacturers
have been reluctant to change already-complex cache and
memory subsystems substantially to support race detection.

Static analysis. Whole-program static analysis has the po-
tential to avoid false negatives, considering all possible pro-
gram behaviors (e.g., inputs, environments, and thread inter-
leavings) [22, 49, 50, 55, 65]. However, static analysis ab-
stracts data and control flow conservatively, leading to im-
precision and false positives. Furthermore, its imprecision
and performance tend to scale poorly with increasing pro-
gram size and complexity. These limitations make static ap-
proaches unsuitable for detecting data races and providing a
strong execution model.

Leveraging static analysis. Whole-program static analy-
sis can soundly identify definitely data-race-free accesses,
which dynamic race detectors need not instrument. Prior
work that takes this approach can reduce the cost of dynamic
analysis somewhat but not enough to make it practical for
always-on use [17, 21, 38, 64]. These techniques typically
use static analyses such as thread escape analysis and thread
fork–join analysis. Whole-program static analysis is not well
suited for dynamically loaded languages such as Java, since
all of the code may not be available in advance.

Our FastTrack, FastRCD, and Valor implementations
currently employ intraprocedural static redundancy anal-
ysis to identify accesses that do not need instrumentation
(Section 6.1). Our implementations could potentially benefit
from more powerful static analyses, although practical con-
siderations (e.g., dynamic class loading and reflection) and
inherent high imprecision for large, complex applications,
limit the real-world opportunity for using static analysis to
optimize dynamic analysis substantially.

Languages and types. New languages can eliminate data
races, but they require writing or rewriting programs in these
languages [8, 56]. Type systems can ensure data race free-
dom, but they typically require adding annotations and mod-
ifying code [1, 15].

8.2 Enforcing Region Serializability
An alternative to detecting violations of region serializability
is to enforce end-to-end region serializability. Existing ap-
proaches either enforce serializability of full synchronization-
free regions (SFRs) [53] or bounded regions [5, 60]. They
rely on support for expensive speculation that often requires
complex hardware support.

8.3 Detecting Conflicts
Software transactional memory (STM) detects conflicts be-
tween programmer-specified regions [31, 32]. However,
STMs need not detect conflicts precisely; an imprecise
conflict merely triggers an unnecessary misspeculation and

retry. To avoid the high cost of tracking each variable’s last
readers, some STMs use so-called “invisible readers” and
detect read–write conflicts lazily [32]. In particular, McRT-
STM and Bartok detect write–write and write–read conflicts
eagerly and read–write conflicts lazily [33, 58]. These mech-
anisms are thus related to Valor’s conflict detection, while
fully eager STM conflict detection is analogous to Fast-
RCD’s conflict detection. However, these STMs have not
introduced designs that provide precise conflicts, nor have
they addressed the problems we target: supporting conflict
exceptions and useful data race reports.

RaceTM uses hardware TM to detect conflicts that are
data races [30]. RaceTM is thus closest to existing hardware-
based conflict detection mechanisms [42, 45].

Last writer slicing (LWS) tracks data provenance, record-
ing only the last writers of data [41]. LWS and our work
share the intuition that to achieve low run-time overheads,
a dynamic analysis should track only the last writer of each
shared memory location. LWS is considerably different from
our work in its purpose, focusing on understanding concur-
rency bugs by directly exposing last writer information in
a debugger. LWS cannot detect read–write conflicts, and it
does not detect races or provide execution model guarantees.

9. Conclusion
This work introduces two new software-based region con-
flict detectors, one of which, Valor, has overheads low
enough to provide semantic guarantees practically to a lan-
guage specification. The key insight behind Valor is that
detecting read–write conflicts lazily retains most semantic
guarantees and has better performance than eager data race
detection. In addition to its potential for supporting a strong
memory model, Valor is an effective data race detector with
a compelling cost–coverage tradeoff. Overall, Valor repre-
sents an advance in the state of the art for providing strong
guarantees and for detecting data races. This advance will
help make it practical to use all-the-time data race excep-
tions and detection in more settings, from in-house testing
to alpha and beta testing to even some production systems.
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A. RFR Conflicts Are Data Races
This section proves the following theorem from Section 4.1:

Theorem. Every RFR conflict is a true data race.

Proof. We prove this claim by contradiction. Let us assume
that an RFR conflict exists in a data-race-free execution.
Recall that, by definition, an RFR conflict exists when an
access conflicts with another access executed by an ongoing
RFR. Without loss of generality, we assume that a read by
thread T2 conflicts with a write in an ongoing RFR in T1.
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Figure 5. Run-time overhead added to unmodified Jikes RVM by
our implementations of FastTrack, FastRCD, and Valor on an Intel
Xeon E5-4620 system. Other than the platform, the methodology
is the same as for Figure 4.

By the definition of a data race, T1’s write happens-before
T2’s read [3, 36], as shown in the following figure:

Thread T1 Thread T2

wr x

rd x
conflict 
detected

happens-before
relation

We represent this happens-before relationship as wr x ≺HB

rd x, similar to representations from prior work [43]. The
happens-before relation ≺HB is a partial order that is the
union of program order (i.e., intra-thread order) ≺PO and
synchronization order ≺SO [36, 43]. Since wr x and rd x
execute on different threads, they must be ordered in part by
synchronization order, implying that the transitive happens-
before relationship consists of the following operations:

wr x ≺PO rel ≺SO acq ≺PO rd x

where rel and acq are synchronization release and acquire
operations, e.g., lock operations on the same or different
locks.

The rel operation must execute on the same thread as
wr x because the operations are ordered only by program
order. However, rel ends an RFR, and rel ≺HB rd x, so rd x
happens after the region that executed wr x has ended. Thus,
by the definition of RFR conflict, no RFR conflict exists,
which contradicts the initial assumption.

B. Architectural Sensitivity
We studied the sensitivity of our experiments to the CPU ar-
chitecture by repeating our performance experiments on an
Intel Xeon E5-4620 system with four 8-core processors (32
cores total). Otherwise, the methodology is the same as in

Section 7.2. Figure 5 shows the overhead added over unmod-
ified Jikes RVM by our implementations. FastTrack adds an
overhead of 402%, while FastRCD adds 321% overhead.
Valor continues to substantially outperform the other tech-
niques, adding an overhead of only 112%. The relative per-
formance of Valor compared to FastTrack and FastRCD is
similar on both platforms. On the Xeon platform, Valor adds
3.6X and 2.9X less overhead than FastTrack and FastRCD,
respectively, on average. On the (default) Opteron platform,
Valor adds 3.6X and 3.0X less overhead on average.

C. Comparing FastTrack Implementations
To have a fair, direct comparison of FastTrack, FastRCD,
and Valor, we have implemented all the three techniques
in Jikes RVM (Section 6). It is difficult to reuse the Fast-
Track implementation from the original work [24] for our
performance evaluations since the FastTrack authors’ imple-
mentation uses the RoadRunner dynamic bytecode instru-
mentation framework [26], which alone slows programs by
roughly 4–5X [24, 26].

To better understand the performance differences be-
tween our FastTrack implementation and the original, we
compare our implementation of FastTrack in Jikes RVM
with the publicly available implementation of FastTrack that
is part of the RoadRunner framework7 [24, 26]. We execute
the RoadRunner FastTrack implementation on a different
JVM, Open JDK 1.7, because Jikes RVM would not exe-
cute it correctly. We have been unable to get RoadRunner to
work for most benchmarks, even on OpenJDK, apparently
because of RoadRunner limitations related to reflective calls
and custom class loading. We have also been unable to en-
able instrumentation of the Java libraries (e.g., java.*) for
similar reasons.

Figure 6 shows how the implementations compare for the
subset of programs that work with RoadRunner on Open-
JDK. For each program, the first two configuration execute
with OpenJDK, and the last two execute with Jikes RVM.
The results are normalized to the first configuration, which is
unmodified OpenJDK. The second configuration, RR + FT,
shows the slowdown that FastTrack (including RoadRunner)
adds to OpenJDK. This slowdown is 8.9X, which is close to
the 8.5X slowdown reported by the FastTrack authors [24] in
their experiments with different programs on a different plat-
form. The last two configurations, Jikes RVM and FT (Jikes),
are just the baseline and the FastTrack configurations, re-
spectively, from Figure 4. This experiment however disables
instrumenting libraries for the last configuration, FT (Jikes),
to be consistent with the second configuration, RR + FT.

These results show that for these four programs that
RoadRunner can execute, Jikes RVM is about 50% slower on
average than OpenJDK. However, these four programs are
not representative of all programs. We found that across all
programs except pjbb2005, Jikes RVM is only 26% slower

7 https://github.com/stephenfreund/RoadRunner
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and Jikes RVM. The last two configurations correspond to the
baseline and FastTrack configurations in Figure 4.

on average than OpenJDK. However, for pjbb2005, Jikes
RVM is 18X slower than OpenJDK, which we are investi-
gating.

Our FastTrack implementation inside a JVM substan-
tially outperforms the prior FastTrack implementation, which
is implemented outside of a JVM on top of a general dy-
namic bytecode instrumentation framework. Overall, this
experiment helps to show differences between different plat-
forms and implementations, and it suggests that our Fast-
Track implementation is competitive with an existing imple-
mentation of FastTrack.
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Hardware Transactional Memory for Data Race Detection. In IPDPS,
pages 1–11, 2009.

[31] T. Harris and K. Fraser. Language Support for Lightweight Transac-
tions. In OOPSLA, pages 388–402, 2003.

[32] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2nd edition, 2010.

[33] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory
Transactions. In PLDI, pages 14–25, 2006.

[34] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data Race
Bugs: Telling the Difference with Portend. In ASPLOS, pages 185–
198, 2012.

[35] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced Data
Race Detection. In SOSP, pages 406–422, 2013.

[36] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. CACM, 21(7):558–565, 1978.

[37] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Computer, 28:690–691, 1979.

[38] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid
Program Analysis for Determinism. In PLDI, pages 463–474, 2012.

[39] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Prentice Hall PTR, 2nd edition, 1999.

15



[40] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A Com-
prehensive Study on Real World Concurrency Bug Characteristics. In
ASPLOS, pages 329–339, 2008.

[41] B. Lucia and L. Ceze. Data Provenance Tracking for Concurrent
Programs. In CGO, pages 146–156, 2015.

[42] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races. In ISCA, pages 210–221, 2010.

[43] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378–391, 2005.

[44] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In PLDI, pages 134–
143, 2009.

[45] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory Model for
Concurrent Programming Languages. In PLDI, pages 351–362, 2010.

[46] H. S. Matar, I. Kuru, S. Tasiran, and R. Dementiev. Accelerating Pre-
cise Race Detection Using Commercially-Available Hardware Trans-
actional Memory Support. In WoDet, 2014.

[47] F. Mattern. Virtual Time and Global States of Distributed Systems.
In Workshop on Parallel and Distributed Algorithms, pages 215–226,
1988.

[48] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. SigRace: Signature-
Based Data Race Detection. In ISCA, pages 337–348, New York, NY,
USA, 2009.

[49] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race
Detection. In POPL, pages 327–338, 2007.

[50] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for
Java. In PLDI, pages 308–319, 2006.

[51] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis. In PLDI, pages 22–31, 2007.

[52] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection.
In PPoPP, pages 167–178, 2003.

[53] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and region
serializability for all. In HotPar, 2013.

[54] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs. Concurrency and
Computation: Practice & Experience, 19(3):327–340, 2007.

[55] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, pages
320–331, 2006.

[56] M. C. Rinard and M. S. Lam. The Design, Implementation, and
Evaluation of Jade. TOPLAS, 20:483–545, 1998.

[57] C. G. Ritson and F. R. Barnes. An Evaluation of Intel’s Restricted
Transactional Memory for CPAs. In CPA, pages 271–292, 2013.

[58] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software Transac-
tional Memory System for a Multi-Core Runtime. In PPoPP, pages
187–197, 2006.

[59] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In SOSP, pages 27–37, 1997.

[60] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni.
Hybrid Static–Dynamic Analysis for Statically Bounded Region Seri-
alizability. In ASPLOS, pages 561–575, 2015.

[61] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and M. Musu-
vathi. Efficient Processor Support for DRFx, a Memory Model with
Exceptions. In ASPLOS, pages 53–66, 2011.

[62] U.S.–Canada Power System Outage Task Force. Final Report on the
August 14th Blackout in the United States and Canada. Technical
report, Department of Energy, 2004.

[63] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA,
pages 70–82, 2001.

[64] C. von Praun and T. R. Gross. Static Conflict Analysis for Multi-
Threaded Object-Oriented Programs. In PLDI, pages 115–128, 2003.

[65] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection
on Millions of Lines of Code. In ESEC/FSE, pages 205–214, 2007.
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