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ABSTRACT
Subgroup discovery is a broadly applicable exploratory technique,
which identifies interesting subgroups with respect to a property of
interest. While there is clearly a need to apply this method to dis-
cover interesting patterns from scientific datasets comprising large-
scale arrays, the existing algorithms primarily apply to relational
datasets. In this paper, we present a novel algorithm, SciSD, for
exhaustive but efficient subgroup discovery over array-based sci-
entific datasets, in which all attributes are numeric. Our algorithm
handles a key challenge associated with array data, which isthat
a subgroup identified over array data can be described based on
value-based and/or dimension-based attributes. To reducethe com-
putational costs, our SciSD algorithm extensively uses bitmap in-
dices (and fast bitwise operations on them). We demonstrateboth
high efficiency and effectiveness of our algorithm by using multiple
real-life datasets.

Keywords
Subgroup Discovery, Scientific Data Management, Bitmap Index-
ing

1. INTRODUCTION
Subgroup discovery[31, 72] is a broadly applicable exploratory
technique, which identifies interesting subgroups with respect to
a property of interest. The underlying goal is to extract relations
with interesting characteristics between adependentor targetvari-
able and multipleindependentor explainingvariables. For exam-
ple, professional basketball players are mostly taller than the gener-
al population, where the attribute ‘occupation’ (basketball player)
is the explaining variable and the attribute ‘height’ (greater than the
average of the general population) is the target variable.

In both data management and data analytics areas, there is anin-
creasing emphasis on (mainly) array-based scientific data.Large-
scale scientific data of different sizes and dimensions are used for
storing images, sensor data, simulation outputs, and statistical data
in a variety of domains, including earth sciences, space sciences,

life sciences, finance, and social sciences [4, 18, 39, 41, 42, 44, 49–
52, 56–61, 64–71, 79, 81, 83, 84]. The existing work on subgroup
discovery has been primarily restricted to application on relational
or tabular datasets. In this data-driven era, it is highly desirable to
customize the subgroup discovery technique to discover interesting
patterns when data is stored as arrays. For example, given a set of
arrays that are output from a scientific simulation, scientists may
be interested in identifying the underlying relationshipsbetween
variables. As a specific instance, in the output from an oceansim-
ulation, the relationship between large value ofsalinity and
other variables such astemperature and depth, is of great
interest to scientists [16]. Analysis of array-based data imposes u-
nique challenges – e.g., temperature is avalue-basedattribute that
is stored as a separate array, whereas depth is adimension-based
attribute that corresponds to one of the array dimensions. In prac-
tice, it can be observed that the subsets of output grid points, which
have a low depth and/or a high temperature are very likely to have
a salinity value significantly higher than the average of theentire
dataset. Clearly, the data subsets (i.e., subgroups) described by
depth and/or temperature ranges can be a set of interesting sub-
groups, and identifying such subgroups can be of great interest.
Recent work from visualization community has focused on calcu-
lating metrics such as mutual information across variables[12,80].
However, there is no work that can identify interesting subgroup-
s over array data automatically. A seemingly viable approach can
be to apply existingrelation-basedsubgroup discovery algorithms
directly over array data by treating dimension-based attributes as
additional relational attributes. However, this approachrequires
data reorganization, which can often be prohibitively expensive for
large datasets, in terms of both computation and storage costs.

Developing subgroup discovery algorithms for array-basedscien-
tific data involves at least three sets of challenges. First,as we have
already stated above, unlike the conventional subgroup discovered
over relational data, a subgroup identified over array data can be
described with value-based attributes and/or dimension-based at-
tributes. Second, in scientific datasets, the attributes are mostly nu-
meric, whereas most conventional subgroup discovery algorithm-
s [7,30,31,34,37,72] mainly target binary or categorical attributes.
Third, the conventional algorithms for subgroup discoveryare only
able to operate with small datasets. In comparison, datasets of in-
terest to us, particularly, from simulation datasets, can be extremely
large, and are likely to become larger in the future.

In this paper, we present a novel algorithm, SciSD, for exhaustive
but efficient subgroup discovery over array-based scientific dataset-
s, in which all attributes are numeric. Our algorithm is ableto



effectively discover interesting subgroups of both great generality
and high quality. Moreover, our algorithm directly operates on the
compact bitmap indices instead of the raw datasets, and utilizes fast
bitwise operations on them, allowing processing of larger datasets.

We have demonstrated both high efficiency and effectivenessof our
algorithm by using multiple real-life datasets. We first experiment-
ed on a small dataset to compare the performance (execution effi-
ciency) as well as the quality of the output subgroups from our al-
gorithm against SD-Map* [6], a popular subgroup discovery algo-
rithm. The results have shown that our algorithm not only produces
subgroups of significantly greater generality and higher quality, but
the execution times are also lower by up to two orders of mag-
nitude. We also evaluated our algorithms over larger datasets. We
find that by using only a small number of bins, we obtain both high-
quality subgroups and low execution times, which demonstrate the
practicality of our algorithm.

2. SUBGROUP DISCOVERY AND ARRAY
DATA

We first introduce the formal definition of subgroup discovery. Nex-
t, we introduce an example involving arrays, and extend the defi-
nition of subgroups to apply to array data. Afterwards, to process
numeric attributes in array data, we discuss the quality function we
choose and subgroup combination.

2.1 Preliminaries
A comprehensive overview of subgroup discovery can be found
in [28]. Subgroup discovery is a combination of predictive and de-
scriptive induction, which focuses on the extraction of relations,
with respect to the property of interest given by a target variable.
Unlike classification techniques for addressing classification and
prediction issues, subgroup discovery describes the localpatterns
of data in the form of individual rules. As also formulated byGam-
bergeret al. [22] and Lavrǎc et al. [37], a rule (R) that consists of
an induced subgroup description can be formally defined as:

R : Cond → Targetval (1)

whereTargetval is a value with respect to the property of interest
given by a target variable, andCond is commonly a conjunction of
attribute-value pairs given by several explaining variables. A sub-
group discovery task is mainly comprised of four elements:sub-
group description language, quality function, target variable, and
search strategy, described in the following paragraphs. In our de-
scription,ΩA denotes the set of all attributes, and for each attribute
a ∈ ΩA, a value domaindom(a) is defined.

DESCRIPTION1 (SUBGROUPDESCRIPTION). A subgroup de-
scription is defined as a conjunction of attribute-value pairs, where
for each attribute-value pairai = vi, ai ∈ ΩA andvi ∈ dom(ai).

An important measure associated with a subgroup is thequality,
which measures the “interestingness” of the subgroup, and is used
for extracting and ranking the rules. There is no consensus on the
best quality function to be used for evaluating the interestingness
of a subgroup.

DESCRIPTION2 (QUALITY FUNCTION). LetΩsd denote the
universal set of all the possible subgroup descriptions, and given a
particular target variablet ∈ ΩA, a quality functionq is a mapping

– q : Ωsd × dom(t) → R, whereR is the space of real numbers
denoting quality score.

The types of attributes including both explaining variables and tar-
get variables can bebinary, categorical, ornumeric. For processing
numeric attributes, discretization is often utilized to divide a con-
tinuous value range into multiple discrete intervals.

2.2 An Example Involving Arrays
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Figure 1: A Running Example of Subgroup Discovery

Our goal focuses on subgroup discovery over array-based datasets.
We use an example to illustrate the idea, which is shown through
Figure 1. This example involves three 2-dimensional arraysA, B,
andT, whereT indicates the target variable, andA andB are the
two explaining variables. Two dimensions are indexed from0 to 4,
and denoted asi andj, respectively. One can view this dataset as
a relational table forming 25 records, where each record hasthree
attributes.

Our goal is to identify interesting subsets (or subgroups) of T such
that each subset is significantly different from the entire array T,
which has a size of 25 and a mean value of 3.6. Each subgroup is
evaluated by a quality score that is based on a combination oftwo
metrics: subgroupsize(or support) and the difference with respect
to the mean between the subgroup and the entire array. One can
identify several subgroups of interest from the target array T.

The identified subgroups can be described by: 1) dimensionalranges
of i and/orj, 2) value ranges ofA and/orB, and 3) both value
ranges and dimensional ranges. TheSubgroup 1 andSubgroup 2,
which belong to the first type of subgroups, simply select thefirst
two rows and the first two columns of the arrayT, respectively.
As an example of the second type of subgroup, theSubgroup 4
comprises the elements ofT where the corresponding elements of
A have a value between 1 and 2. TheSubgroup 3 exemplifies the
third type of subgroup, by selecting the elements ofT within the
second row and the third row, where the corresponding elements
of B have a value between 6 and 7. In each of the subgroups of



interest, the mean of the value ofT within the subgroup is either
significantly higher or lower than the average of the entire array,
and is associated with either a positive or negative qualityscore.

2.3 Extended Subgroup Description
Compared with the relational data model that conventional sub-
group discovery algorithms operate on, one key difference of array-
based scientific datasets is that, every array element is explicitly
indexed by an array subscript or coordinate value in each dimen-
sion. In practice, an interesting subgroup (i.e., data subset) may
also correspond to a particular spatial subarea. For example, within
a 3-dimensional space modeled bylongitude, latitude and
depth, given by a target variablesalinity, perhaps it is not on-
ly influenced by certain value-based attributes likepressure and
temperature, which correspond to different arrays in the same
dimensional layout, but is also correlated with the dimension-based
attributes likelatitude anddepth that indicate array dimen-
sions.

Formally, we categorize all the attributes possibly involved in the
subgroup description into two types:dimension-basedandvalue-
based. Let ΩD

A and ΩV
A denote the set of all dimension-based

and value-based attributes, respectively. Each dimension-based at-
tribute ad indicates an array dimension, and a corresponding di-
mensional domaindom(ad) is defined (based on dimension indices
or coordinate values). Each value-based attributeav indicates an
array name, and a corresponding value domaindom(av) is defined
based on the element values in the array. For a dimension-based
attributead

i , from dom(ad
i ), we can obtain a set of all the possible

dimensional intervalsRd
i - each intervalrdi comprises a set of con-

tiguous values fromdom(ad
i ). Similarly, for a value-based attribute

av
i , from dom(av

i ), we can obtain a set of all the possible value in-
tervalsRv

i , where each intervalrvi comprises a set of contiguous
values fromdom(av

i ). Let Rd andRv be the universal set of all
the possible dimensional intervals and value intervals, respectively.

DESCRIPTION3 (EXTENDED SUBGROUPDESCRIPTION). A
subgroup description is defined by a conjunction of attribute-range
(or attribute-interval) pairs, where each attribute can beeither
dimension-based or value-based. Each dimension-based attribute-
range pair is of the formad

i = rdi , wheread
i ∈ ΩD

A , andrdi ∈ Rd
i ,

and each value-based attribute-range pair is of the formav
i = rvi ,

whereav
i ∈ ΩV

A , andrvi ∈ Rv
i .

2.4 Quality Function and Subgroup Combi-
nation

The initial subgroup discovery algorithms [31, 72] were proposed
to facilitate the data exploration in the medical domain, and most
existing subgroup discovery algorithms [19, 27, 30, 37, 82]main-
ly consider binary and categorical attributes. Some of these algo-
rithms process numeric attributes by a ‘straight-forward’discretiza-
tion, i.e., creating a few intervals, and then applying quality func-
tion and search strategy designed for categorical attributes. Our
initial attempts in applying existing algorithms for scientific simu-
lation datasets show that such strategies are not adequate.Thus, to
process numeric attributes, two major steps besides discretization
are taken.

Quality Function: Most quality functions used for subgroup dis-
covery, such as interest, novelty, significance, specificity, and Weight-
ed Relative Accuracy (WRAcc) [28], are only applicable to binary

or categorical attributes. By contrast, the quality function applica-
ble to numeric attributes usually involvesweighingandaggrega-
tions over a subgroup. In our work, we consider themeanwith
respect to the target variable as the property of interest, although
other statistics can also be considered. As also used in [6],the qual-
ity function we use is referred to asContinuous Weighted Relative
Accuracy (CWRAcc):

qCWRAcc =
n

N
× (m−M) (2)

wheren andN denote the subgroup size and general population
size, respectively, andm andM denote the mean with respect to
the target variable in the subgroup and the general population, re-
spectively. An alternative quality function isContinuous Piatetsky-
Shapiro (CPS)[6]:

qCPS = n× (m−M) (3)

Note that the value of the quality computed by either of thesetwo
functions can be either positive or negative, indicatingm is either
greater than or less thanM .

Subgroup Combination: Unlike the cases where one is processing
only binary or categorical attributes, it is often reasonable to com-
bine two subgroups concerning the same attribute but with adjacent
value ranges, based on a set of combination rules. Otherwise, it is
very likely that we will have a massive number of subgroups, of
which the majority can be further merged into the ones of greater
generality. For example, two adjacent ranges11 ≤ depth ≤ 30
and31 ≤ depth ≤ 50 may be combined as a larger range11 ≤
depth ≤ 50. The combination rules we use will be discussed in
Section 4.2 in details.

3. SCISD ALGORITHM
This section describes the design of our SciSD algorithm. Our al-
gorithm extensively uses bitmap indices as a summary and efficient
representation of data, instead of the actual array data. However, to
simplify the presentation in this section, the algorithm will be pre-
sented as if it is operating on the array data. Use of bitmap indices
to accelerate the algorithm will be described in Section 5.

3.1 Tight Optimistic Estimates
Before discussing the search strategy used in the algorithm, we
first introduce the notion ofoptimistic estimates. Optimistic esti-
mates [27] aim to safely prune the search space, especially when
monotonicity with respect to the property of interest cannot be ap-
plied. An optimistic estimate of a given subgroup computes the
upper bound of the quality, i.e.,the maximal qualitythat can never
be exceeded by any subset of this subgroup. Atight optimistic es-
timate means that, there exists a subset of the given subgroup such
that the quality of this subset can reach the estimated value. Note
that such a subset with the maximal quality does not necessarily
correspond a subgroup description [27].

Given a subgroupsg, we denote the quality of the subgroup as
q(sg). Further, we denote bysgpos the subset comprising all ele-
ments whose values are greater than the mean ofsg. Similarly, we
denote bysgneg the subset comprising all elements whose values
are lower than the mean ofsg.

THEOREM 1. For the Continuous Weighted Relative Accuracy
quality function and a given subgroupsg, the tight optimistic esti-



mateoe(sg) can be formulated as:

oe(sg) =

{

q(sgpos), if q(sg) > 0

q(sgneg), if q(sg) < 0
(4)

Theorem 1 has been proved by Atzmülleret al. [6]. Our search s-
trategy will leverage optimistic estimates to safely prunethe search
space, as described in the next subsection.

3.2 Search Strategy
Our SciSD algorithm performs an exhaustive search, i.e., the space
of all the possible subgroups needs to be explored. Clearly,the
search space is exponential in the number of attribute-range pairs.
Therefore, we use certain pruning measures as well asbinning of
both dimensional and value ranges to reduce the computationcost-
s. The search for subgroups is based onset-enumeration tree[10],
which ensures that every node is either visited only once or not vis-
ited at all (if is pruned). The equivalence between set-enumeration
trees and canonical orderings has been proved in the literature [47].
Thus, a simple rule for creating the tree is to generate the children
nodes by appending only those attributes that follow all existing at-
tributes in a given ordering. Both dimension-based and value-based
attributes can be equally treated in such an ordering.

Ø
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Figure 2: An Example of Set-Enumeration Tree

Figure 2 shows an example of set-enumeration tree corresponding
to Figure 1 in Section 2. To keep the illustration simple, subgroup
combination is not considered here. Moreover, let us assumethe di-
mensional space of input arrays is only2× 2. Thus, both attributes
i and j have two possible distinct values0 and 1. In this tree,
each node indicates not one, but a set of subgroup candidates. The
set associated with each node comprises elements with conjunc-
tion over all distinct ranges of the attributes the node is associated
with. For example, the nodei∧j indicates the subgroup candidates
i = 0 ∧ j = 0, i = 0 ∧ j = 1, i = 1 ∧ j = 0, andi = 1 ∧ j = 1,
and candidates generated by any combination of these. Ordering is
maintained while generating child nodes in the tree, e.g., the node
B can have children nodesB∧ i andB∧ j, but notB∧A. For our
explanation, we use the termsparent subgroupandchild subgroup
– for illustration,A = 1 is the parent subgroup ofA = 1∧B = 2,
which is the child subgroup here.

Algorithm 1 shows our search strategy. We use two queues –sub-
group candidate queueQ and theoutput subgroup queueQ′ (lines
1 and2). Q stores the subgroups that can potentially be ‘interest-
ing’ but require further validation, andQ′ stores ‘interesting’ sub-
groups after validation, i.e., the ones that are going to be apart of

Algorithm 1: SciSD(dim-based attr. universal setΩD
A , val-based

attr. universal setΩV
A , dim-range universal setRD, val-range uni-

versal setRV )
1: LetQ be a queue for searching subgroup candidates
2: LetQ′ be a queue for output subgroups
3: Push the root node (represents the general population) intoQ {* This

node will be pruned later *}
4: while Q is not emptydo
5: Let sgf be the first subgroup inQ
6: for each attributeai ∈ ΩD

A
or ΩV

A
, whereai follows the last

attribute in the description ofsgf in the given orderingdo
7: for each rangerj ∈ RD

i or RV
i do

8: Let sgl be the last subgroup inQ
{* Produce child subgroup candidates *}

9: Let sgk be the child subgroup candidate ofsgf , by adding a
new attribute-range pairai = rj

10: if sgl can be combined withsgk then
11: Updatesgl by combining it withsgk
12: Let sg′

l
be the last subgroup inQ′

13: sg′
l
← sgl

14: else ifoe(sgk) is not prunedthen
15: Pushsgk into Q
16: if sgk is not prunedthen
17: Pushsgk into Q′

18: end if
19: end if
20: end for
21: end for
22: end while
23: return Q′

the output. Our search traverses the set-enumeration treelevel by
level, starting from the root node that represents the general pop-
ulation without any subsetting (line3). To identify attribute-range
pairs that can contribute to ‘interesting’ subgroups, lines 6 and7
iterate over each attribute in a given ordering (e.g., canonical or-
dering), and each range in order, respectively. For each subgroup
candidate in subgroup candidate queueQ, it can produce a set of
child subgroups by appending another attribute-value pair, where
the appended attribute follows the last attribute in its parent sub-
group (line9).

For each produced child subgroup, we first considersubgroup com-
bination (lines 10 to 13). Line 10 attempts to combine adjacent
subgroup candidates at the same level according to certain com-
bination rules, which will be discussed in Section 4.2. Suchsub-
group combination is only considered between the last subgroup
candidate in the subgroup candidate queueQ and the most recently
produced child subgroup.

Note that to prevent anover-pruningsituation, i.e., a situation where
two subgroups should not be pruned but their combined subgroup is
pruned, we need to ensure that once two subgroups are combined,
the combined subgroup will not be pruned. Lines11 to 13 update
the last subgroup in both queuesQ andQ′ after combination.

Subgroup pruningoccurs if the tentative subgroup combination fail-
s (lines14 to 19). Similar to subgroup combination, apruning
test is applied based on certain pruning measures, which will be
discussed in Section 4.1. The pruning process includes two steps.
First, we check if the optimistic estimate of the subgroup can pass
the pruning test (line14). If so, the subgroup is viewed as a sub-
group candidate, which is added to the subgroup candidate queue
Q. By adding it to the queueQ, we can check if any of its child



subgroups can be a qualified subgroup as the search proceeds (line
15). Otherwise, this subgroup can be safely pruned because of the
property of the optimistic estimate, and its child subgroups are not
evaluated any further. If a subgroup qualifies because of thevalue
of the optimistic estimate, we apply the same pruning test tothe
subgroup itself (line16). Only if the subgroup still qualifies, it is
added to the output subgroup queueQ′ as an output subgroup (line
17). In practice, all the output subgroups can be ranked according
to the quality function.

4. SUBGROUP PRUNING AND COMBINA-
TION

In our algorithm, efficiency is maintained by subgroup pruning
based on certain pruning measures, as well as subgroup combina-
tion rules based on a set of combination rules, which are explained
in this section.

4.1 Pruning Measures
Our algorithm uses three pruning measures to determine if a sub-
group should be pruned or not. Two of them are relatively straight-
forward - a minimum support (or size) of the subgroup and a mini-
mum threshold quality, since a subgroup of interest should be large
enough and significantly different from the general population.

PRUNING MEASURE1 (MINIMUM SUPPORT). Given a sub-
group sg, with sup(sg) = n

N
, wheren andN are the size ofsg

and the general population, respectively,sg is pruned if

sup(sg) < supmin

PRUNING MEASURE2 (MINIMUM ABSOLUTE QUALITY ).
Given a subgroupsg, sg is pruned if

|q(sg)| < qmin

The third pruning measure we use is as follows – compared with
the parent subgroup, a child subgroup should be considered only if
it has a higher quality than the parent subgroup. The motivation is
that if such a pruning rule is not used, a large number of smalland
redundant subgroups will be generated by the algorithm.

PRUNING MEASURE3 (MINIMUM RELATIVE QUALITY ). Given
a subgroupsgparent and its child subgroupsgchild, sgchild is of
interest only if

{

q(sgchild)− q(sgparent) ≥ qrmin, if q(sgparent) > 0

q(sgparent)− q(sgchild) ≥ qrmin, if q(sgparent) < 0

According to Algorithm 1, for the subgroup candidates that involve
multiple attribute-range pairs, their non-root parent subgroups must
have already satisfied Pruning Measure 2. By using Theorem 2,
Pruning Measure 3 here can be considered as asufficientcondition
of Pruning Measure 2 for these subgroup candidates.

THEOREM 2. Given a parent subgroupsgparent that satisfies
Pruning Measure 2, and its child subgroupsgchild, if bothsgparent

and sgchild satisfy Pruning Measure 3, thensgchild also satisfies
Pruning Measure 2.

PROOF. If q(sgparent) > 0, according to Pruning Measures 2
and 3, we haveq(sgparent) ≥ qmin, andq(sgchild)−q(sgparent) ≥
qrmin. Thus,

q(sgchild) ≥ q(sgparent) + q
r
min

> q(sgparent) > qmin

If q(sgparent) < 0, the proof proceeds analogously.

4.2 Combination Rules
Three combination rules are defined to determine if two subgroup-
s can be combined or not – all three conditions must be met for
two subgroups to be combined. First, intuitively, only the two sub-
groups, which belong to the same parent subgroup and are adjacent
at the same level in the set-enumeration tree, can be combined. In
other words, one of the prerequisites of subgroup combinability is
theexistence of adjacency.

COMBINATION RULE 1 (EXISTENCE OFADJACENCY). Given
two subgroups described by two conjunctions of attribute-range
pairs a1 = r1 ∧ a2 = r2... ∧ an = rn and a′

1 = r′1 ∧ a′

2 =
r′2... ∧ a′

n = r′n , respectively, then the two subgroups are consid-
ered adjacent and can be combined only if∀i, 1 ≤ i ≤ n : ai = a′

i,
∀i, 1 ≤ i < n : ri = r′i, and,rn andr′n are two adjacent dimen-
sional ranges inRD

n or value ranges inRV
n .

Second, as also mentioned earlier in Section 3.2, if any two adja-
cent subgroups can pass the pruning test, they may still be pruned
after combination, due to the low quality of the combined subgroup.
This should be avoided. Therefore, it is necessary to set a combi-
nation rule to ensure that the combined subgroup should passthe
pruning test, i.e., one combination rule should be asufficientcon-
dition of satisfying all the three pruning measures defined in Sec-
tion 4.1. Note that as Algorithm 1 shows, one of the subgroups
used for combination is from the output subgroup queue, and it
has already passed the pruning test. Here, we propose an easy-to-
compute criterion referred to asdifference homogeneity, which is
defined as Combination Rule 2. A positive value of differenceho-
mogeneity indicates that the means with respect to the target vari-
able in these two subgroups are homogeneous, i.e., either greater
than or less than the mean of the general population at the same
time.

COMBINATION RULE 2 (DIFFERENCEHOMOGENEITY). Let
m1 andm2 be the mean with respect to the target variable in two
given subgroups, and letM be the mean of the general population,
then the two subgroups can be combined only if

(m1 −M)× (m2 −M) > 0

Formally, given two subgroupssg1 andsg2 which are combined in-
to a subgroupsgcombined, andsg1 has passed the pruning test, the
following three theorems ensure that a combined subgroup should
never be pruned, by satisfying all the three pruning measures de-
fined in Section 4.1.

THEOREM 3. If sg1 and sg2 are combined intosgcombined,
and sg1 has passed the pruning test, thensup(sgcombined) >

supmin.



PROOF. Straight-forward.

THEOREM 4. If sg1 and sg2 are combined intosgcombined,
andsg1 has passed the pruning test, then|q(sgcombined)| ≥ qmin.

PROOF. Letncombined andmcombined be the size and mean of
sgcombined, respectively. By using Equation 2, we can have

q(sgcombined) =
ncombined

N
× (mcombined −M)

=
n1 + n2

N
× (

m1 × n1 +m2 × n2

n1 + n2

−M)

=
(m1 −M)× n1 + (m2 −M)× n2

N

= q(sg1) + q(sg2)

(5)

For sg1, |q(sg1)| ≥ qmin. Since Combination Rule 2 implies
q(sg1)× q(sg2) > 0, by using Equation 5, we can have

|q(sgcombined)| = |q(sg1) + q(sg2)|

> |q(sg1)| > qmin

THEOREM 5. If sg1 and sg2 are combined intosgcombined,
and sg1 has passed the pruning test. Let the parent subgroup of
sg1 andsg2 besgparent, then
{

q(sgcombined)− q(sgparent) ≥ qrmin, if q(sgparent) > 0

q(sgparent)− q(sgcombined) ≥ qrmin, if q(sgparent) < 0

PROOF. If q(sgparent) > 0, for sg1,

q(sg1) ≥ q(sgparent) + q
r
min > 0

Since Combination Rule 2 impliesq(sg1) × q(sg2) > 0, we can
haveq(sg2) > 0. By using Equation 5,

q(sgcombined)− q(sgparent) = q(sg1) + q(sg2)− q(sgparent)

≥ q
r
min + q(sg2) > q

r
min

If q(sgparent) < 0, the proof proceeds analogously.

Lastly, in practice it is helpful for the users that a subgroup does not
spread too broadly. Therefore, it is necessary to evaluate thedistri-
bution purityof a combined subgroup. Before introducing the next
combination rule, we need to propose another criterion referred to
asContinuous Weighted Entropy(CWE), which is adapted from the
entropy used for evaluating the purity of classification:

CWE = −
n
∑

i=1

p(i)× log p(i)×
|vi −M |

vn − v1
(6)

wheren is the number of intervals for the target variable,p(i) and
vi denote the probability and representative value of theith interval,
respectively, andM represents the mean of the general population.
Sincev1 andvn are the minimum and maximum representative val-
ue, respectively,vi−M

vn−v1
here represents theweight, which implies

the normalized distancefrom the ith interval to the mean of the
general population. Therefore, for two subgroups of equal size, the
CWE of a subgroup in which most elements are within the inter-
vals remote from the mean of the general population, tends tobe

greater than, the other subgroup in which most elements are within
the intervals close to the mean of the general population.

The third combination rule aims to restrict the extent to which ad-
jacent subgroups can be combined, by introducing a user-specified
parameter –maximum continuous weighted entropyCWEmax.

COMBINATION RULE 3 (DISTRIBUTION PURITY). If two giv-
en subgroups are combined into a subgroupsgcombined, and let its
continuous weighted entropy beCWE(sgcombined), then the two
subgroups can be combined only if

CWE(sgcomb) ≤ CWEmax

This combination rule can effectively control thegranularity of
output subgroups and hence help the user to control the number of
output subgroups at a manageable level. Generally, a largermaxi-
mum CWE value tends to generate fewer subgroups yet of greater
generality and higher quality.

5. ALGORITHM OPTIMIZATION USING
BITMAPS

In this section, we first provide background information on bitmap
indexing, and then we discuss the algorithm acceleration using bitmap-
s. Note that our actual algorithm implementation is based entirely
on bitmaps. For clarity in our write-up, we are presenting bitmaps
as an optimization mechanism.

5.1 Background: Bitmap Indexing
Bitmap indexing, which utilizes the fast bitwise operations support-
ed by the computer hardware, has been shown to be an efficient ap-
proach for querying static (i.e., read-only or append-only) data, and
has been initially used in data warehouse [46, 77, 78] and recently
in scientific data management [53,54,73]. Particularly, recent work
has shown that bitmap indexing can help support efficient querying
of scientific datasets stored in native formats [17, 61]. Oursub-
group discovery algorithm involves a novel use of bitmap indices.
Thus, before presenting our algorithm, we provide background on
bitmaps, and then describe how they are customized for our appli-
cation.

ID Value e0 e1 e2 e3 e4 e5 i0 i1 i2 

=1 =2 =3 =4 =5 =6 [1, 2] [3, 4] [5, 6]

0 5 0 0 0 0 1 0 0 0 1

1 4 0 0 0 1 0 0 0 1 0

2 2 0 1 0 0 0 0 1 0 0

3 5 0 0 0 0 1 0 0 0 1

4 6 0 0 0 0 0 1 0 0 1

5 1 1 0 0 0 0 0 1 0 0

6 3 0 0 1 0 0 0 0 1 0

7 1 1 0 0 0 0 0 1 0 0

Dataset Low Level Indices High Level Indices 

 

Figure 3: An Example of Bitmap Indexing

Figure 3 shows an example of bitmap indexing. In this example,
the dataset contains a total of 8 elements with 6 distinct values. The
low-levelbitmap indices contain 6 bitvectors, where each bitvector
corresponds to one value. The number of bits within each bitvec-
tor is the same as total number of elements in the dataset. In each
bitvector, a bit is set to 1 if the value for the correspondingdata



element value is equal to thebitvector value, i.e., the particular dis-
tinct value for which this vector is created. Thehigh-levelindices
can be generated based on certain binning strategies [5], and here 3
high-level indices are built.

This simple example only contains integer values. Bitmap index-
ing also has been shown to be an efficient method for floating-point
values [75]. For such datasets, instead of building a bitvector for
each distinct value, we can first group a set of values together by
certain binning strategies, and build bitvectors for thesebins. This
way, the total number of bitvectors can be kept at a manageable
level. From this example we can also see that the number of bits
within each level of bitmap indices isn × m, wheren is the total
number of elements andm is the total number of bitvectors. This
can result in sizes even greater than the size of the originaldataset,
causing high time and space overheads for index creation, storage,
and query processing. To solve this problem, run-length compres-
sion algorithms such as Byte-aligned Bitmap Code (BBC) [5] and
Word-Aligned Hybrid (WAH) [74] have been developed to reduce
the bitmap size. The main idea of these approaches is that forlong
sequences of 0s and 1s within each bitvector, an encoding is used to
count the number of continuous 0s or 1s. Such encoded counts are
stored, requiring less space. Another property of the run-length
compression methods is that, it supports fast bitwise operations
without decompressing the data.

Bitmaps are widely used for supporting queries on scientificdataset-
s [17,73]. Thus, before our algorithm is used, it is quite likely that
bitmaps are already available, and hence we assume no preprocess-
ing cost for generating bitmaps in our experiments. Further, even
if bitmaps are not available, with an appropriate number of bins
(e.g., fewer than 1000), bitmap indexing is still cheap in terms of
both computation and storage. Construction of bitmaps onlytook
around 2 minutes per GB of original data, per core, in our exper-
iments, since it requires at most two full scans of raw data. The
size of the indices ranged between 15% and 30% of the size of the
original dataset.

5.2 Algorithm Acceleration Using Bitmaps
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Figure 4: Use of Bitmaps in SciSD

A key characteristic of our algorithm is that, the input is com-
pact bitmap indices instead of the original raw datasets. Note that
bitmap (indices) are not used in the conventional way indices are
used, i.e., for querying actual data more efficiently. Instead, bitmap-
s are used as a summary representation of the data. Also note that
bitmaps loose a certain level of precision because of binning for
value-based attributes. However, to control costs, our subgroup
discovery method must use binning of value-based and dimension-
based attributes.

A bitmap example is shown in Figure 4. Besides the normal rep-
resentation of the data with bitmaps, our algorithm uses twoother
types of bitmaps. Returning to our running example, assume that
within a2×2 space,2 dimensions (i.e., dimension-based attributes)
row and column, are denoted asi andj, respectively. The subgroup
discovery involves3 arrays (i.e., value-based attributes)T , A, and
B, whereT is the target variable. All the bitmap indices here are
generated in a row-major fashion. Three types of bitmap indices
are generated in this example: 1) (conventional) indices for value-
based attributes, e.g.,T , A andB; 2) indices for dimension-based
attributes, e.g.,i andj; and 3) twosign bitvectors– both apositive
bitvectorand anegative bitvector.

These bitvectors are used in the following fashion. With thefirst
two types of indices, each attribute-range pair can be represented
by a bitvector in the bitmap, whether the attribute is dimension-
based or value-based. Particularly, the second type of indices are
created in the same way as value-based attributes are indexed, i.e.,
by treating each coordinate value as an array element value.Equi-
depth binning [5], which partitions the entire domain in such a way
that each bin contains an approximately the same number of ele-
ments, is used for indexing both value-based and dimension-based
attributes. Use of binning restricts the ranges (of both values and
dimensions) that can be used in describing a subgroup. Howev-
er, this has a very significant impact on the execution time ofthe
algorithm, as both the size of bitvectors and number of potential
subgroups to be considered is now restricted to a manageablelevel.

The two sign bitvectors are used for optimistic estimates. Particu-
larly, the positive bitvector indicates all the elements greater than
the mean with respect to target variable in the original dataset (2.5
in this example), and leads to a positive quality. Similarly, the neg-
ative bitvector results in a negative quality.

Compared with conventional bitmap indexing that only outputs type-
1 indices, our approach generates more indices. However, itturns
out that both the bitvectors for dimension-based attributes and two
individual sign bitvectors do not add much space or time complex-
ity. This is because of the regularity of array elements within the
same dimensional range, leading to very high compression ratios
(e.g., 1%).

Now, we explain how efficiency is achieved in our algorithm us-
ing bitmaps. First, since the size of bitmap indices is oftenonly
15%-30% of the original data size, I/O performance can be clearly
improved. In addition, specific algorithm steps are accelerated as
follows. First, a conjunction of multiple attribute-rangepairs can be
calculated by bitwise AND operations over different bitvectors. As
each attribute-range pair corresponds to a bitvector in ourbitmaps,
a subgroup described by a conjunction of multiple attribute-range
pairs can now be represented by a single bitvector after bitwise
AND operations. This property is particularly useful everytime
a parent subgroup produces a child subgroup by appending anoth-
er attribute-range pair (see line9 in Algorithm 1). In our running
example,A = 1 ∧ i = 2 can be derived by1001 ∧ 0011 = 0001.

Next, a disjunction of two attribute-range pairs can be obtained by
bitwise OR operation between two bitvectors. This can speedup
the subgroup combination process in our algorithm (see line11 in
Algorithm 1), since the combination of two attribute-rangepairs
can be viewed as a disjunction. In the above example,B <= 2 can
be derived from1001 ∨ 0100 = 1101.



Another benefit of bitmaps is that, both subgroup size and themean
value with respect to the target variable in a subgroup can becom-
puted efficiently with bitmaps. This property can accelerate all
the computations involved in our quality evaluations, pruning mea-
sures, and combination rules. As the membership of a subgroup can
be described by a single bitvector, the subgroup size can be easily
obtained by counting the number of 1s in the bitvector. Moreover,
if we denote the bitmap that corresponds to the target variable as
the target bitmap, associated with the target bitmap, the mean with
respect to the target variable in a subgroup can be calculated as
follows:

m =

∑n

i=1
vi ×COUNT (bi ∧ b)

∑n

i=1
COUNT (bi ∧ b)

(7)

wherem is the mean with respect to the target variable in the sub-
group,n is the number of bitvectors in the target bitmap,vi is the
representative value of the bitvectorbi in the target bitmap, and
b is the bitvector that represents the membership of the subgroup.
It turns out that the mean value can be calculated efficientlyand
with reasonably high accuracy based on the above process. Inthe
above example, as the subgroupA = 1 can be represented by the
bitvector1001, the mean with respect toT in this subgroup can be
computed by1×COUNT (1000∧1001)+4×COUNT (0001∧1001)

COUNT (1000∧1001)+COUNT (0001∧1001)
= 2.5.

Finally, the twosign bitvectorscan facilitate the optimistic esti-
mates discussed in Section 3.1 (as used in line14 of Algorithm 1).
In Equation 4, given a bitvector that indicates all the elements in a
given subgroupsg, a simple bitwise AND operation between this
bitvector and thepositive bitvectorcan result in the bitvector cor-
responding tosgpos. Similarly, sgneg can be efficiently calculat-
ed with thenegative bitvector. In the above example, to obtain
the subset with element values greater than the mean in the sub-
groupA = 1 represented by the bitvector1001, we can perform
a bitwise AND between this bitvector and the positive bitvector,
1001 ∧ 0011 = 0001.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the performance (execution efficiency)
of our algorithm as well as the quality of the output subgroups. We
designed the experiments with the following goals: 1) to compare
our algorithm with SD-Map* [6], which is a popular subgroup dis-
covery algorithm (applicable to relational data involvingnumerical
attributes) – it has been implemented in an open-source software
VIKAMINE [1], and 2) to demonstrate both performance of our
algorithm and the quality of the output subgroups, by varying both
the maximum continuous weighted entropy (CWE) and the number
of bins used in bitmap indexing.

6.1 Experimental Setup
Our experiments were conducted using four real-life scientific dataset-
s, which are all stored in NetCDF, one of the popular array for-
mats. The first two datasets are downloaded from the World O-
cean Atlas 2009 (WOA09) [2] monthly compisiting data. Because
these two datasets are generated on 5° and 1° grids, we refer to
them as WOA09_5DEG and WOA09_1DEG, respectively. Each
dataset comprises five attributes includingapparent oxygen
utilization (AOU),temperature,dissolved oxygen
(DO), salinity, andoxygen saturation (OS), in a 4-
dimensional space, which is modeled bylongitude,latitude,
depth, andtime. The sizes of WOA09_5DEG and WOA09_1DEG
datasets are 14 MB and 373 MB, respectively. The third dataset
is obtained from World Ocean Atlas 2013 (WOA13) [3] annual
compisiting data, which is generated on 5° grids. Compared with

the first two datasets, this dataset is modeled with the same four
dimensions, but it comprises three more attributes –silicate,
phosphate, andnitrate. We refer to this dataset as WOA13.
The fourth dataset is generated by Parallel Ocean Program (POP) [29].
POP is an ocean circulation model, and the execution we used has a
grid resolution of approximately 10 km (horizontally), andvertical-
ly, it has a grid spacing of nearly 10 m near the surface, and reach-
ing 250 m in the deep ocean. The dataset mainly comprises four
attributes,salinity, temperature, UVEL andVVEL, where
UVEL and VVEL observe the velocity of ocean current in the grid-
x and grid-y directions, respectively. POP generates 1.4 GBdata
for each attribute per time-slice, and each attribute is modeled with
three dimensions:latitude, longitude, anddepth. We on-
ly used one time-slice which is referred to as thePOP dataset in our
experiments, and thus, the total data size of the fourth dataset was
5.6 GB. The number of attributes involved in our experimentsis up
to 8, which we believe is a large number compared to the number
of attributes likely of interest to any given scientist. Ourexperi-
ments were conducted on a machine with 8 GB of main memory
and Intel(R) Xeon(R) 2.53 GHz CPU. The version of VIKAMINE
we used was 2.2.

6.2 Comparison with SD-Map*
Our first set of experiments compared the performance of our algo-
rithm and the quality of its output subgroups against SD-Map*, a
popular subgroup discovery algorithm over numeric attributes. SD-
Map* has been implemented in an open-source software VIKAMINE,
and it uses the same quality function – Continuous Weighted Rel-
ative Accuracy (CWRAcc), which is defined by Equation 2. Al-
though we are also aware of a small number of other algorithm-
s that can work with numeric attributes, we cannot directly com-
pare with them, because they either use different quality function-
s, and/or their implementations were not available to us. Since
VIKAMINE can only support subgroup discovery over small re-
lational datasets, we only used WOA09_5DEG and WOA13 these
two datasets, which have a size of 14 MB and 8 MB, respective-
ly. To match the format expected by VIKAMINE, we converted
the data from NetCDF to the CSV format. In the process, the four
dimension-based attributes were also added as additional columns,
since VIKAMINE can only process relational data. Note that as
mentioned in Section 1, treating array dimensions as additional re-
lational attributes is not a practical approach for large datasets, due
to the high data reorganization and storage costs.

First, among the five value-based attributes in WOA09_5DEG dataset,
we setOS as the target variable – its mean value is 71.03. We used
100 bins for indexing each value-based attribute, and 12 bins for
indexing each dimension-based attribute. The minimum support,
minimum absolute quality, and minimum relative quality were set
as 0.01, 0.09, and 0.001, respectively. The maximum CWE was
varied from 0.25 to 1.5.

Tables 1 and 2 show the best 8 subgroups discovered by SD-Map*
and our algorithm on WOA09_5DEG dataset, respectively, with
the maximum CWE of 1.5. The subgroups within each table are in
descending order of absolute quality measured by CWRAcc.

We can make the following four observations about the two al-
gorithms. First, our algorithm can discover more interesting sub-
groups (i.e., subgroups of higher quality). For example, the qual-
ity of the best 4 subgroups discovered by our algorithm is almost
twice the best subgroup discovered by SD-Map*. This is because,
with the use of Equation 5, the subgroup combination mechanism



Table 1: The Best 8 Subgroups Discovered on WOA09_5DEG
by SD-Map*

Rank Subgroup CWRAcc Support Mean
1 AOU < 0.08 6.24 0.20 102.24
2 depth< 40 6.08 0.21 99.81
3 AOU < 0.08 AND depth< 40 4.65 0.15 102.45
4 DO ≥ 6.14 4.63 0.20 94.18
5 0.08≤ AOU < 0.75 4.62 0.20 94.13
6 temperature> 18.41 4.55 0.20 93.79
7 4.98≤ DO < 6.14 3.85 0.20 90.29
8 temperature> 18.41 AND AOU< 0.08 3.56 0.11 102.14

Table 2: The Best 8 Subgroups Discovered on WOA09_5DEG
by SciSD with Maximum CWE of 1.5

Rank Subgroup CWRAcc Support Mean
1 -0.43≤ AOU ≤ 1.95 12.26 0.58 92.17
2 2.68≤ AOU ≤ 7.99 -12.25 0.34 35.00
3 0.01≤ DO ≤ 4.29 -11.61 0.36 38.78
4 4.43≤ DO≤ 10.57 11.44 0.60 90.10
5 0≤ depth≤ 200 9.30 0.51 89.34
6 250≤ depth≤ 1500 -9.30 0.49 52.14
7 2.36≤ temperature≤ 12.97 -6.57 0.50 57.89
8 16.16≤ temperature≤ 32.68 5.15 0.25 91.64

in our algorithm leads to subgroups that are larger and of higher
quality. Second, SD-Map* is only able to discover the subgroups
with the mean value significantly greater than the general popula-
tion, i.e., the subgroups with a positive CWRAcc. Our algorithm
can also discover interesting subgroups with a negative CWRAc-
c. This is because our Pruning Measure 2 is also able to cap-
ture interesting subgroups with significantly smaller means. Third,
as Table 1 shows, a nontrivial fraction of subgroups generated by
SD-Map* are redundant.Subgroup 3 is really the intersection of
Subgroup 1 andSubgroup 2, and in fact, has a lower CWRAc-
c than either of its two super-subgroups. Similarly,Subgroup 8
is an analogous intersection ofSubgroup 1 andSubgroup 6. In
contrast, our algorithm does not result in any subgroup thatis re-
dundant. This is because our Pruning Measure 3 can prevent any
subgroup specialization that does not lead to quality gain.Final-
ly, the subgroups discovered by our algorithm tend to have greater
generality, i.e., larger subgroup size, while we observed that most
subgroups discovered by SD-Map* could have been merged into
larger subgroups. For example,Subgroup 1 andSubgroup 5, as
well asSubgroup 4 andSubgroup 7 in Table 1, could have been
combined into a larger subgroup. In comparison, our algorithm can
combine as many subgroups as possible, under the user-specified
maximum CWE. Therefore, our algorithm can ensure that any two
of the output subgroups cannot be further combined, facilitating
better exploration from scientists.

Table 3 summarizes the statistics of the subgroups discovered by
SD-Map* and our algorithm with varying maximum CWE on
WOA09_5DEG dataset. ‘SciSD_0.25’, ‘SciSD_0.5’, ‘SciSD_1’,
and ‘SciSD_1.5’ are denoted as the algorithm with the maximum
CWE of 0.25, 0.5, 1, and 1.5, respectively. These statisticsinclude
the number of output subgroups, execution times, average support,
average CWRAcc, and the number of attributes involved per sub-
group. Note that the reported execution times of SD-Map* does not
include the data preprocessing time, i.e., the data conversion time.

Table 3: Comparison between SD-Map* and SciSD on
WOA09_5DEG with Varying Maximum CWE

Algorithm # of Subgroups Exe Times (secs) CWRAcc Support # of Attr.
SciSD_0.25 111 58.61 0.75 0.04 1.05
SciSD_0.5 88 48.53 1.03 0.06 1.06
SciSD_1 53 32.67 1.90 0.12 1.10

SciSD_1.5 26 17.37 4.17 0.27 1.19
SD-Map* 1792 2116 0.48 0.02 3.06

We can make three observations. First, we can see that, our algo-
rithm not only produces subgroups of greater generality andhigher
quality than SD-Map*, but the execution times are also lowerby
a factor of up to two orders of magnitude. Second, our algorith-
m manages to restrict the number of subgroups within a manage-
able level, whereas SD-Map* reports a large number of subgroups,
which tend to be too specialized. A prominent example is that,
with respect to the attributeAOU, our algorithm with the maximum
CWE of 1.5 only discovered two subgroups, with positive and neg-
ative quality, respectively. In comparison, SD-Map* discovered
766 subgroups, and all of them turn out to be overlapping subsets
of the only subgroup with the positive quality discovered byour
algorithm (this subgroup is theSubgroup 1 in Table 2). Note that
VIKAMINE can support a post-processing module named ‘mini-
mal improvement filter’, which aims to filter out redundant sub-
groups and minimize the final output, but such post-processing cur-
rently is not supported over numeric attributes. Lastly, wecan see
that maximum CWE can be used to effectively control the granu-
larity of the output subgroups. Generally, a larger maximumCWE
can allow more subgroups to be combined, leading to fewer output
subgroups, which are of greater generality and higher quality. A
larger maximum CWE results in lower execution times also.

Next, we experimented on another dataset WOA13 by settingnitrate
as the target variable – its mean value is 6.32. We used 100 bins for
indexing each value-based attribute, and 12 bins for indexing each
dimension-based attribute, with an exception oftime dimension.
Only 1 bin was used for indexingtime, because this annual com-
positing dataset only comprises a single time slice. Our method set
the minimum support, minimum absolute quality, and minimum
relative quality as 0.002, 0.14, and 0.001, respectively. The maxi-
mum CWE was varied from 0.25 to 1.5.

Table 4: The Best 8 Subgroups Discovered on WOA13 by SD-
Map*

Rank Subgroup CWRAcc Support Mean
1 1.16≤ phosphate 3.22 0.20 22.40
2 1.16≤ phosphate AND time= 1 3.22 0.20 22.40
3 12.75≤ silicate AND 1.16≤ phosphate 2.66 0.15 23.74
4 12.75≤ silicate AND 1.16≤ phosphate AND time= 1 2.66 0.15 23.74
5 12.75≤ silicate 2.65 0.20 19.61
6 12.75≤ silicate AND time= 1 2.65 0.20 19.61
7 1.16≤ phosphate AND 15.50≤ depth 0.84 0.05 23.30
8 1.16≤ phosphate AND 15.50≤ depth AND time= 1 0.84 0.05 23.30

Tables 4 and 5 show the best 8 subgroups discovered by SD-Map*
and our algorithm (with the maximum CWE of 1.5) on WOA13
dataset, respectively. We can still draw the same conclusions as
those from the previous experiment. Particularly, in Table4, we
can see that the best 8 subgroups discovered by SD-Map* are actu-



Table 5: The Best 8 Subgroups Discovered on WOA13 by SciSD
with Maximum CWE of 1.5

Rank Subgroup CWRAcc Support Mean
1 phosphate< 0.84 -3.41 0.74 1.71
2 0.88≤ phosphate< 3.39 3.40 0.25 19.90
3 silicate< 8.45 -2.66 0.75 2.76
4 13.90≤ silicate< 185.23 2.65 0.19 20.20
5 40≤ depth< 175 -0.98 0.25 2.35
6 400≤ depth< 1050 -0.81 0.20 2.24
7 0≤ depth< 35 0.80 0.08 16.17
8 200≤ depth< 375 0.76 0.06 19.39

Table 6: Comparison between SD-Map* and SciSD on WOA13
with Varying Maximum CWE

Algorithm # of Subgroups Exe Times (secs) CWRAcc Support # of Attr.
SciSD_0.25 37 17.69 0.39 0.059 1
SciSD_0.5 33 14.64 0.69 0.180 1
SciSD_1 19 10.27 1.00 0.189 1.16

SciSD_1.5 16 6.12 1.06 0.140 1.30
SD-Map* 3036 508 0.24 0.017 4.28

ally all covered by eitherSubgroup 1 or Subgroup 5. The other
6 subgroups are all subsets of these two subgroups. In comparison,
among the best 8 subgroups discovery by our algorithm, if we on-
ly consider the subgroups with a positive CWRAcc,Subgroup 2
in Table 5 has higher quality thanSubgroup 1 in Table 4, and
Subgroup 4 in Table 5 has no lower quality thanSubgroup 5 in
Table 4.

Similar to Table 3, Table 6 summarizes the comparison results on
WOA13 dataset. It turns out that we can make the similar obser-
vations as those from the previous experiment. First, the average
quality of the output subgroups discovered by our algorithmis 1.6x
- 4.4x of SD-Map*’s output. Second, our execution time is on-
ly 1.2% of SD-Map*, when a large maximum CWE (1.5) is used.
This is because lenient subgroup combination can effectively re-
duce the processing costs. Third, compared with SD-Map*, which
produces a large number of redundant and meaningless subgroups,
our output subgroups are much more compact. For instance, among
the total 3036 output subgroups, the attributephosphate occurs
2187 times, but only in the attribute-range pair ‘1.16≤ phosphate’,
which corresponds toSubgroup 1 in Table 4. This implies that the
other 2186 subgroups (or 72% of output) involvingphosphate
are all redundant. In addition, 50% of the output subgroups dis-
covered by SD-Map* are simply created by involving one more
attribute-range pairtime = 1, which does not help improve the
quality.

6.3 Evaluation over Larger Datasets
We next experimented on the two larger datasets – WOA09_1DEG
and POP datasets. In this set of experiments we varied the maxi-
mum CWE and the number of bins used for indexing value-based
attributes. One of our main goals was to understand how binning (a
critical step in using bitvectors) impacts the execution time and the
output quality of the algorithm. We set the minimum support,min-
imum absolute quality, and minimum relative quality as 0.01, 0.04,
and 0.001, respectively. For WOA09_1DEG dataset, the maximum
CWE was varied to be 0.25, 0.5, 1, and 1.5. The number of bin-
s used for indexing each of the value-based attributes was varied

between 20, 40, 60, 80, and 100. The number of bins used for
indexing dimension-based attributes –latitude, longitude,
depth, andtime, was fixed throughout all the experiments, and
was 18, 36, 24, and 12, respectively, for these four dimensions. For
POP dataset, the maximum CWE was varied from 0.25 to 1. The
number of bins used for indexing each of the value-based attributes
was varied from 20 to 60. The number of bins used for indexing the
dimension-based attributeslatitude,longitude, anddepth
was also fixed – 24, 36, and 21, respectively, for these three dimen-
sions.

Figures 5 show the evaluation results on WOA09_1DEG and POP
datasets. First, we can see that using a larger maximum CWE and
fewer bins can result in fewer subgroups being output. This is be-
cause a larger maximum CWE allows more small subgroups to be
combined, and fewer bins lead to more coarse-grained binning and
fewer attribute-range pairs. Second, in most cases, a larger max-
imum CWE and use of fewer bins also lead to lower processing
times. The reason is two-fold. On one hand, more lenient subgroup
combination can help eliminate more search space where multiple
attributes are involved. On the other hand, use of fewer binsalso
implies fewer attribute-range pairs involved in the subgroup discov-
ery. Finally, for both datasets, we can see higher average quality
with larger maximum CWE and smaller number of bins. However,
note that the subgroup quality cannot always be improved by in-
creasing maximum CWE or decreasing the number of bins, since
such quality is also highly dependent on the dataset itself.Two ex-
ceptions can be found in Figure 5(c). The first exception is that,
when the number of bins is 20, using the maximum CWE of 1.5
cannot result in a subgroup of quality higher than using the maxi-
mum CWE of 1. The other exception is that, when the number of
bins is greater than 20 and the maximum CWE is 1.5, the subgroup
quality cannot be further improved with more bins. However,over-
all, high-quality results and reduced execution times with20 bins
point to the practicality of our algorithm, i.e., it can be effective on
large datasets and can provide reasonable response times.

6.4 Effectiveness of Search Strategy

Table 7: Search Efficiency Evaluation on WOA09_1DEG with
Varying # of Bins and Maximum CWE of 1.5

# of Bins 20 40 60 80 100
Size of Search Space 3.0E+10 4.8E+11 2.4E+12 7.6E+12 1.9E+13

# of Visited Subgroups 1626 2216 2676 3136 3596
# of Pruned Subgroups 1470 (90.4%) 1984 (89.5%) 2366 (88.4%) 2752 (87.8%) 3139 (87.3%)

# of Combined Subgroups 136 (8.4%) 211 (9.5%) 289 (10.8%) 363 (11.6%) 436 (12.1%)

Lastly, we evaluated the search efficiency on WOA09_1DEG dataset,
by using almost the same parameters as the previous experiment
(exception being that a fixed maximum CWE of 1.5 was used). In
Table 7, we report the size of search space, the number of visit-
ed subgroups during our search, the number of visited subgroups
eliminated by pruning, and the number of visited subgroups elimi-
nated by combination. Additionally, we also report the proportion
of eliminated subgroups among all the visited ones.

The size of search space is equal to the product of the number
of bins over each attribute. The number of eliminated subgroups
reported only includes the ones that are directly pruned or com-
bined based on our pruning measures and combination rules, and
excludes the child subgroups of those. We can make the follow-
ing observations. First, the search space increases exponentially
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Figure 5: Evaluation on WOA09_1DEG and POP Datasets: Impactof Varying Maximum CWE and # of Bins on # of Subgroups,
Execution Times, and Average CWRAcc

as more bins are used, and even with a small number of bins, the
search space is still huge. This shows that a brute-force algorith-
m will have an unacceptable cost. However, the number of visited
subgroups is at least 7 orders of magnitude smaller, and doesnot in-
crease very rapidly with increasing number of bins. This is because
our level-wise search strategy can eliminate unqualified orsmal-
l subgroups by pruning or combination as early as possible, and
hence unnecessary exploration over their child subgroups can be
avoided. As a result, the depth of our search tree is relatively small,
mostly less than 3. Second, we can see that around 90% of visited
subgroups are pruned based on our pruning measures, and around
10% visited subgroups are combined to provide a higher quality.
Therefore, generally only less than 1% of visited subgroupsare fi-
nally qualified, leading to subgroups that are of most significance
to the users.

7. RELATED WORK
As an important data mining technique that is often applied to data
exploration and descriptive induction, subgroup discovery has been
extensively studied in recent years. The existing algorithms can be
broadly classified into three types:extensions of classification al-
gorithms[22, 31, 34, 37, 72],extensions of association algorithm-
s [7, 26, 27, 30], andextensions of evolutionary fuzzy algorithm-
s [11,14,19]. However, only a small number of subgroup discovery
algorithms are capable of processing numeric attributes. As an ex-
tension of SD-Map [7], SD-Map* is designed based on FP-growth,
and it uses frequent pattern tree as the search tree. In contrast,
our algorithm uses a set-enumeration tree based search strategy,
with pruning and combination methods we have introduced. We
have extensively compared our algorithm with SD-Map*, and have
shown that our algorithm can lead to the subgroups of greatergen-
erality and higher quality, as well as up to two orders of magnitude
lower execution times.

Other efforts have focused on discretization methods – for example,
TargetCluster [45] discretizes target variable based on clustering,
instead of the simple equi-width/equi-depth binning that is more
common, whereas MergeSD [28] involves discretization withover-

lapping intervals, by adjusting interval bounds with a bound table.
Moreover, subgroup discovery techniques have also been applied in
the context of spatial databases [32,43]. Additionally, the objective
of our subgroup discovery is similar tobump hunting[21], which
also aims to identify subsets that are considerably greateror small-
er than the average of the general population. However, no existing
work is designed for processing large-scale array-based scientific
datasets. Compared with all the existing subgroup discovery algo-
rithms, a key difference in our approach is that we directly operate
on the compact bitmap indices, instead of the raw datasets, and uti-
lize fast bitwise operations on them, allowing processing of larger
datasets.

Reducing the relevancy or redundancy of the output is also anim-
portant issue in subgroup discovery. As a modified version ofthe
classical subgroup discovery,relevant subgroup discoveryis pro-
posed to eliminate irrelevant subgroups, based on the theory of rele-
vancy [35,36]. Relevant subgroup discovery algorithms aredevised
mainly based on eitheroptimistic estimatesor closed sets. Most
algorithms [35,38] based on optimistic estimates can lead to a dra-
matic reduction of the search space as well as the execution time,
but it may not be able to guarantee correct results [25]. Closed-sets-
based algorithms [23,25] require quadratic time complexity, which
is clearly not applicable to large scientific datasets. Additionally,
Chenet al. [15] applied a sequential coverage approach where the
formal relevancy criteria is not followed. Other non-redundant sub-
group discovery algorithms [13,63] proposed different redundancy
criteria to follow. However, to the best of our knowledge, none of
these algorithms is designed for the subgroup discovery over nu-
meric array data. In the future, our method can be combined with a
separate post-processing step ofrelevancy check.

Apart from subgroup discovery, other important descriptive data
mining tasks that involve various differential analysis include con-
trast set mining [9], emerging pattern mining [20], and differential
rule mining [40]. Again, the distinctive aspect of our algorithm is
efficient processing of large-scale array data.



Although bitmap indexing was initially proposed in the context of
data warehouses [46, 77, 78], recently it has been widely applied
in the area of scientific data management [17, 53, 54, 61, 73].To
improve query efficiency, different binning strategies [24, 48, 55,
76] and encoding methods [33] have been proposed. Furthermore,
bitmap indexing has also shown its capability of assisting various
data analysis tasks [8, 52, 59, 60, 62]. In this paper, the focus has
been on efficient and effective subgroup discovery based on bitmap
indices.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented a novel algorithm for subgroup discovery
over array-based datasets. This algorithm has extended thesub-
group description to processing of array data, and is capable of
effectively processing numeric attributes. Moreover, ouralgorith-
m directly operates on the compact bitmap indices instead ofthe
raw datasets, and utilizes fast bitwise operations on them,allowing
processing of larger datasets. We have extensively evaluated our al-
gorithm by using multiple real-life datasets, and comparedit with
a popular subgroup discovery algorithm – SD-Map*. We demon-
strate both high efficiency and effectiveness of our algorithm.

In future work, we plan to extend our work in several direction-
s. First, since the current algorithm does not ensure the relevancy
among the subgroups described by different sets of attributes, we
plan to design an efficient relevant subgroup discovery algorithm
over scientific datasets. Second, our current algorithm canonly an-
alyze one target variable at a time – our future work will extend
it to support multiple target variables. Third, the subgroup discov-
ery results do not necessarily indicate a causal relationship between
the subgroup descriptions and the high/low value of target variable,
but instead, only imply an association. This can be addressed in the
future. Fourth, we plan to develop a module to effectively discov-
er exception rules for the output subgroups, where each exception
rule corresponds to an interesting subset of an output subgroup,
and such subset has a quality in contrast to the output subgroup it
belongs to.
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[36] N. Lavrǎc, D. Gamberger, and V. Jovanoski. A study of relevance for learning in
deductive databases.The Journal of Logic Programming, 40(2):215–249, 1999.
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