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ABSTRACT

Subgroup discovery is a broadly applicable exploratoripnéegue,
which identifies interesting subgroups with respect to perty of
interest. While there is clearly a need to apply this mettwodis-
cover interesting patterns from scientific datasets cosimgrilarge-
scale arrays, the existing algorithms primarily apply tatienal
datasets. In this paper, we present a novel algorithm, Sd&D
exhaustive but efficient subgroup discovery over arraytasi-
entific datasets, in which all attributes are numeric. Ogoathm
handles a key challenge associated with array data, whitthats
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life sciences, finance, and social sciences [4, 18, 39, 414429
52,56-61, 64-71,79, 81, 83, 84]. The existing work on sulggro
discovery has been primarily restricted to applicationeational
or tabular datasets. In this data-driven era, it is highlsirdéle to
customize the subgroup discovery technique to discoverésting
patterns when data is stored as arrays. For example, givenoh s
arrays that are output from a scientific simulation, sciatmay
be interested in identifying the underlying relationshiween
variables. As a specific instance, in the output from an os@an
ulation, the relationship between large valuesafl i ni ty and

a subgroup identified over array data can be described based o other variables such a@senper at ur e anddept h, is of great

value-based and/or dimension-based attributes. To retaamm-
putational costs, our SciSD algorithm extensively usesidjt in-
dices (and fast bitwise operations on them). We demonsdbite
high efficiency and effectiveness of our algorithm by usingtiple
real-life datasets.
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1. INTRODUCTION

Subgroup discovery31, 72] is a broadly applicable exploratory
technique, which identifies interesting subgroups withpees to
a property of interest. The underlying goal is to extracatiehs
with interesting characteristics betweedependenbr targetvari-
able and multipléndependenbr explainingvariables. For exam-
ple, professional basketball players are mostly tallen tha gener-
al population, where the attribute ‘occupation’ (baskbtpkayer)

is the explaining variable and the attribute ‘height’ (dezahan the
average of the general population) is the target variable.

In both data management and data analytics areas, therdris an
creasing emphasis on (mainly) array-based scientific datege-
scale scientific data of different sizes and dimensions seel for
storing images, sensor data, simulation outputs, andttati data
in a variety of domains, including earth sciences, spacenses,

interest to scientists [16]. Analysis of array-based datpdses u-
nigue challenges — e.g., temperature ishuie-basedttribute that
is stored as a separate array, whereas depthdimansion-based
attribute that corresponds to one of the array dimensiamgrdc-
tice, it can be observed that the subsets of output grid aivtiich
have a low depth and/or a high temperature are very likelyat@h
a salinity value significantly higher than the average ofehgre
dataset. Clearly, the data subsets (i.e., subgroups)ibleddny
depth and/or temperature ranges can be a set of interesting s
groups, and identifying such subgroups can be of greatester
Recent work from visualization community has focused owrucal
lating metrics such as mutual information across varialdl2s30].
However, there is no work that can identify interesting sobg-

s over array data automatically. A seemingly viable appgiczmn
be to apply existingelation-basedsubgroup discovery algorithms
directly over array data by treating dimension-basedatteis as
additional relational attributes. However, this approaebuires
data reorganization, which can often be prohibitively egdee for
large datasets, in terms of both computation and storade.cos

Developing subgroup discovery algorithms for array-bassgdn-

tific data involves at least three sets of challenges. Fisstye have
already stated above, unlike the conventional subgrougpdsed
over relational data, a subgroup identified over array datale
described with value-based attributes and/or dimensased at-
tributes. Second, in scientific datasets, the attributesrarstly nu-
meric, whereas most conventional subgroup discovery idhgor

s [7,30,31,34,37,72] mainly target binary or categoritaitaites.

Third, the conventional algorithms for subgroup discovame only
able to operate with small datasets. In comparison, data$én-

terest to us, particularly, from simulation datasets, Gaairemely
large, and are likely to become larger in the future.

In this paper, we present a novel algorithm, SciSD, for estieel
but efficient subgroup discovery over array-based sciemtiftaset-
s, in which all attributes are numeric. Our algorithm is atde



effectively discover interesting subgroups of both grestagality
and high quality. Moreover, our algorithm directly opesats the
compact bitmap indices instead of the raw datasets, anzagtiiast
bitwise operations on them, allowing processing of largaasets.

We have demonstrated both high efficiency and effectiveofessr
algorithm by using multiple real-life datasets. We first esiment-
ed on a small dataset to compare the performance (exectdtion e
ciency) as well as the quality of the output subgroups fromabu
gorithm against SD-Map* [6], a popular subgroup discovdgpa
rithm. The results have shown that our algorithm not onlydpaes
subgroups of significantly greater generality and highafit but
the execution times are also lower by up to two orders of mag-
nitude. We also evaluated our algorithms over larger deta$te
find that by using only a small number of bins, we obtain bothhi
quality subgroups and low execution times, which demotestiee
practicality of our algorithm.

2. SUBGROUP DISCOVERY AND ARRAY
DATA

We first introduce the formal definition of subgroup discgvétex-
t, we introduce an example involving arrays, and extend tfe d
nition of subgroups to apply to array data. Afterwards, tocpss
numeric attributes in array data, we discuss the qualitgtian we
choose and subgroup combination.

2.1 Preliminaries

A comprehensive overview of subgroup discovery can be found
in [28]. Subgroup discovery is a combination of predictivel ae-
scriptive induction, which focuses on the extraction oftiens,
with respect to the property of interest given by a targeiaide.
Unlike classification techniques for addressing clasdificaand
prediction issues, subgroup discovery describes the |wtrns

of data in the form of individual rules. As also formulated®sm-
bergeret al.[22] and Lavr& et al.[37], a rule (R) that consists of
an induced subgroup description can be formally defined as:

@)

whereT arget,q IS a value with respect to the property of interest
given by a target variable, arfdond is commonly a conjunction of
attribute-value pairs given by several explaining vaeablA sub-
group discovery task is mainly comprised of four elemesish-
group description languageguality function target variable and
search strategydescribed in the following paragraphs. In our de-
scription,2 4 denotes the set of all attributes, and for each attribute
a € Q4, avalue domairom(a) is defined.

R : Cond — Targetya

DESCRIPTIONL (SUBGROUPDESCRIPTION. A subgroup de-
scription is defined as a conjunction of attribute-valuerpaivhere
for each attribute-value pait; = v;, a; € Q4 andv; € dom(a;).

An important measure associated with a subgroup igytiadity,
which measures the “interestingness” of the subgroup, sanded
for extracting and ranking the rules. There is no consenaub®
best quality function to be used for evaluating the inténgstess
of a subgroup.

DESCRIPTION2 (QUALITY FUNCTION). LetQ,, denote the
universal set of all the possible subgroup descriptions], ginen a
particular target variablel € 2.4, a quality functiory is a mapping

—q : Qs X dom(t) — R, whereR is the space of real numbers
denoting quality score.

The types of attributes including both explaining variahbded tar-
get variables can Hainary, categorical or numeric For processing
numeric attributes, discretization is often utilized tide a con-
tinuous value range into multiple discrete intervals.

2.2 An Example Involving Arrays

Array i Array i Array j
01 2 3 4 0o 1 2 3 4 01 2 3 4
0[3|7|3]|6|9 0|6 |5|5|2[1 0|3|2|9|8|9
112]0]3]0]2 o1le|9o|7|6]|6 PO I N N
i i
Yo lalrl2]2]7 2|8|9 0|36 2/0|2|6|0|5
3|9|2]|9|3 |1 328|762 31|05 ]0|2
491|485 4|3 |9|7|afo0 al1 11|43
T.Size = 25
Input Arrays T.Mean = 3.6
0 I T
] 0 1 2 3 4 01 2 3 4
T[i) olal2 032|989 0[3]|2]|9|8]o9
o 1 2 3 4 11als 1143|597 11413|5|9]|7
TIi T[i Tl
T[i]O 312(9(8|9 []2 o2 []2 o|2|6]|0f5 []2 0|2[6]|0](5
1043|597 31 o 3/1)0|5]0]2 3|1]0|5|0]f2
R al11f1]4a]3 a1 fa|1|afs

Subgroup 3: 1<i<2
AND 6 < Bi][j] < 7
Support = 0.20

ubgroup 4: 1 < A[i][j] £

Support = 0.32
Mean= 2.50

Quality = -0.35

Mean = 6.00

Subgroup 1: 0<is<1 Subgroup 2: 0<j<1
Support = 0.40 Support = 0.40
Mean= 5.90 Mean = 1.70
Quality = 0.92 Quality =-0.76
Quality = 0.48

Example Output Subgroups

Figure 1: A Running Example of Subgroup Discovery

Our goal focuses on subgroup discovery over array-basedeiat
We use an example to illustrate the idea, which is shown girou
Figure 1. This example involves three 2-dimensional arfayB,
andT, whereT indicates the target variable, adand B are the
two explaining variables. Two dimensions are indexed ffoim 4,
and denoted ais andj , respectively. One can view this dataset as
a relational table forming 25 records, where each recordhras
attributes.

Our goal is to identify interesting subsets (or subgroupd) such

that each subset is significantly different from the entmawaT,

which has a size of 25 and a mean value of 3.6. Each subgroup is
evaluated by a quality score that is based on a combinatitwaf
metrics: subgroupgize(or suppor} and the difference with respect

to the mean between the subgroup and the entire array. One can
identify several subgroups of interest from the targetyaira

The identified subgroups can be described by: 1) dimensiangkes
of i and/orj, 2) value ranges oA and/orB, and 3) both value
ranges and dimensional ranges. Thégroup 1 andSubgroup 2,
which belong to the first type of subgroups, simply selecffitts¢
two rows and the first two columns of the arrd@ly respectively.
As an example of the second type of subgroup, $hégroup 4
comprises the elements ©fwhere the corresponding elements of
Ahave a value between 1 and 2. THiebgroup 3 exemplifies the
third type of subgroup, by selecting the elementd ofithin the
second row and the third row, where the corresponding elesmen
of B have a value between 6 and 7. In each of the subgroups of



interest, the mean of the value ©fwithin the subgroup is either
significantly higher or lower than the average of the entir@ya
and is associated with either a positive or negative qustitye.

2.3 Extended Subgroup Description

Compared with the relational data model that conventionl s
group discovery algorithms operate on, one key differerieeray-
based scientific datasets is that, every array element iscityp
indexed by an array subscript or coordinate value in eaclerim
sion. In practice, an interesting subgroup (i.e., data efjibeay
also correspond to a particular spatial subarea. For examthin

a 3-dimensional space modeledlbyngi t ude, | at i t ude and
dept h, given by a target variabkeal i ni t y, perhaps itis not on-
ly influenced by certain value-based attributes pkeessur e and

t enper at ur e, which correspond to different arrays in the same
dimensional layout, but is also correlated with the dimendiased
attributes likel at i t ude anddept h that indicate array dimen-
sions.

Formally, we categorize all the attributes possibly inealin the
subgroup description into two typedimension-basedndvalue-
based Let QF and QY denote the set of all dimension-based
and value-based attributes, respectively. Each dimefizsed at-
tribute o indicates an array dimension, and a corresponding di-
mensional domaitom(a?) is defined (based on dimension indices
or coordinate values). Each value-based attrilatiténdicates an
array name, and a corresponding value dordain (a”) is defined
based on the element values in the array. For a dimensi@dbas
attributea?, from dom(a?), we can obtain a set of all the possible
dimensional intervalR? - each interval¢ comprises a set of con-
tiguous values frordomn,(a). Similarly, for a value-based attribute
aj, fromdom(aj), we can obtain a set of all the possible value in-
tervals R}, where each interval! comprises a set of contiguous
values fromdom(a?). Let R* and R¥ be the universal set of all
the possible dimensional intervals and value intervatpeetively.

DESCRIPTION3 (EXTENDED SUBGROUPDESCRIPTION. A
subgroup description is defined by a conjunction of attiébrenge
(or attribute-interval) pairs, where each attribute can béher
dimension-based or value-based. Each dimension-baselugt-
range pair is of the form¢ = r¢, wheread € QF, andré € RY,
and each value-based attribute-range pair is of the fatim= r;,
wherea? € QY, andr? € RY.

2.4 Quality Function and Subgroup Combi-

nation

The initial subgroup discovery algorithms [31, 72] were gosed
to facilitate the data exploration in the medical domaird amost
existing subgroup discovery algorithms [19, 27, 30, 37,1®2])n-
ly consider binary and categorical attributes. Some ofelago-
rithms process numeric attributes by a ‘straight-forwalidtretiza-
tion, i.e., creating a few intervals, and then applying dydlnc-
tion and search strategy designed for categorical ataghuOur
initial attempts in applying existing algorithms for sdiific simu-
lation datasets show that such strategies are not adedumats, to
process numeric attributes, two major steps besides tization
are taken.

Quality Function: Most quality functions used for subgroup dis-
covery, such as interest, novelty, significance, spegifiaitd Weight-
ed Relative Accuracy (WRAcc) [28], are only applicable todry

or categorical attributes. By contrast, the quality fumictapplica-
ble to numeric attributes usually involvegeighingand aggrega-
tions over a subgroup. In our work, we consider tmeanwith
respect to the target variable as the property of interétstough
other statistics can also be considered. As also used ithgsgjual-
ity function we use is referred to @ontinuous Weighted Relative
Accuracy (CWRACcc)

qCW RAcc = % x (m — M) 2
wheren and N denote the subgroup size and general population
size, respectively, anth and M denote the mean with respect to
the target variable in the subgroup and the general populate-
spectively. An alternative quality function @ontinuous Piatetsky-
Shapiro (CPSJ6]:

®)

Note that the value of the quality computed by either of these
functions can be either positive or negative, indicatings either
greater than or less thaw.

gcps =n x (m— M)

Subgroup Combination: Unlike the cases where one is processing
only binary or categorical attributes, it is often reasdedab com-
bine two subgroups concerning the same attribute but wjticadt
value ranges, based on a set of combination rules. Otherivise
very likely that we will have a massive number of subgrougds, o
which the majority can be further merged into the ones oftgrea
generality. For example, two adjacent rangés< depth < 30
and31 < depth < 50 may be combined as a larger range <
depth < 50. The combination rules we use will be discussed in
Section 4.2 in details.

3. SCISD ALGORITHM

This section describes the design of our SciSD algorithnr. @u
gorithm extensively uses bitmap indices as a summary aruiesiti
representation of data, instead of the actual array dataekier, to
simplify the presentation in this section, the algorithntl b€ pre-
sented as if it is operating on the array data. Use of bitmdjcés
to accelerate the algorithm will be described in Section 5.

3.1 Tight Optimistic Estimates

Before discussing the search strategy used in the algqrithen
first introduce the notion obptimistic estimatesOptimistic esti-
mates [27] aim to safely prune the search space, especiatiyw
monotonicity with respect to the property of interest carbvoap-
plied. An optimistic estimate of a given subgroup computes t
upper bound of the quality, i.ethe maximal qualitghat can never
be exceeded by any subset of this subgroupight optimistic es-
timate means that, there exists a subset of the given subgrath
that the quality of this subset can reach the estimated viNoge
that such a subset with the maximal quality does not nedgssar
correspond a subgroup description [27].

Given a subgroupg, we denote the quality of the subgroup as
q(sg). Further, we denote byg,.s the subset comprising all ele-
ments whose values are greater than the meag.dsimilarly, we
denote bysgn.q the subset comprising all elements whose values
are lower than the mean ef.

THEOREM 1. For the Continuous Weighted Relative Accuracy
quality function and a given subgroug, the tight optimistic esti-



mateoe(sg) can be formulated as: Algorithm 1: SciSD(dim-based attr. universal €ef;, val-based

attr. universal sef2;, dim-range universal sgt”, val-range uni-
versal seR")

4)

oe(sqg) = q(sgpos), if q(sg) >0
( g) {Q(Sgneg)7 if q(sg) <0

Theorem 1 has been proved by Atzmukgral. [6]. Our search s-
trategy will leverage optimistic estimates to safely prtimesearch
space, as described in the next subsection.

3.2 Search Strategy

Our SciSD algorithm performs an exhaustive search, i.e.splace
of all the possible subgroups needs to be explored. Cletudy,
search space is exponential in the number of attributeerpags.
Therefore, we use certain pruning measures as wdlirasng of
both dimensional and value ranges to reduce the computztigta
s. The search for subgroups is basedsetienumeration tregl0],
which ensures that every node is either visited only oncebvis-
ited at all (if is pruned). The equivalence between set-eration
trees and canonical orderings has been proved in the literpt7].
Thus, a simple rule for creating the tree is to generate tiidreh
nodes by appending only those attributes that follow aBtaxg at-
tributes in a given ordering. Both dimension-based andevhlesed
attributes can be equally treated in such an ordering.

Figure 2: An Example of Set-Enumeration Tree

Figure 2 shows an example of set-enumeration tree corrdsmpn
to Figure 1 in Section 2. To keep the illustration simple,golp
combination is not considered here. Moreover, let us assoengi-
mensional space of input arrays is ogly 2. Thus, both attributes
¢ and j have two possible distinct valugsand 1. In this tree,
each node indicates not one, but a set of subgroup candiddtes
set associated with each node comprises elements withrennju
tion over all distinct ranges of the attributes the node soemted
with. For example, the node\ j indicates the subgroup candidates
i=0Aj=0,i=0Aj=1i=1Aj=0,andi=1Aj=1,
and candidates generated by any combination of these. i@gdsr
maintained while generating child nodes in the tree, ehg.nbde
B can have children nodg3 AiandB A j, but notB A A. For our
explanation, we use the termarent subgroundchild subgroup
—forillustration,A = 1 is the parent subgroup of = 1 A B = 2,
which is the child subgroup here.

Algorithm 1 shows our search strategy. We use two quelmg—
group candidate queu@ and theoutput subgroup queu@’ (lines

1 and2). Q stores the subgroups that can potentially be ‘interest-
ing’ but require further validation, an@’ stores ‘interesting’ sub-
groups after validation, i.e., the ones that are going to partof

1. Let Q be a queue for searching subgroup candidates
Let Q' be a queue for output subgroups
Push the root node (represents the general populationfinfd This
node will be pruned later *}
while @ is not emptydo
Let sg; be the first subgroup i@
for each attribute;; € QF or QY , wherea; follows the last
attribute in the description ofg s in the given orderinglo
7: for each range; € RP or RY do
8 Let sg; be the last subgroup i
{* Produce child subgroup candidates *}
9: Let sg;, be the child subgroup candidate 4f;, by adding a
new attribute-range pair; = r;

2:
3:
4.
5
6

10: if sg; can be combined withg;, then
11: Updatesg; by combining it withsgy,
12: Let sg; be the last subgroup i)’
13: sg] < sgi

14: else ifoe(sgy ) is not prunedhen
15: Pushsg;, into Q

16: if sgy is not prunedhen

17: Pushsg;, into Q’

18: end if

19: end if

20: end for

21: endfor

22: end while

23: return Q’

the output. Our search traverses the set-enumeratioretreeby
level starting from the root node that represents the general pop
ulation without any subsetting (lin®. To identify attribute-range
pairs that can contribute to ‘interesting’ subgroups, diieand 7
iterate over each attribute in a given ordering (e.g., cmabror-
dering), and each range in order, respectively. For eacfreup
candidate in subgroup candidate qué&peit can produce a set of
child subgroups by appending another attribute-value pdiere

the appended attribute follows the last attribute in itsepaisub-
group (line9).

For each produced child subgroup, we first conssidagroup com-
bination (lines 10 to 13). Line 10 attempts to combine adjacent
subgroup candidates at the same level according to cemamn c
bination rules, which will be discussed in Section 4.2. Ssigh-
group combination is only considered between the last swipgr
candidate in the subgroup candidate quéuend the most recently
produced child subgroup.

Note that to prevent aover-pruningsituation, i.e., a situation where
two subgroups should not be pruned but their combined subgso
pruned, we need to ensure that once two subgroups are caimbine
the combined subgroup will not be pruned. Lindsto 13 update

the last subgroup in both queu@sand@’ after combination.

Subgroup pruningccurs if the tentative subgroup combination fail-
s (lines14 to 19). Similar to subgroup combination, @uning
testis applied based on certain pruning measures, which will be
discussed in Section 4.1. The pruning process includes teps s
First, we check if the optimistic estimate of the subgroup pass

the pruning test (line4). If so, the subgroup is viewed as a sub-
group candidate, which is added to the subgroup candidaeequ
Q. By adding it to the queu€&), we can check if any of its child



subgroups can be a qualified subgroup as the search protieeds (
15). Otherwise, this subgroup can be safely pruned because of t
property of the optimistic estimate, and its child subgsape not
evaluated any further. If a subgroup qualifies because ofdahe

of the optimistic estimate, we apply the same pruning teshéo
subgroup itself (linel6). Only if the subgroup still qualifies, it is
added to the output subgroup quebeas an output subgroup (line
17). In practice, all the output subgroups can be ranked ataprd
to the quality function.

4. SUBGROUP PRUNING AND COMBINA-
TION

In our algorithm, efficiency is maintained by subgroup pngni
based on certain pruning measures, as well as subgroup mambi
tion rules based on a set of combination rules, which area@xgdl

in this section.

4.1 Pruning Measures

Our algorithm uses three pruning measures to determinetiba s
group should be pruned or not. Two of them are relativelyigitita
forward - a minimum support (or size) of the subgroup and d@-min
mum threshold quality, since a subgroup of interest shoelidige
enough and significantly different from the general poporat

PRUNING MEASUREL1 (MINIMUM SUPPORT). Given asub-
group sg, with sup(sg) = %, wheren and N are the size obg
and the general population, respectively,is pruned if

sup(sg) < SuUPmin

PRUNING MEASURE2 (MINIMUM ABSOLUTE QUALITY ).
Given a subgroupg, sg is pruned if

lg(sg)| < gmin

The third pruning measure we use is as follows — compared with
the parent subgroup, a child subgroup should be considergdfo

it has a higher quality than the parent subgroup. The mativas

that if such a pruning rule is not used, a large number of samall
redundant subgroups will be generated by the algorithm.

PRUNING MEASURE3 (MINIMUM RELATIVE QUALITY). Given
a subgroupsgparent and its child subgrousgeniia, sgcnia is of
interest only if

|f q(sgpa'r‘ent) > 0

|f q(sgpa'rent) < 0

q(sgchild) - q(59pa7-ent) > Qrmin,
q(sgpa'rent) - q(Sgchild) > q:nznv

According to Algorithm 1, for the subgroup candidates thablve
multiple attribute-range pairs, their non-root parentgobps must

have already satisfied Pruning Measure 2. By using Theorem 2,

Pruning Measure 3 here can be consideredadfaientcondition
of Pruning Measure 2 for these subgroup candidates.

THEOREM 2. Given a parent subgroupgparent that satisfies
Pruning Measure 2, and its child subgrosg.r;4, if bothsgparent
and sgcniiq Satisfy Pruning Measure 3, thety.»iiq also satisfies
Pruning Measure 2.

PROOF If g(sgparent) > 0, according to Pruning Measures 2
and 31 we have(sgpa'r‘ent) 2 Amin, andq(sgchild)_q(sgpa'r‘ent) 2
Gmin- THUs,

qa(sgchita) > q(sgparent) + Gmin
> q(sgpa'rent) > dmin

If g(sgparent) < 0, the proof proceeds analogously]

4.2 Combination Rules

Three combination rules are defined to determine if two solymy

s can be combined or not — all three conditions must be met for
two subgroups to be combined. First, intuitively, only the tsub-
groups, which belong to the same parent subgroup and areeadja
at the same level in the set-enumeration tree, can be cothbline
other words, one of the prerequisites of subgroup combibals
theexistence of adjacency

COMBINATION RULE 1 (EXISTENCE OFADJACENCY). Given
two subgroups described by two conjunctions of attribatege
pairsa; = r1 Aaz = r2... Aa, = r, anda) = ri Aay =
r5... AN a, = 1, , respectively, then the two subgroups are consid-
ered adjacent and can be combined onlyiifl <i <n:a; = a},
Vi,1 <i<n:r =r;, and,r, andr;, are two adjacent dimen-
sional ranges inRZ or value ranges ik, .

Second, as also mentioned earlier in Section 3.2, if any tja-a
cent subgroups can pass the pruning test, they may stilllreegr
after combination, due to the low quality of the combinedgohp.
This should be avoided. Therefore, it is necessary to setriico
nation rule to ensure that the combined subgroup shouldthass
pruning test, i.e., one combination rule should tmuficientcon-
dition of satisfying all the three pruning measures defime8eéc-
tion 4.1. Note that as Algorithm 1 shows, one of the subgroups
used for combination is from the output subgroup queue, and i
has already passed the pruning test. Here, we propose aioeasy
compute criterion referred to akifference homogeneityvhich is
defined as Combination Rule 2. A positive value of differehoe
mogeneity indicates that the means with respect to thettaage
able in these two subgroups are homogeneous, i.e., eithategr
than or less than the mean of the general population at the sam
time.

COMBINATION RULE 2 (DIFFERENCEHOMOGENEITY). Let
m1 andms be the mean with respect to the target variable in two
given subgroups, and &t be the mean of the general population,
then the two subgroups can be combined only if

(m1— M) x (m2—M)>0

Formally, given two subgroupsy; andsg2 which are combined in-
to a subgroumgcomsined, @ndsg: has passed the pruning test, the
following three theorems ensure that a combined subgroaplgéh
never be pruned, by satisfying all the three pruning meastee
fined in Section 4.1.

THEOREM 3. If sg1 and sg» are combined iNtGsgcompined,
and sg1 has passed the pruning test, thenp(sgcombined) >
SUPmin-



PrROOF Straight-forward. [

THEOREM 4. If sg1 and sg» are combined intGsgcombined,
andsg; has passed the pruning test, thefisgcombined)| > gmin.

PROOF Letncompined aNdMcombined D€ the size and mean of
Sgecombined, Fespectively. By using Equation 2, we can have

Ncombined

Q(Sgcombined) = X (mcombined - M)

N
:n1+n2 (m1><n1+m2><n2_M)

N n1 + na (5)
_(m1— M) xni+4 (ma— M) xny
a N

=q(sg1) + q(s92)

For sg1, |¢(sg1)| > gmin. Since Combination Rule 2 implies
q(sg1) X q(sg2) > 0, by using Equation 5, we can have

|q(8gcombined)| = q(sg1) + q(sg2)|
> |‘Z(591)| > Qmin

O

THEOREM 5. If sg1 and sg. are combined intOsgcombined,

greater than, the other subgroup in which most elements ignenw
the intervals close to the mean of the general population.

The third combination rule aims to restrict the extent tochhad-
jacent subgroups can be combined, by introducing a useifigue
parameter +maximum continuous weighted entra@¥V E,.q..

COMBINATION RULE 3 (DISTRIBUTION PURITY). Iftwo giv-
en subgroups are combined into a sUbgregpomuined, and let its
continuous weighted entropy 684V E(sgcombined), then the two
subgroups can be combined only if

CWE(SgCOmb) S CWEmaw

This combination rule can effectively control tlgganularity of
output subgroups and hence help the user to control the muhbe
output subgroups at a manageable level. Generally, a lexgri
mum CWE value tends to generate fewer subgroups yet of greate
generality and higher quality.

5. ALGORITHM OPTIMIZATION USING
BITMAPS

In this section, we first provide background information @miap
indexing, and then we discuss the algorithm acceleratimyustmap-

and sg; has passed the pruning test. Let the parent subgroup of s. Note that our actual algorithm implementation is baseiieiy

Sg1 anng2 besgparentv then

if q(sgparent) >0

q(sgcombined) - q(sgpar'ent) > q:;zi'rm
if q(sgparent) <0

4(8gparent) = q(geombined) 2 dmin

PROOF If ¢(sgparent) > 0, fOr sg1,

q(sg1) > q(sgparent) + Gmin >0

Since Combination Rule 2 impliegsg1) x ¢(sg2) > 0, we can
haveq(sg2) > 0. By using Equation 5,

Q(Sgcombined) - q(sgparent) = q(Sg1) + q(SQZ) — q(sgparent)
> q;zin + q(SQQ) > qrnzn
If g(sgparent) < 0, the proof proceeds analogously]

Lastly, in practice it is helpful for the users that a subgrdoes not
spread too broadly. Therefore, it is necessary to evalbataistri-
bution purityof a combined subgroup. Before introducing the next
combination rule, we need to propose another criteriorrmedeto
asContinuous Weighted Entro¢ WE), which is adapted from the
entropy used for evaluating the purity of classification:

lvi — M]|

Un — U1

CWE = — En:p(z) x log p(7) x 6)

i=1

wheren is the number of intervals for the target variahié;) and

v; denote the probability and representative value oftthenterval,
respectively, and/ represents the mean of the general population.
Sincev; andv,, are the minimum and maximum representative val-
ue, respectively% here represents theecight, which implies
the normalized distancérom the ith interval to the mean of the
general population. Therefore, for two subgroups of eqizal she
CW E of a subgroup in which most elements are within the inter-

vals remote from the mean of the general population, tend to

on bitmaps. For clarity in our write-up, we are presentingnips
as an optimization mechanism.

5.1 Background: Bitmap Indexing

Bitmap indexing, which utilizes the fast bitwise opera@upport-
ed by the computer hardware, has been shown to be an effipient a
proach for querying static (i.e., read-only or append-pdbta, and
has been initially used in data warehouse [46, 77, 78] anehtic
in scientific data management [53,54, 73]. Particularlygr work
has shown that bitmap indexing can help support efficientyiog
of scientific datasets stored in native formats [17, 61]. Suwls-
group discovery algorithm involves a novel use of bitmagdes.
Thus, before presenting our algorithm, we provide backgtoon
bitmaps, and then describe how they are customized for quli-ap
cation.

ID | Value o e e e ey es i i iz
=1 =2 = =4 =5 =6 [1,2] | [3,4] | [5.6]

0 5 0 0 0 0 1 0 0 0 1
1 4 0 0 0 1 0 0 0 1 0

2 2 0 1 0 0 0 0 1 0 0
3 5 0 0 0 0 1 0 0 0 1
4 6 0 0 0 0 0 1 0 0 1
5 1 1 0 0 0 0 0 1 0 0

6 3 0 0 1 0 0 0 0 1 0
7 1 1 0 0 0 0 0 1 0 0

Dataset Low Level Indices High Level Indices

Figure 3: An Example of Bitmap Indexing

Figure 3 shows an example of bitmap indexing. In this example
the dataset contains a total of 8 elements with 6 distinctesal The
low-levelbitmap indices contain 6 bitvectors, where each bitvector
corresponds to one value. The number of bits within eaclebitv
tor is the same as total number of elements in the dataseackn e
bitvector, a bit is set to 1 if the value for the corresponditaga



element value is equal to thitvector valuei.e., the particular dis-
tinct value for which this vector is created. Thigh-levelindices

can be generated based on certain binning strategies fbhexe 3

high-level indices are built.

This simple example only contains integer values. Bitmajeia

ing also has been shown to be an efficient method for floatoigtp
values [75]. For such datasets, instead of building a bibrefor
each distinct value, we can first group a set of values togédtpe
certain binning strategies, and build bitvectors for theiss. This
way, the total number of bitvectors can be kept at a manageabl
level. From this example we can also see that the number ®f bit
within each level of bitmap indices is x m, wheren is the total
number of elements and is the total number of bitvectors. This
can result in sizes even greater than the size of the origataket,
causing high time and space overheads for index creatiomgs,
and query processing. To solve this problem, run-lengthpres:
sion algorithms such as Byte-aligned Bitmap Code (BBC) [&] a
Word-Aligned Hybrid (WAH) [74] have been developed to reeuc
the bitmap size. The main idea of these approaches is thiairfor
sequences of 0s and 1s within each bitvector, an encodirsgéto
count the number of continuous 0s or 1s. Such encoded cowmts a
stored, requiring less space. Another property of the emgth
compression methods is that, it supports fast bitwise otipara
without decompressing the data.

Bitmaps are widely used for supporting queries on sciertétaset-

s [17,73]. Thus, before our algorithm is used, it is quiteljkthat
bitmaps are already available, and hence we assume no pespro
ing cost for generating bitmaps in our experiments. Furtkezn

if bitmaps are not available, with an appropriate numberiog b
(e.g., fewer than 1000), bitmap indexing is still cheap i of
both computation and storage. Construction of bitmaps tmok
around 2 minutes per GB of original data, per core, in our expe
iments, since it requires at most two full scans of raw dathe T
size of the indices ranged between 15% and 30% of the sizesof th
original dataset.

5.2 Algorithm Acceleration Using Bitmaps

Val | Bitvector
1] 2 1 1000 Dimension BBl Bitvector
Array —>[2] oo i i 1100
T 3| 4 B o010 2| oo
e 4 | ooo1
Dimension Val| Bitvector
; 1 1010
12 Val| Bitvector ) 2 [ o101
Array —> [ | 1001
A 2 1 2 0110
Positive = [
Bitvector 25
1 2 Val| Bitvector
Array 1 1001 N_egative
B 3| 4 = 2 0100 Bitvector — v 25
3| ooto

Figure 4: Use of Bitmaps in SciSD

A key characteristic of our algorithm is that, the input igrco
pact bitmap indices instead of the original raw datasetse Mt
bitmap (indices) are not used in the conventional way irclme
used, i.e., for querying actual data more efficiently. ladtditmap-

s are used as a summary representation of the data. Alsohadte t
bitmaps loose a certain level of precision because of bgnfidn
value-based attributes. However, to control costs, ougrsup
discovery method must use binning of value-based and dioens
based attributes.

A bitmap example is shown in Figure 4. Besides the normal rep-
resentation of the data with bitmaps, our algorithm usesdtker
types of bitmaps. Returning to our running example, assunae t
within a2 x 2 space dimensions (i.e., dimension-based attributes)
row and column, are denotedaandj, respectively. The subgroup
discovery involves3 arrays (i.e., value-based attributds) A, and

B, whereT is the target variable. All the bitmap indices here are
generated in a row-major fashion. Three types of bitmapcesli
are generated in this example: 1) (conventional) indicesdtue-
based attributes, e.dl, A and B; 2) indices for dimension-based
attributes, e.g4 andj; and 3) twosign bitvectors- both apositive
bitvectorand anegative bitvector

These bitvectors are used in the following fashion. With firet
two types of indices, each attribute-range pair can be septed
by a bitvector in the bitmap, whether the attribute is din@ms
based or value-based. Particularly, the second type ofésdire
created in the same way as value-based attributes are thdexe
by treating each coordinate value as an array element vEljd-
depth binning [5], which partitions the entire domain inlsacway
that each bin contains an approximately the same numbeesof el
ments, is used for indexing both value-based and dimerizaged
attributes. Use of binning restricts the ranges (of botliesland
dimensions) that can be used in describing a subgroup. Howev
er, this has a very significant impact on the execution timthef
algorithm, as both the size of bitvectors and number of fkn
subgroups to be considered is now restricted to a manageable

The two sign bitvectors are used for optimistic estimatesti€u-

larly, the positive bitvector indicates all the elementsager than
the mean with respect to target variable in the original sk&tté2.5
in this example), and leads to a positive quality. Similate neg-
ative bitvector results in a negative quality.

Compared with conventional bitmap indexing that only otsgype-
1 indices, our approach generates more indices. Howewverns
out that both the bitvectors for dimension-based attribared two
individual sign bitvectors do not add much space or time derp
ity. This is because of the regularity of array elements iwithe
same dimensional range, leading to very high compressitosra
(e.g., 1%).

Now, we explain how efficiency is achieved in our algorithm us
ing bitmaps. First, since the size of bitmap indices is oftety
15%-30% of the original data size, 1/0 performance can barlgle
improved. In addition, specific algorithm steps are acesésf as
follows. First, a conjunction of multiple attribute-rangairs can be
calculated by bitwise AND operations over different bitiees. As
each attribute-range pair corresponds to a bitvector irbitoraps,

a subgroup described by a conjunction of multiple attribratege
pairs can now be represented by a single bitvector afteridstw
AND operations. This property is particularly useful eveiryme

a parent subgroup produces a child subgroup by appendintig-ano
er attribute-range pair (see ligein Algorithm 1). In our running
example,A = 1 A ¢ = 2 can be derived by001 A 0011 = 0001.

Next, a disjunction of two attribute-range pairs can be ioleid by
bitwise OR operation between two bitvectors. This can spged
the subgroup combination process in our algorithm (seellin@
Algorithm 1), since the combination of two attribute-ranggrs
can be viewed as a disjunction. In the above example;= 2 can
be derived froml001 v 0100 = 1101.



Another benefit of bitmaps is that, both subgroup size anden
value with respect to the target variable in a subgroup casobe
puted efficiently with bitmaps. This property can accelkeral
the computations involved in our quality evaluations, pmgrmea-
sures, and combination rules. As the membership of a supgeu
be described by a single bitvector, the subgroup size camdity e
obtained by counting the number of 1s in the bitvector. Meeeo
if we denote the bitmap that corresponds to the target Veria®
thetarget bitmap associated with the target bitmap, the mean with
respect to the target variable in a subgroup can be caldukse
follows:

S vi x COUNT(b; Ab)
Z?:l COUNT (b; N D)

wherem is the mean with respect to the target variable in the sub-
group,n is the number of bitvectors in the target bitmapjs the
representative value of the bitvectbr in the target bitmap, and

b is the bitvector that represents the membership of the subgr

It turns out that the mean value can be calculated efficiearly
with reasonably high accuracy based on the above proceske In
above example, as the subgrodp= 1 can be represented by the

bitvector1001, the mean with respect B in this subgroup can be

\LX COUNT(1000A1001)+4Xx COUNT (0001A1001) _
CompUted b, COUNT(1000A1001)+COUNT (000IA1001) 2.5.

m =

@)

Finally, the twosign bitvectorscan facilitate the optimistic esti-
mates discussed in Section 3.1 (as used inlihef Algorithm 1).

In Equation 4, given a bitvector that indicates all the eletaén a
given subgroupsg, a simple bitwise AND operation between this
bitvector and thepositive bitvectoican result in the bitvector cor-
responding tosgpos. Similarly, sgneg can be efficiently calculat-
ed with thenegative bitvector In the above example, to obtain
the subset with element values greater than the mean in the su
group A = 1 represented by the bitvectaf01, we can perform
a bitwise AND between this bitvector and the positive biteec
1001 A 0011 = 0001.

6. EXPERIMENTAL RESULTS

In this section, we evaluate the performance (executionieiffty)

of our algorithm as well as the quality of the output subgsoufye
designed the experiments with the following goals: 1) to pare
our algorithm with SD-Map* [6], which is a popular subgrouis-d
covery algorithm (applicable to relational data involvimgmerical
attributes) — it has been implemented in an open-sourcevait
VIKAMINE [1], and 2) to demonstrate both performance of our
algorithm and the quality of the output subgroups, by vagynth

the maximum continuous weighted entropy (CWE) and the numbe
of bins used in bitmap indexing.

6.1 Experimental Setup

Our experiments were conducted using four real-life sdfiemtataset-
s, which are all stored in NetCDF, one of the popular array for
mats. The first two datasets are downloaded from the World O-
cean Atlas 2009 (WOAOQ9) [2] monthly compisiting data. Besmu

the first two datasets, this dataset is modeled with the same f
dimensions, but it comprises three more attributes +i cat e,
phosphat e, andni t r at e. We refer to this dataset as WOA13.
The fourth dataset is generated by Parallel Ocean Program)(R9].
POP is an ocean circulation model, and the execution we w&sed h
grid resolution of approximately 10 km (horizontally), avettical-

ly, it has a grid spacing of nearly 10 m near the surface, aachre

ing 250 m in the deep ocean. The dataset mainly comprises four
attributes,sal i ni ty, t enper at ur e, UVEL and VVEL, where
UVEL and VVEL observe the velocity of ocean current in thelgri

x and grid-y directions, respectively. POP generates 1.4d&#@

for each attribute per time-slice, and each attribute isetestiwith
three dimensiond: at i t ude, | ongi t ude, anddept h. We on-

ly used one time-slice which is referred to as B@P dataset in our
experiments, and thus, the total data size of the fourtrsdataas

5.6 GB. The number of attributes involved in our experiméntsp

to 8, which we believe is a large number compared to the number
of attributes likely of interest to any given scientist. Gaxperi-
ments were conducted on a machine with 8 GB of main memory
and Intel(R) Xeon(R) 2.53 GHz CPU. The version of VIKAMINE
we used was 2.2.

6.2 Comparison with SD-Map*

Our first set of experiments compared the performance oflgor a
rithm and the quality of its output subgroups against SD-Map
popular subgroup discovery algorithm over numeric attébuSD-
Map* has been implemented in an open-source software VIKMAE|
and it uses the same quality function — Continuous Weightgd R
ative Accuracy (CWRAcc), which is defined by Equation 2. Al-
though we are also aware of a small number of other algorithm-
s that can work with numeric attributes, we cannot directyne
pare with them, because they either use different qualitgtfan-

s, and/or their implementations were not available to usicé&i
VIKAMINE can only support subgroup discovery over small re-
lational datasets, we only used WOAQ9_5DEG and WOAL13 these
two datasets, which have a size of 14 MB and 8 MB, respective-
ly. To match the format expected by VIKAMINE, we converted
the data from NetCDF to the CSV format. In the process, the fou
dimension-based attributes were also added as additiohahaos,
since VIKAMINE can only process relational data. Note that a
mentioned in Section 1, treating array dimensions as axiditire-
lational attributes is not a practical approach for largaskets, due

to the high data reorganization and storage costs.

First, among the five value-based attributes in WOAQ9_5DEBfaskt,
we setCS as the target variable — its mean value is 71.03. We used
100 bins for indexing each value-based attribute, and 18 fain
indexing each dimension-based attribute. The minimum aupp
minimum absolute quality, and minimum relative quality eeet

as 0.01, 0.09, and 0.001, respectively. The maximum CWE was
varied from 0.25 to 1.5.

Tables 1 and 2 show the best 8 subgroups discovered by SD-Map*

these two datasets are generated on 5° and 1° grids, we oefer t and our algorithm on WOAQ9_5DEG dataset, respectivelyh wit

them as WOA09_5DEG and WOAQ09_1DEG, respectively. Each
dataset comprises five attributes includimgpar ent oxygen
utilization (AQU),tenperature,di ssol ved oxygen
(DO, salinity, andoxygen saturation (OS), ina4-
dimensional space, which is modeledllyngi t ude, | ati t ude,
dept h,andt i ne. The sizes of WOAQ09_5DEG and WOA09_1DEG
datasets are 14 MB and 373 MB, respectively. The third datase
is obtained from World Ocean Atlas 2013 (WOA13) [3] annual
compisiting data, which is generated on 5° grids. Comparigid w

the maximum CWE of 1.5. The subgroups within each table are in
descending order of absolute quality measured by CWRAcc.

We can make the following four observations about the two al-
gorithms. First, our algorithm can discover more interegsub-
groups (i.e., subgroups of higher quality). For example,ghal-

ity of the best 4 subgroups discovered by our algorithm isoalm
twice the best subgroup discovered by SD-Map*. This is beeau
with the use of Equation 5, the subgroup combination meshani



Table 1: The Best 8 Subgroups Discovered on WOAQ09_5DEG
by SD-Map*

Table 3: Comparison between SD-Map* and SciSD on
WOAOQ09_5DEG with Varying Maximum CWE

Table 2: The Best 8 Subgroups Discovered on WOAQ09_5DEG
by SciSD with Maximum CWE of 1.5

Rank Subgroup CWRAcc | Support| Mean
1 -0.43< AOU < 1.95 12.26 0.58 | 92.17
2 2.68< AOU < 7.99 -12.25 0.34 | 35.00
3 0.01<DO<4.29 -11.61 0.36 | 38.78
4 4.43< DO <10.57 11.44 0.60 | 90.10
5 0 < depth< 200 9.30 0.51 | 89.34
6 250 < depth< 1500 -9.30 049 | 52.14
7 2.36 < temperature< 12.97 -6.57 0.50 57.89
8 16.16< temperature< 32.68 5.15 0.25 | 91.64

in our algorithm leads to subgroups that are larger and didrig
quality. Second, SD-Map* is only able to discover the subgso
with the mean value significantly greater than the generplifae
tion, i.e., the subgroups with a positive CWRAcc. Our algori

can also discover interesting subgroups with a negative B&R

c. This is because our Pruning Measure 2 is also able to cap-
ture interesting subgroups with significantly smaller needrhird,

as Table 1 shows, a nontrivial fraction of subgroups gerdrhy
SD-Map* are redundantSubgroup 3 is really the intersection of
Subgroup 1 and Subgroup 2, and in fact, has a lower CWRAc-

¢ than either of its two super-subgroups. Similadybgroup 8

is an analogous intersection Sfubgroup 1 and Subgroup 6. In
contrast, our algorithm does not result in any subgroupitheg-
dundant. This is because our Pruning Measure 3 can prevgnt an
subgroup specialization that does not lead to quality g&inal-

ly, the subgroups discovered by our algorithm tend to hagatgr
generality, i.e., larger subgroup size, while we obserirad most
subgroups discovered by SD-Map* could have been merged into
larger subgroups. For exampl&ubgroup 1 and Subgroup 5, as
well as Subgroup 4 andSubgroup 7 in Table 1, could have been
combined into a larger subgroup. In comparison, our algorican
combine as many subgroups as possible, under the usefisgpeci
maximum CWE. Therefore, our algorithm can ensure that aay tw
of the output subgroups cannot be further combined, fatiitig
better exploration from scientists.

Table 3 summarizes the statistics of the subgroups disedvsy
SD-Map* and our algorithm with varying maximum CWE on
WOAOQ09_5DEG dataset. ‘SciSD_0.25', ‘SciSD_0.5', ‘SciSD_1
and ‘SciSD_1.5’ are denoted as the algorithm with the marimu
CWE of 0.25, 0.5, 1, and 1.5, respectively. These statistiade
the number of output subgroups, execution times, averguost)
average CWRAcc, and the number of attributes involved pler su
group. Note that the reported execution times of SD-Map*sdux
include the data preprocessing time, i.e., the data coiovetime.

Rank Subgroup CWRAcc | Support| Mean Algorithm | # of Subgroups| Exe Times (secs] CWRAcc | Support| # of Attr.
1 AOU < 0.08 6.24 0.20 | 102.24 SciSD_0.25 111 58.61 0.75 0.04 1.05
2 depth< 40 6.08 0.21 99.81 SciSD_0.5 88 48.53 1.03 0.06 1.06
3 AOU < 0.08 AND depth< 40 4.65 0.15 | 102.45 SciSD_1 53 32.67 1.90 0.12 1.10
4 DO > 6.14 4.63 0.20 94.18 SCISD_l.S 26 17.37 4.17 0.27 1.19
5 0.08< AaU <0.75 4.62 0.20 94.13 SD-Map* 1792 2116 0.48 0.02 3.06
6 temperature> 18.41 4.55 0.20 93.79
7 4.98< DO < 6.14 3.85 0.20 90.29
8 temperature> 18.41 AND AOU< 0.08 3.56 0.11 | 102.14

We can make three observations. First, we can see that, gax al
rithm not only produces subgroups of greater generalitytaglder
quality than SD-Map*, but the execution times are also loter

a factor of up to two orders of magnitude. Second, our algerit
m manages to restrict the number of subgroups within a manage
able level, whereas SD-Map* reports a large number of sulpgr,o
which tend to be too specialized. A prominent example is, that
with respect to the attribut@OU, our algorithm with the maximum
CWE of 1.5 only discovered two subgroups, with positive aeg-n
ative quality, respectively. In comparison, SD-Map* digemd
766 subgroups, and all of them turn out to be overlappingetsbs
of the only subgroup with the positive quality discoveredday
algorithm (this subgroup is th8ubgroup 1 in Table 2). Note that
VIKAMINE can support a post-processing module hamed ‘mini-
mal improvement filter’, which aims to filter out redundantsu
groups and minimize the final output, but such post-proogssir-
rently is not supported over numeric attributes. Lastly,oan see
that maximum CWE can be used to effectively control the granu
larity of the output subgroups. Generally, a larger maxinCviE
can allow more subgroups to be combined, leading to fewguubut
subgroups, which are of greater generality and higher tyuali
larger maximum CWE results in lower execution times also.

Next, we experimented on another dataset WOA13 by settihg at e
as the target variable — its mean value is 6.32. We used 18Gdrin
indexing each value-based attribute, and 12 bins for imdp&ach
dimension-based attribute, with an exceptiort ofre dimension.
Only 1 bin was used for indexinigi me, because this annual com-
positing dataset only comprises a single time slice. Ouhotkset
the minimum support, minimum absolute quality, and minimum
relative quality as 0.002, 0.14, and 0.001, respectivehe faxi-
mum CWE was varied from 0.25 to 1.5.

Table 4: The Best 8 Subgroups Discovered on WOA13 by SD-
Map*

Rank Subgroup CWRAcc | Support| Mean
1 1.16 < phosphate 3.22 0.20 22.40
2 1.16 < phosphate AND time= 1 3.22 0.20 | 22.40
3 12.75< silicate AND 1.16< phosphate 2.66 0.15 | 23.74
4 12.75< silicate AND 1.16< phosphate AND time= 1 2.66 0.15 23.74
5 12.75< silicate 2.65 0.20 | 19.61
6 12.75< silicate AND time= 1 2.65 0.20 19.61
7 1.16 < phosphate AND 15.5& depth 0.84 0.05 23.30
8 1.16 < phosphate AND 15.56C depth AND time= 1 0.84 0.05 | 23.30

Tables 4 and 5 show the best 8 subgroups discovered by SD-Map*
and our algorithm (with the maximum CWE of 1.5) on WOA13
dataset, respectively. We can still draw the same conclasis
those from the previous experiment. Particularly, in Tableve

can see that the best 8 subgroups discovered by SD-Map*tare ac



Table 5: The Best 8 Subgroups Discovered on WOA13 by SciSD
with Maximum CWE of 1.5

Rank Subgroup CWRAcc | Support| Mean
1 phosphate< 0.84 -3.41 0.74 1.71
2 0.88< phosphate< 3.39 3.40 0.25 | 19.90
3 silicate< 8.45 -2.66 0.75 2.76
4 13.90< silicate< 185.23 2.65 0.19 | 20.20
5 40 < depth< 175 -0.98 0.25 2.35
6 400< depth< 1050 -0.81 0.20 2.24
7 0 < depth< 35 0.80 0.08 | 16.17
8 200< depth< 375 0.76 0.06 | 19.39

Table 6: Comparison between SD-Map* and SciSD on WOA13
with Varying Maximum CWE

Algorithm | # of Subgroups| Exe Times (secs) CWRAcc | Support | # of Attr.
SciSD_0.25 37 17.69 0.39 0.059 1
SciSD_0.5 33 14.64 0.69 0.180 1
ScisSD_1 19 10.27 1.00 0.189 1.16
ScisSD_1.5 16 6.12 1.06 0.140 1.30
SD-Map* 3036 508 0.24 0.017 4.28

ally all covered by eitheSubgroup 1 or Subgroup 5. The other

6 subgroups are all subsets of these two subgroups. In csopar
among the best 8 subgroups discovery by our algorithm, if me o
ly consider the subgroups with a positive CWRA&bgroup 2

in Table 5 has higher quality thafiubgroup 1 in Table 4, and
Subgroup 4 in Table 5 has no lower quality tha$ubgroup 5 in
Table 4.

Similar to Table 3, Table 6 summarizes the comparison result
WOA13 dataset. It turns out that we can make the similar ebser
vations as those from the previous experiment. First, tlecaae
quality of the output subgroups discovered by our algorithifh6x

- 4.4x of SD-Map*'s output. Second, our execution time is on-
ly 1.2% of SD-Map*, when a large maximum CWE (1.5) is used.
This is because lenient subgroup combination can effdgtige
duce the processing costs. Third, compared with SD-Mapichvh
produces a large number of redundant and meaningless syisgro
our output subgroups are much more compact. For instanam@m
the total 3036 output subgroups, the attribptesphat e occurs
2187 times, but only in the attribute-range pair ‘1d®hosphate’,
which corresponds t8ubgroup 1 in Table 4. This implies that the
other 2186 subgroups (or 72% of output) involvipgosphat e

are all redundant. In addition, 50% of the output subgroups d
covered by SD-Map* are simply created by involving one more
attribute-range paitime = 1, which does not help improve the
quality.

6.3 Evaluation over Larger Datasets

between 20, 40, 60, 80, and 100. The number of bins used for
indexing dimension-based attribute$ at i t ude, | ongi t ude,
dept h, andt i ne, was fixed throughout all the experiments, and
was 18, 36, 24, and 12, respectively, for these four dimassibor
POP dataset, the maximum CWE was varied from 0.25 to 1. The
number of hins used for indexing each of the value-baseitbaitts

was varied from 20 to 60. The number of bins used for indexieg t
dimension-based attributeat i t ude,| ongi t ude, anddept h

was also fixed — 24, 36, and 21, respectively, for these thimerd
sions.

Figures 5 show the evaluation results on WOAO09_1DEG and POP
datasets. First, we can see that using a larger maximum CWE an
fewer bins can result in fewer subgroups being output. Thiser
cause a larger maximum CWE allows more small subgroups to be
combined, and fewer bins lead to more coarse-grained lgranid
fewer attribute-range pairs. Second, in most cases, arlangg-
imum CWE and use of fewer bins also lead to lower processing
times. The reason is two-fold. On one hand, more lenientrsuipy
combination can help eliminate more search space wherépheult
attributes are involved. On the other hand, use of fewer aiss
implies fewer attribute-range pairs involved in the sulbgrdiscov-

ery. Finally, for both datasets, we can see higher averagktyju
with larger maximum CWE and smaller number of bins. However,
note that the subgroup quality cannot always be improvechby i
creasing maximum CWE or decreasing the number of bins, since
such quality is also highly dependent on the dataset itSelb ex-
ceptions can be found in Figure 5(c). The first exception &, th
when the number of bins is 20, using the maximum CWE of 1.5
cannot result in a subgroup of quality higher than using th&im
mum CWE of 1. The other exception is that, when the number of
bins is greater than 20 and the maximum CWE is 1.5, the supgrou
quality cannot be further improved with more bins. Howewsgr-

all, high-quality results and reduced execution times \&@idtbins
point to the practicality of our algorithm, i.e., it can bdegtive on
large datasets and can provide reasonable response times.

6.4 Effectiveness of Search Strategy

Table 7: Search Efficiency Evaluation on WOAQ09_1DEG with
Varying # of Bins and Maximum CWE of 1.5

# of Bins 20 40 60 80
Size of Search Space 3.0E+10 4.8E+11 2.4E+12 7.6E+12
# of Visited Subgroups 1626 2216 2676 3136
# of Pruned Subgroups | 1470 (90.4%)| 1984 (89.5%)| 2366 (88.4%)| 2752 (87.8%)
# of Combined Subgroups 136 (8.4%) | 211 (9.5%) | 289 (10.8%) | 363 (11.6%)

100
1.9E+13
3596
3139 (87.3%)
436 (12.1%)

Lastly, we evaluated the search efficiency on WOA09_1DE Gsat
by using almost the same parameters as the previous expérime
(exception being that a fixed maximum CWE of 1.5 was used). In
Table 7, we report the size of search space, the number of visi
ed subgroups during our search, the number of visited supgro

We next experimented on the two larger datasets — WOAQ9_1DEG eliminated by pruning, and the number of visited subgroduipsi-€
and POP datasets. In this set of experiments we varied the max nated by combination. Additionally, we also report the mion
mum CWE and the number of bins used for indexing value-based of eliminated subgroups among all the visited ones.

attributes. One of our main goals was to understand how fgna
critical step in using bitvectors) impacts the executiomgtiand the
output quality of the algorithm. We set the minimum suppuniy-
imum absolute quality, and minimum relative quality as @04,
and 0.001, respectively. For WOAQ09_1DEG dataset, the maxim

CWE was varied to be 0.25, 0.5, 1, and 1.5. The number of bin-

s used for indexing each of the value-based attributes wasdva

The size of search space is equal to the product of the number
of bins over each attribute. The number of eliminated sulyggo
reported only includes the ones that are directly prunedoar-c
bined based on our pruning measures and combination ruids, a
excludes the child subgroups of those. We can make the follow
ing observations. First, the search space increases exahe
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as more bins are used, and even with a small number of bins, thelapping intervals, by adjusting interval bounds with a bdbtable.

search space is still huge. This shows that a brute-foraaritig

m will have an unacceptable cost. However, the number dfedsi
subgroups is at least 7 orders of magnitude smaller, andranés-
crease very rapidly with increasing number of bins. Thisisduse
our level-wise search strategy can eliminate unqualifiednoal-

| subgroups by pruning or combination as early as possilvid, a
hence unnecessary exploration over their child subgroapsbe
avoided. As aresult, the depth of our search tree is relgthraall,
mostly less than 3. Second, we can see that around 90% advisit
subgroups are pruned based on our pruning measures, amdiarou
10% visited subgroups are combined to provide a higher tyuali
Therefore, generally only less than 1% of visited subgrarpsi-
nally qualified, leading to subgroups that are of most sigaifce

to the users.

7. RELATED WORK

As an important data mining technique that is often appliedata
exploration and descriptive induction, subgroup discpveas been
extensively studied in recent years. The existing algoritican be
broadly classified into three typesxtensions of classification al-
gorithms[22, 31, 34, 37, 72]extensions of association algorithm-
s [7, 26, 27, 30], andextensions of evolutionary fuzzy algorithm-
s[11,14,19]. However, only a small number of subgroup discgv
algorithms are capable of processing numeric attributesarex-
tension of SD-Map [7], SD-Map* is designed based on FP-gnowt
and it uses frequent pattern tree as the search tree. Inastntr
our algorithm uses a set-enumeration tree based seartbggtra
with pruning and combination methods we have introduced. We
have extensively compared our algorithm with SD-Map*, aadeh
shown that our algorithm can lead to the subgroups of greater
erality and higher quality, as well as up to two orders of nitagie
lower execution times.

Other efforts have focused on discretization methods —>damgple,
TargetCluster [45] discretizes target variable based osteting,
instead of the simple equi-width/equi-depth binning ttsatriore
common, whereas MergeSD [28] involves discretization witér-

Moreover, subgroup discovery techniques have also bediedjp
the context of spatial databases [32,43]. Additionallg,abjective
of our subgroup discovery is similar tump hunting21], which
also aims to identify subsets that are considerably greatemall-
er than the average of the general population. However, istirex
work is designed for processing large-scale array-basettsc
datasets. Compared with all the existing subgroup disgosigio-
rithms, a key difference in our approach is that we direcigrate
on the compact bitmap indices, instead of the raw datasedsta
lize fast bitwise operations on them, allowing processihtamer
datasets.

Reducing the relevancy or redundancy of the output is alsman
portant issue in subgroup discovery. As a modified versiothef
classical subgroup discovemglevant subgroup discovelg pro-
posed to eliminate irrelevant subgroups, based on theytliéoele-
vancy [35,36]. Relevant subgroup discovery algorithmslaxésed
mainly based on eithesptimistic estimatesr closed sets Most
algorithms [35, 38] based on optimistic estimates can leaddra-
matic reduction of the search space as well as the executien t
but it may not be able to guarantee correct results [25]. €tlesets-
based algorithms [23, 25] require quadratic time compjexhich
is clearly not applicable to large scientific datasets. Addally,

Chenet al. [15] applied a sequential coverage approach where the

formal relevancy criteria is not followed. Other non-redant sub-
group discovery algorithms [13, 63] proposed differenuregancy
criteria to follow. However, to the best of our knowledge namf
these algorithms is designed for the subgroup discovery awe
meric array data. In the future, our method can be combinduavi
separate post-processing stepedévancy check

Apart from subgroup discovery, other important descriptilata
mining tasks that involve various differential analysislirde con-
trast set mining [9], emerging pattern mining [20], and elifntial
rule mining [40]. Again, the distinctive aspect of our aligom is
efficient processing of large-scale array data.



Although bitmap indexing was initially proposed in the caxttof
data warehouses [46, 77, 78], recently it has been widelliegbp
in the area of scientific data management [17, 53, 54, 61, T8].
improve query efficiency, different binning strategies,[28, 55,
76] and encoding methods [33] have been proposed. Furtiermo
bitmap indexing has also shown its capability of assistiagous
data analysis tasks [8,52, 59, 60, 62]. In this paper, thasfdas
been on efficient and effective subgroup discovery basedtorap
indices.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented a novel algorithm for subgroujp\tsg
over array-based datasets. This algorithm has extendesutie
group description to processing of array data, and is capabl
effectively processing numeric attributes. Moreover, algorith-
m directly operates on the compact bitmap indices insteatieof
raw datasets, and utilizes fast bitwise operations on tlhadowing
processing of larger datasets. We have extensively eealwatr al-
gorithm by using multiple real-life datasets, and compatedth

a popular subgroup discovery algorithm — SD-Map*. We demon-

strate both high efficiency and effectiveness of our algarit

In future work, we plan to extend our work in several diregtio
s. First, since the current algorithm does not ensure tlevarty
among the subgroups described by different sets of atédhute
plan to design an efficient relevant subgroup discoveryritga
over scientific datasets. Second, our current algorithnmooanan-
alyze one target variable at a time — our future work will exte
it to support multiple target variables. Third, the subgraiscov-
ery results do not necessarily indicate a causal relatipriitween
the subgroup descriptions and the high/low value of targeable,
but instead, only imply an association. This can be adddesshe
future. Fourth, we plan to develop a module to effectivelcdiv-
er exception rules for the output subgroups, where eactpérce
rule corresponds to an interesting subset of an output supgr
and such subset has a quality in contrast to the output supgro
belongs to.
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