
Lightweight Data Race Detection for Production Runs
Ohio State CSE Technical Report #OSU-CISRC-1/15-TR01; last updated August 2016

Swarnendu Biswas
Ohio State University

biswass@cse.ohio-state.edu

Man Cao
Ohio State University

caoma@cse.ohio-state.edu

Minjia Zhang
Ohio State University

zhanminj@cse.ohio-state.edu

Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

Benjamin P. Wood
Wellesley College

bpw@cs.wellesley.edu

Abstract
To detect real data races, program analysis must target pro-
duction runs. However, sound and precise data race detection
adds too much run-time overhead for use in production sys-
tems. Even existing approaches that provide soundness or
precision incur significant limitations.

This work addresses the need for soundness (no missed
races) and precision (no false races) by introducing new
production-time analyses that address each need separately.
(1) Precise data race detection is useful for developers, who
fix bugs but loathe false positives. We introduce a novel, pre-
cise analysis called LiteCollider that provides low, bounded
run-time overhead. (2) Sound race detection benefits anal-
yses and tools whose correctness relies on knowledge of
all potential data races. We present a novel, sound but ef-
ficient approach called Caper that combines static and dy-
namic analysis to detect every true race (plus false races) in
observed runs.

Our evaluation, which compares implementations of Lite-
Collider and Caper with our implementations of closely re-
lated prior work, shows that LiteCollider and Caper are ef-
ficient and effective, and compare favorably with state-of-
the-art approaches that target the same problem. These re-
sults suggest that LiteCollider and Caper enable practical
race detection that is precise and sound, respectively, ulti-
mately leading to more reliable software systems.

1. Introduction
In a multithreaded, shared-memory program execution, a
data race occurs when two accesses are conflicting (two
threads access the same variable with at least one write) and
concurrent (not ordered by synchronization operations) [3].
Data races often directly or indirectly lead to concurrency
bugs [45, 58]. The presence of data races—whether acci-
dental or intentional—can affect an execution by crashing,
hanging, or silently corrupting data [34, 39, 54]. The Therac-

25 disaster [43], the Northeastern electricity blackout of
2003 [69], and the mismatched NASDAQ Facebook share
prices [59] were all due to race conditions. Data races will
only become more problematic as software systems become
increasingly parallel to scale with parallel hardware.

Data races not only tend to be associated with bugs,
but they have weak or undefined semantics in modern
shared-memory languages and systems [2, 14, 15, 48]. The
C++ memory model provides no guarantees for racy pro-
grams [15]. A C++ program with apparently “benign” data
races can behave erroneously, as a result of compiler trans-
formations or being ported to a different architecture [13].
The Java memory model attempts to preserve memory and
type safety even in the presence of data races [48], but re-
searchers have shown that common compiler optimizations
permit violations of Java’s memory model [16, 65].

Detecting data races. Program analyses can detect data
races, but there exists a fundamental tradeoff between sound-
ness (no missed races) and precision (no false race reports).
Most static and some dynamic analyses provide soundness1

but report many false races [22, 25, 28, 52, 53, 56, 57, 60,
62, 71, 72, 75], which developers find unacceptable [8, 49].
On the other hand, precise dynamic analyses generally can-
not detect races in executions other than the current execu-
tion [10, 17, 29, 33, 40, 49]. This tradeoff is compounded
by a second challenge: the occurrence of a data race is sen-
sitive to thread interleavings, program inputs, and execution
environments—so data races can remain undetected during
in-house testing, even for extensively tested programs [69],
and occur unexpectedly in production runs [43, 59, 69].

To find data races that manifest only in production, race
detection must target production runs. However, in practice,
race detectors see little use in production runs, due to high
run-time overheads [49]. This paper addresses an open chal-

1 A dynamic analysis is sound if it misses no races in observed executions.

1



lenge: devising sound and precise data race detection analy-
ses that are efficient enough for production systems.

Our approach. A key, high-level insight of this work is
that although sound and precise data race detection are too
inefficient for production, separate analyses that each pro-
vide soundness or precision are still beneficial. Detecting
precise (real) data races enables developers to find and fix
software bugs and thus improves software reliability in the
long run. On the other hand, detecting a sound overapprox-
imation of data races can help simplify and optimize other
dynamic analyses such as record & replay [42], atomic-
ity checking [32], and software transactional memory sys-
tems [66]. Section 2 further motivates these benefits.

Mirroring this idea of separating precision and soundness,
our approach decouples data race detection as two comple-
mentary, lightweight analyses that maintain and refine a pre-
cise underapproximation and a sound overapproximation of
all data races over the course of many production runs.

To get a precise underapproximation, we introduce a a
novel dynamic analysis called LiteCollider (Section 4). Each
run of LiteCollider takes one potential data race as input,
and tries to detect whether the potential race occurs in the
run. LiteCollider provides low, bounded run-time overhead,
and it does not rely on any hardware support. In contrast, the
closest related work adds unbounded, unscalable run-time
overhead [40] (Sections 2.1 and 7.2.1).

For a sound overapproximation of data races from ob-
served runs, we introduce a novel approach called Caper
(Section 5). Caper combines static and dynamic analysis,
starting with a set of potential races obtained from sound
(no missed races) static analysis. During each analyzed run,
Caper detects new potential races that prior runs have not al-
ready detected, by using a variant of dynamic escape analy-
sis. Caper compares favorably with prior work that provides
soundness, which provides worse performance or precision
than Caper (Sections 2, 7.3, and 8).

We have implemented LiteCollider and Caper in a high-
performance Java virtual machine [5] (Section 6). Our eval-
uation compares LiteCollider and Caper empirically with
closely related work (Section 7). Overall, LiteCollider pro-
vides better performance (lower, scalable, and bounded over-
head) and the same race coverage as prior work. Caper pro-
vides substantially better precision than static analysis, while
providing low enough overhead for production runs, un-
like other known approaches that are dynamically sound (no
missed races in observed executions). These results suggest
that these analyses can be integrated into and employed con-
tinuously in production settings, providing the benefits of
precise underapproximation and sound overapproximation
of observed data races.

2. Background and Motivation
Data race detection that is either precise or sound has distinct
benefits. Prior approaches that provide precision or sound-
ness have serious drawbacks.

2.1 Detecting Real Data Races Only
To target production environments, where the key constraint
is run-time overhead, prior work has employed sampling
of data race detection analysis, trading coverage for lower
overhead [17, 29, 40, 49]. However, sampling-based race
detection approaches suffer from run-time overhead that is
high, unscalable, and unbounded. LiteRace and Pacer sam-
ple race detection analysis but instrument all program ac-
cesses, adding high baseline overhead even when the sam-
pling rate is miniscule [17, 49]. RaceMob applies sampling
by limiting its analysis to a single pair of static accesses
per execution, limiting its instrumentation overhead [40],
but even its optimized analysis incurs high, unscalable, un-
bounded overhead, as we show empirically in Section 7.2.1.

While most sampling-based approaches track the happens-
before relation [41], DataCollider exposes and detects si-
multaneous, conflicting accesses—a sufficient condition for
a data race [29]. Our paper refers to this kind of analysis as
collision analysis. (Prior work has employed collision analy-
sis in a non-sampling context [63].) To expose and detect si-
multaneous, conflicting accesses, DataCollider periodically
pauses a thread’s execution at a potentially racy access; in
the meantime, other threads detect conflicting accesses to the
same variable. DataCollider avoids heavyweight instrumen-
tation by using hardware debug registers to monitor memory
locations [29]. However, debug registers are hardware spe-
cific and thus unportable; architectures often have only a
few debug registers, limiting the number of memory loca-
tions that can be monitored simultaneously. The overhead
of setting debug watchpoints with inter-processor interrupts
increases with the number of cores, so DataCollider may
not scale well to many cores [70]. Furthermore, although
developers or users can adjust DataCollider’s run-time over-
head by adjusting the sampling rate, it does not guarantee
bounded run-time overhead.

In summary, existing precise data race detection analy-
ses have serious limitations that make them unsuitable for
production settings. This work asks the question: what is the
best use of the production setting for detecting data races
precisely? In particular, is it possible to design a precise,
portable analysis that adds low, bounded overhead?

2.2 Detecting All Data Races in Observed Executions
While sampling-based approaches are precise, they are in-
herently unsound, missing data races that occur in produc-
tion runs. This situation is unacceptable for analyses and sys-
tems whose correctness relies on soundly knowing all data
races, such as record & replay systems [42], atomicity viola-
tion detectors [32], and software transactional memory [66].
For example, Chimera provides sound multithreaded record

2



& replay by conservatively tracking ordering between all
potential data races, as identified by sound static analy-
sis [42]. Although whole-program static analysis can pro-
vide a sound set of potential data races, its precision does
not scale with program size and complexity, and it suffers
from many false positives [28, 52, 53, 60, 72]. Chimera (and
other approaches) could provide significantly better perfor-
mance by using a more precise set of potential data races.

This work asks the question: Is it possible to exploit the
production setting in order to detect potential data races
soundly, i.e., without missing any true races that occur in
production runs? Such an approach must add low overhead,
and it must have “reasonable” precision (i.e., significantly
better than static analysis) in order to be useful. To our
knowledge, prior work does not provide a solution that both
improves over the precision of static analysis and performs
well enough for all-the-time use in production environments.

3. Overview
This paper addresses the two challenges motivated by the
previous section with two complementary, lightweight pro-
duction analyses. Section 4 presents LiteCollider, a precise
analysis that detects only true data races. Section 5 presents
Caper, a sound approach that detects all data races in ob-
served runs. These two approaches—one precise but un-
sound, the other sound but imprecise—are inherently com-
plementary. They maintain and refine an underapproxima-
tion and overapproximation, respectively, of the set of real
data races in observed executions.

4. LiteCollider: Precise Data Race Detection
This section describes a new analysis called LiteCollider that
targets minimal production-time race detection. LiteCollider
limits its analysis to a single potential data race per program
execution, and it bounds the run-time overhead it adds. In
practice, LiteCollider could get each potential race from a
set of races identified by developers or by another analysis
that identifies potential races [40, 63]. While it may seem
unsatisfying to try to detect only one potential race per
execution, we note that current practice is to perform no race
detection in production!

LiteCollider provides several properties aside from preci-
sion: bounded time and space overhead, scalability (i.e., time
and space overheads remain stable with more threads), and
portability. Like DataColider, LiteCollider employs collision
analysis, but DataCollider cannot bound its overhead, nor is
it portable [29] (Section 2.1). On the other hand, sampling-
based analyses that track happens-before provide precision
and portability, but they cannot provide low, scalable, or
bounded overhead [17, 40, 49] (Section 2.1).

4.1 How the Analysis Works
A production run executing LiteCollider takes as input a sin-
gle potential data race, which is an ordered pair of program
sites, 〈s1, s2〉. A site is a unique static program location (e.g.,

a method and bytecode index in Java). LiteCollider limits its
analysis to these two sites (or one site if s1 = s2). When
s1 6= s2, LiteCollider considers 〈s1, s2〉 and 〈s2, s1〉 to be
distinct, and it uses separate runs to try to detect them.

Before a thread T executes an access to memory location
m at s1, the analysis potentially samples the current access
by waiting, i.e., pausing the current thread for some time.
The analysis updates global analysis state to indicate that T
is waiting at s1 to access m.

When a thread T ′ executes an access to memory location
m at s2, the analysis checks whether some thread T is
already waiting at s1 and is accessing the same memory
location m. If so, the analysis has definitely detected a data
race, and it reports the stack traces of T and T ′.

Aside from the cost of waiting at some instances of s1,
the analysis can achieve very low overhead because it in-
struments only two (or one, if s1 = s2) static sites and—like
other collision analyses [29, 63]—avoids instrumenting syn-
chronization operations. Although updating global analysis
state may seem to be a potential scalability bottleneck, these
updates occur when at least one thread is waiting—and the
fraction of time spent waiting is bounded, as discussed next.

Instrumentation overhead. Although LiteCollider bounds
how long it spends waiting, it always executes instrumenta-
tion at s1 and s2, which is lightweight in the common case
(particularly because it uses optimizations described shortly)
but could incur nontrivial overhead for very frequent ac-
cesses. LiteCollider’s design includes the ability to control
this cost at run time by detecting very frequent accesses (e.g.,
if s1 or s2 is in a hot, tight loop) and triggering dynamic re-
compilation or code patching to remove the instrumentation.

4.2 Sampling Policy
LiteCollider’s sampling policy bounds the total amount of
time spent waiting, and it prioritizes instances of s1 more
likely to be involved in data races.

Budgeting the overhead of waiting. LiteCollider is a
“best-effort” approach that seeks to detect data races with-
out affecting production performance too much. As in prior
work called QVM that targets a specified maximum over-
head by throttling the analysis [6], LiteCollider targets a
maximum overhead rmax specified by developers or users.
To enforce this maximum, LiteCollider keeps track through-
out execution of (1) wall-clock time of the ongoing execu-
tion, ttotal , and (2) wall-clock time so far during which one
or more threads are waiting, i.e., taking into account over-
lapped waits. LiteCollider ensures the following throughout
execution:

twaited

ttotal
≤ rmax

This condition is conservative because a thread waiting for
time t does not necessarily extend total execution time by t.

3



LiteCollider computes the following probability for whether
to take a sample at s1:2

Pbudget = 1− twaited + tdelay
(ttotal + tdelay)× rmax

This computation is based on the fraction of time that will
have been spent waiting after waiting for a planned amount
of time tdelay . Note that Pbudget will be close to 0 if LiteCol-
lider is near its maximum overhead. Pbudget will be close to
1 if LiteCollider is substantially under-budget.

Prioritizing accesses. Some static sites execute only once
per run, while others execute millions of times. To account
for this uncertainty and variability, it is important to wait at
the first instance of a site (it might be the only one!) but
less important to wait at later instances. These ideas echo
the intuition behind the cold-region hypothesis, which pos-
tulates that the likelihood of detecting bugs in some part of a
program is inversely proportional to the execution frequency
of that part of the program [21, 49]. As in prior work on
sampling-based race detection [49], we find that it is impor-
tant to prioritize sampling of each thread’s initial access(es)
(instead of the global execution’s initial accesses) at s1.

LiteCollider thus samples an instance of s1 at a rate in-
versely proportional to freq(s1, T ), the execution frequency
of s1 by the current thread T so far:

Pfreq =
1

freq(s1, T )

Overall sampling probability. LiteCollider’s sampling pol-
icy combines Pbudget and Pfreq :

PLiteCollider = Pbudget × Pfreq

A remaining issue is that soon after an execution starts, Lite-
Collider will have virtually no budget (Pbudget ≈ 0), so very
early accesses will go unsampled, potentially missing some
races consistently. To detect such races, it seems unavoidable
that an execution must risk exceeding its budget. LiteCol-
lider assumes a minimum total running time tmin and uses
max (tmin , ttotal) in place of ttotal when computing Pbudget .
Developers can estimate a reasonable, small value for tmin

using their knowledge of the program and likely execution
scenarios. In our experiments, tmin = 1 second.

4.3 Optimizations
LiteCollider’s low instrumentation overhead and good scal-
ability (Section 7.2) rely on the following optimizations.

2 Although LiteCollider could choose which dynamic accesses to sample
using a deterministic function, it instead uses randomness, waiting at each
dynamic access with some probability P as described below. Using ran-
domness increases the chances of finding a race in the long run, over multi-
ple executions, although in practice LiteCollider detects most races consis-
tently from run to run.

Sampling check. LiteCollider’s instrumentation at s1 uses
the following optimized two-part check, which is equivalent
to sampling with probability PLiteCollider . The instrumenta-
tion first computes Pfreq , which is thread local and cheap.
Then, with probability Pfreq—that is, infrequently in the
common case—the instrumentation computes Pbudget and
samples the access with probability Pbudget .

Avoiding scalability bottlenecks. Whenever instrumenta-
tion at s1 waits, it acquires a lock on global analysis state,
records that the current thread T is waiting at site s1 on
memory location m, and it increments a global count of
waiting threads. The instrumentation then performs a non-
busy timed wait on the global lock. Instrumentation at s2
checks if another thread is waiting on the same memory
location m at s1. To do this efficiently, s2 first checks the
global counter to see if any threads are waiting, avoiding re-
mote cache misses in the common case when no threads are
waiting. It only acquires the global lock and accesses global
analysis state if at least one thread is waiting.

5. Caper: Detecting All Potential Data Races
This section focuses on the problem of detecting a sound
overapproximation of all data races that occur in production
runs. Although whole-program static analysis can provide
a sound set of potential races, it reports many false races
(Sections 7.3). Can a sound, low-overhead approach provide
significantly better precision than static analysis alone?

5.1 Caper Overview
We introduce a novel approach called Caper that detects a
set of potential data races that includes all true data races
from observed production runs. Caper combines static and
dynamic analyses. Caper initially runs a static analysis
(e.g., [28, 52, 53, 60, 72]) to produce a set of statically possi-
ble race pairs, spPairs . This set consists of unordered pairs
〈s1, s2〉 (i.e., 〈s1, s2〉 = 〈s2, s1〉) where s1 and s2 are each
a static program location. The set spPairs need not be par-
ticularly precise—and in fact we find that a state-of-the-art
static analysis reports many false races [53] (Section 7.3).

During each program execution, Caper’s dynamic analy-
sis identifies dynamically possible race pairs, dpPairs , from
spPairs . Each invocation of Caper copies newly identified
possible race pairs from spPairs to dpPairs (dpPairs ⊆
spPairs). At any given time, dpPairs is a sound overap-
proximation (no missed races) of every data race observed
so far across all analyzed program executions.

Caper incurs low run-time overhead by using two in-
sights. First, Caper refines spPairs and dpPairs on each
successive program execution, so that in steady state, pro-
duction runs are unlikely to detect any new pairs in spPairs
to move to dpPairs . This feature allows Caper to optimize
for not detecting new pairs in spPairs that should move
to dpPairs . Second, Caper employs lightweight, sound dy-
namic escape analysis, described shortly. Although Caper’s

4



run-time overhead in steady state is low, it is not bounded
(unlike LiteCollider). Having unbounded overhead seems
inherent to ensuring soundness (short of “giving up” and
declaring all spPairs to be in dpPairs).

5.2 Caper’s Dynamic Analysis
Caper’s dynamic analysis builds on dynamic escape analysis
(DEA), which identifies objects that have potentially become
shared (accessed by two or more threads). Caper’s DEA
instruments all accesses to soundly track the escape property,
while Caper’s sharing analysis instruments sites in spPairs ,
i.e., every site s such that ∃s′ | 〈s, s′〉 ∈ spPairs \ dpPairs .
The instrumentation checks if the object accessed at s has
escaped; if so, it marks s as “escaped.” Caper maintains a set
of dynamically escaped sites called deSites such that

deSites =
{
s | (∃s′ | |〈s, s′〉 ∈ spPairs) ∧

s escaped in an observed run
}

Caper removes 〈s1, s2〉 from spPairs and adds it to dpPairs
for future invocations of Caper if both s1 and s2 are in
deSites , i.e., dpPairs = {〈s1, s2〉 | s1 ∈ deSites ∧ s2 ∈
deSites}. Future runs of Caper instrument only the sites that
are in spPairs \ dpPairs , but DEA continues to monitor all
memory accesses.

Caper’s reachability-based DEA. Caper’s form of DEA is
based on the idea that an object is escaped if it is transitively
reachable from another escaped object. Reachability-based
analysis conservatively identifies the first time an object
becomes reachable by some thread other than its allocating
thread, using these rules:

• Each object is initialized to NOT_ESCAPED state on allo-
cation. Thread objects (e.g., java.lang.Thread objects in
Java) are initialized to ESCAPED state.

• At each reference-type store to a global variable (C.sf =
p), the object referenced by p becomes ESCAPED.

• At each reference-type store to an instance field (q.f =
p), the object referenced by p becomes ESCAPED if the
object referenced by q is ESCAPED.

• Whenever an object becomes ESCAPED, mark all objects
transitively reachable from the object as ESCAPED.

Soundness. Importantly, this reachability-based DEA is
sound for detecting shortest data races, which are data races
that are not dependent on some other race. In contrast, a non-
shortest data race r “depends” on some other data race r′,
meaning that eliminating r′ necessarily eliminates r. Con-
sider the following example, where thread T1’s local vari-
able x initially refers to an unescaped object o:

// T1:
x. f = ...; // s1
C.sf = x; // s2

// T2:

y = C.sf; // s3
... = y.f ; // s4

T1’s access to o.f through x occurs while the object o is
still unescaped. Object o becomes reachable by other threads
when T1 publishes a reference to it in the escaped field,
C.sf.3 T2 acquires this reference via C.sf and uses it to access
o’s field f.

T1 and T2 race on C.sf at s2 and s3. This is a shortest
race: it does not depend on any other races. T1 and T2 also
perform unsynchronized accesses to o.f at s1 and s4, but this
race depends on the other, “shorter” race. s1 and s4 can only
race on o.f if s2 and s3 also race on C.sf. Fixing the s2–s3
race (e.g., by making C.sf a volatile field in Java) necessarily
fixes the s1–s4 race.

In contrast to Caper, prior DEA-based data race detection
is generally unsound [23, 35, 44, 56, 57, 62] (Section 8).
To our knowledge, our work is the first to apply a form of
DEA as a fully sound filter for data race detection.4 More
significantly, to our knowledge, Caper is the first to use DEA
to prune the results of static data race detection.

6. Implementation
We have implemented LiteCollider and Caper’s dynamic
analysis in Jikes RVM 3.1.3 [4, 5], a Java virtual ma-
chine that has performance competitive with commercial
JVMs [10]. We have also implemented two analyses from
prior work that are closely related to LiteCollider and Caper.
We will make these implementations publicly available.

6.1 Detecting Data Races Precisely
LiteCollider. LiteCollider’s implementation closely fol-
lows the design, described in detail in Section 4. LiteColli-
der’s design includes the ability to dynamically remove the
lightweight instrumentation from s1 and s2 in the event that
these sites are very frequent, e.g., in a hot, tight loop (Sec-
tion 4.1). We have not implemented this feature since it is
not needed for our experiments.

Instrumenting different accesses in each production run,
as in LiteCollider, naturally lends itself to just-in-time-
compiled languages such as Java: the dynamic compiler in-
struments only those accesses targeted by the current run.
An implementation in an ahead-of-time compiled language
such as C++ could use dynamic code patching, distribute a
different binary to each production site, or (at higher run-
time cost) instrument all potentially racy sites [40].

LiteHB. We have implemented an analysis that we call
LiteHB that is based on RaceMob’s happens-before analy-
sis [40].5 Like LiteCollider, LiteHB takes as input a single
potential data race 〈s1, s2〉, and tries to detect whether it
manifests in the current execution.
3 We chose a static field for simplicity. Any escaped field suffices.
4 The TRaDe data race detector applies a sound DEA, but extends it with a
reprivatization optimization that is unsound for data race detection, allowing
TRaDe to miss some true data races [23].
5 Although RaceMob’s happens-before analysis also includes waiting at
some accesses [40], we omit this feature from LiteHB in order to measure
the cost of (optimized) happens-before analysis alone.

5



LiteHB implements RaceMob’s optimized tracking of the
happens-before relationship [40]. In particular, LiteHB (1)
only starts tracking happens-before after some thread ex-
ecutes s1 and (2) stops tracking happens-before when all
threads can no longer race with a prior instance of s1, i.e.,
when all threads’ vector clocks happen after the clocks for
all executed instances of s1.

Our LiteHB implementation adds the following metadata
to each object: a header word to track the vector clock if
the object’s lock is acquired; a header word that points to
an array of metadata, which is used if the object is an array
that is accessed by LiteHB’s instrumentation; and a word of
metadata for each field, which is used if the field is accessed
by LiteHB’s instrumentation. With additional engineering
effort, LiteHB could avoid adding some of this metadata; in
particular, it could limit per-field metadata to those fields that
s1 and s2 might access. Instead, our evaluation of LiteHB
accounts for the costs of extraneous metadata.

6.2 Detecting Potential Data Races Soundly
Caper. As described in Section 5, Caper starts with stati-
cally overapproximating the set of potential data races. For
Caper’s static analysis, we use the publicly available static
data race detector Chord, revision 1825 [53].6 Chord’s full
analysis is unsound because it uses a may-alias analysis for
locks.7 We thus disable Chord’s static lockset analysis en-
tirely, along with a few other unsound options such as ignor-
ing accesses in constructors, and we enable a Chord feature
that resolves reflective calls by executing the program. The
result is a sound analysis that identifies potential races based
solely on (static) thread escape analysis and fork-join anal-
ysis. Although Chord analyzes each program together with
the Java libraries, it analyzes a different library implemen-
tation than what Jikes RVM uses, so our experiments detect
potential races in application code only. Caper uses the set
reported by Chord as its spPairs (Section 5). Caper’s dy-
namic analysis works as described in Section 5.

Dynamic alias analysis. For comparison with Caper, we
have implemented a dynamic alias analysis, which detects
all pairs of aliasing sites. It reports 〈s1, s2〉 if and only if
accesses at s1 and s2 by threads T1 and T2 at memory
locations m1 and m2 such that T1 6= T2 ∧ m1 = m2.

Prior work uses dynamic alias analysis as a filter for
race detection, by checking one potentially aliasing pair per
run [40]. Dynamic alias analysis is less imprecise than Caper
but adds high run-time overhead (Section 7.3). It offers a
different point of comparison than static analysis, which is
highly imprecise but adds no overhead. To our knowledge,
there exists no sound analysis that has (1) better precision
than Caper and (2) overhead low enough for production.

6 http://www.cc.gatech.edu/~naik/chord.html
7 We have confirmed with Naik that there is no available sound implemen-
tation of Chord that uses conditional must-not alias analysis [52].

7. Evaluation
This section evaluates LiteCollider and Caper’s efficiency
and effectiveness, and compares with competing approaches.

7.1 Methodology
Benchmarks. Our evaluation analyzes and executes bench-
marked versions of large, real applications. Our experiments
execute the DaCapo Benchmarks [11], versions 2006-10-
MR2 and 9.12-bach, which we distinguish using names suf-
fixed by 6 and 9; and fixed-workload versions of SPEC-
jbb2000 and SPECjbb2005.8 We omit programs with only
one thread or that Jikes RVM cannot execute. We also omit
eclipse6 since Chord’s static analysis fails when analyzing
it; and jython9 and pmd9 because Chord reports no potential
data races for them.9 We run the large workload size of the
DaCapo benchmarks. Table 1(a) (page 8) reports total and
maximum active threads for each program.

Platform. For each of our implementations, we build a
high-performance configuration of Jikes RVM (FastAdap-
tive) that adaptively optimizes the application at run time
and uses the default high-performance garbage collector,
which adjusts the heap size automatically.

The experiments execute on an AMD Opteron 6272 sys-
tem with eight 8-core 2.0 GHz processors (64 cores total),
running 64-bit RedHat Enterprise Linux 6.7, kernel 2.6.32.

7.2 Detecting Data Races Precisely
This section evaluates the run-time performance and race
detection coverage of LiteCollider, compared with LiteHB.

Methodology. Each run of LiteCollider or LiteHB takes as
a input a potential data race 〈s1, s2〉. In a real production set-
ting, such potential races could be identified by developers
or by another analysis (Section 4). Potential races could be
generated by a sound analysis such as static analysis, Ca-
per, or dynamic alias analysis; then, across many production
runs, LiteCollider and LiteHB have at least the potential to
detect all production-time data races. RaceMob uses poten-
tial races identified by sound static analysis as input to its
LiteHB-like analysis (after first filtering them using dynamic
alias analysis that checks one potential race per run) [40].

However, to keep our experiments manageable (espe-
cially since we run multiple configurations and trials), we
evaluate LiteCollider and LiteHB on a relatively small set of
potential races: the set of access pairs identified by dynamic
alias analysis that also violate the dynamic lockset property,
i.e., no common lock is held for both accesses; prior work in-
troduces heavyweight dynamic analyses that check the lock-
set property [22, 25, 56, 57, 62, 71]. This methodology mir-
rors a likely real-world scenario: prioritization of certain po-
tential races as input to LiteCollider or LiteHB, e.g., through

8 http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005
9 pmd9 has data races [10], but Chord does not recognize its use of threads.

6

http://www.cc.gatech.edu/~naik/chord.html
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005


additional heavyweight but less-imprecise analysis than Ca-
per run at testing time. Note that generating the set of po-
tential data races only at testing time would miss some data
races that manifest in production only. Our experiments use
the same input for identifying potential races, so the poten-
tial races include all known data races (all races that manifest
in executed runs).

7.2.1 Performance
Run-time overhead. Figure 1 shows the overhead added
over uninstrumented execution (unmodified Jikes RVM) for
configurations of LiteCollider and LiteHB. Each bar is the
mean execution time over 30 randomly selected potential
races (from those identified by dynamic alias analysis that
violate the lockset property). If a program has fewer than 30
potential races, we use multiple trials of each potential race.

The LiteCollider configurations are for three target max-
imum overheads, rmax = 0%, 5%, and 10%. All configura-
tions use wait times of tdelay = 10 ms. The rmax = 0% con-
figuration shows overhead without any waiting, measuring
the cost of instrumentation at accesses alone. This overhead,
which LiteCollider cannot measure or bound with its sam-
pling model, is consistently low (always <5%). For rmax =
5% and 10%, LiteCollider stays under the target overhead
across all programs, as expected. Since LiteCollider instru-
ments only one pair of accesses, the instrumentation over-
head is generally low. The average overheads for rmax = 5%
and 10% are 1.0% and 1.6%, respectively. It is unsurpris-
ing that actual overheads are generally less than rmax , since
LiteCollider’s model conservatively assumes that pausing
one thread by tdelay slows the entire program by tdelay .

The LiteHB and FullHB configurations are variants of
LiteHB. LiteHB is the default LiteHB algorithm that uses
RaceMob’s optimized happens-before tracking; it adds 20%
run-time overhead on average. LiteHB (only HB tracking)
shows overhead incurred by optimized happens-before track-
ing only: it adds no instrumentation to accesses, except for
instrumentation at s1 that enables happens-before tracking
if it is currently disabled. This configuration isolates the cost
of optimized tracking of happens-before, which incurs 13%
average overhead.

We note that both LiteHB configurations include space
overhead, as well as cache pressure and GC costs, from
per-object and per-field metadata—but most of the per-field
metadata could be avoided with additional engineering effort
(Section 6.1). We find that per-field metadata alone adds run-
time overhead of 7% (results not shown), so the true cost of
optimized happens-before analysis is as low as 13%.

FullHB (only HB tracking) performs unoptimized happens-
before tracking by performing vector clock computations at
every synchronization operation; it adds no instrumentation
at accesses. This configuration, which shows the benefit of
RaceMob’s happens-before optimization [40], adds 18% av-
erage overhead. The last configuration, FullHB, shows the
overhead of instrumenting s1 and s2 and performing unopti-

mized happens-before tracking, and adds 37% overhead on
average. These results show that RaceMob’s optimization is
indeed beneficial in our experiments.

For sunflow9, both LiteHB and FullHB add especially
high overheads (162 and 526%, respectively). As the results
indicate, most of this overhead actually comes from instru-
mentation at accesses, not from tracking the happens-before
relationship. In sunflow9, instrumentation at mostly read-
shared accesses must perform updates to per-variable clocks,
leading to many remote cache misses. Such high, unpre-
dictable overheads prohibit use of happens-before-analysis-
based race detection on production systems.

We have also measured the space overhead incurred by
LiteCollider and LiteHB (full results omitted). LiteCollider,
which adds only a small amount of global metadata, adds
1% overhead on average and at most 5% overhead for any
program; much of that overhead is actually a side effect of
slowing execution, which leads to more dynamic compiler
work. For LiteHB, if we subtract out all space overhead due
to per-object and per-field metadata (optimistically assum-
ing all such metadata could be avoided; Section 6.1), space
overhead is 5% on average and at most 29% for any program.

Scalability. Production software often has many threads
and will likely have more as future systems provide more
cores [46]. To compare how LiteCollider and LiteHB scale
with more threads, we evaluate the three programs that sup-
port spawning a configurable number of application threads:
lusearch9, sunflow9, and xalan9 (Table 1(a)). Figure 2 plots
execution time for 1–64 application threads, using config-
urations from Figure 1. The Unmodified JVM configuration
shows that lusearch9 and sunflow9 naturally scale with more
threads, while xalan9 anti-scales starting at 16 threads.

LiteCollider (rmax = 5%) not only adds low overhead,
but its overhead is largely unaffected by the number of
threads for all programs. Note that in the plots, the Unmodi-
fied JVM and LiteCollider lines are difficult to distinguish. In
contrast, for lusearch9 and sunflow9, LiteHB not only adds
high overhead, but its overhead grows with more threads.10

As discussed earlier, most of sunflow9’s LiteHB overhead is
due to conflicts from updating per-variable clock metadata—
a cost that increases as the number of threads increases. For
lusearch9, since most of its overhead comes from track-
ing the happens-before relation, which requires vector clock
computations that take linear time in the number of threads.
For xalan9, LiteHB always incurs very low overhead and
has no noticeable scalability issues.

These scalability results imply that for even larger thread
counts, LiteHB will add additional overhead, while LiteCol-
lider will provide consistently low overhead.

Comparison with RaceMob’s reported results. Although
RaceMob reports very low run-time overhead for its happens-

10 For 32 threads, the Unmodified JVM and LiteCollider configurations
experience anomalous performance for lusearch9. We have attributed this
anomaly to Linux thread scheduling decisions [7].

7



hsqldb6

lusearch6

xalan6

avrora9

luindex9

lusearch9

sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

10

20

30

40

O
v
er

h
ea

d
 (

%
) 

o
v
er

 u
n

m
o
d

if
ie

d
 J

V
M

LiteCollider (r_max = 0%)

LiteCollider (r_max = 5%)

LiteCollider (r_max = 10%)

LiteHB

LiteHB (only HB tracking)

FullHB (only HB tracking)

FullHB

162% 526%

Figure 1. Run-time overhead of configurations of LiteCollider and LiteHB. The error bars represent 95% confidence intervals.

1 4 8 16 32 64

Application threads

0

5

10

15

20

25

E
x

ec
u

ti
o

n
 t

im
e 

(s
)

Unmodified JVM

LiteCollider (r_max = 5%)

LiteHB

(a) lusearch9

1 4 8 16 32 64

Application threads

0

20

40

60

80

100

(b) sunflow9

1 4 8 16 32 64

Application threads

0

20

40

60

80

100

(c) xalan9

Figure 2. Execution times of LiteCollider (rmax = 5%) and LiteHB for 1–64 application threads. The execution times for 64 threads
correspond to the results in Figure 1. The legend applies to all graphs.

Java program Total Max live Avg. accesses
per SFR

hsqldb6 402 102 26
lusearch6 65 65 156
xalan6 9 9 21

avrora9 27 27 553
luindex9 2 2 718
lusearch9 c c 201
sunflow9 2× c c 1,030,000
xalan9 c c 53

pjbb2000 37 9 7
pjbb2005 9 9 15

(a) Java programs

C/C++ program Avg. accesses per SFR
Threads n=8 n=16 n=32

blackscholes 1 + n 9,150,000 4,750,000 2,290,000
bodytrack 2 + n 63,600 57,400 47,800
canneal 1 + n 5,470,000 2,746,000 1,370,000
dedup 3 + 3n 36,300 36,300 35,900
ferret 3 + 4n 630,000 514,000 388,000
fluidanimate 1 + n 131 99 68
raytrace 1 + n 5,820,000 3,030,000 1,550,000
streamcluster 1 + 2n 4,320 2,260 1,250
swaptions 1 + n 83,000,000 41,600,000 20,800,000
vips 3 + n 105,000 81,100 55,800
x264 1 + 2× frames 208,000 202,000 202,000

(b) C/C++ programs

Table 1. Spawned threads and average executed memory accesses per synchronization-free region (SFR), rounded to three significant figures
and the nearest integer, for Java and C/C++ programs. (a) The table shows Total threads created and Max live at any time, which is dependent
on the core count c (64 in our experiments) for three programs. (b) n is PARSEC’s minimum threads parameter. frames is the input-size-
dependent number of frames processed by x264.

before analysis evaluated on C/C++ programs (2.3% on
average) [40], our implementation of optimized happens-
before analysis, evaluated on Java programs, has signif-
icantly higher overhead: 13% on average (after subtract-
ing out overhead from per-field metadata). Although there

are many implementation and experimental differences that
might lead to differences, we suspect three primary reasons.
First, our programs generally have more threads (Table 1).
Second, Java programs tend to have much more frequent
synchronization operations. Table 1 compares the sizes,

8



measured in executed memory accesses, of synchronization-
free regions for C/C++ and the Java programs that we eval-
uate, i.e., the ratio of total memory accesses to total syn-
chronization operations. The C/C++ programs are the PAR-
SEC benchmark suite [9], version 3.0-beta-20150206 (ex-
cluding freqmine since it uses OpenMP for its paralleliza-
tion and facesim which does to run with our tool), with the
simmedium input size; we count their synchronization op-
erations and memory accesses by modifying a Pintool from
prior work [24, 47]. With the exception of one Java program
(sunflow9), synchronization operations are several orders of
magnitude more frequent in Java programs than most C/C++
programs. A related issue is that the RaceMob authors report
that their evaluated C/C++ programs execute synchroniza-
tion barriers, which optimized happens-before analysis can
exploit by tracking happens-before immediately after a bar-
rier [40]. In contrast, the Java programs we evaluate execute
few or no synchronization barriers.

As evidence of these claims, we note that the Race-
Mob authors implement and evaluate a sampling-based
happens-before analysis from prior work called Pacer [17].
Their Pacer implementation adds low overhead compared
to the original Java-based implementation and evaluation
of Pacer, suggesting that happens-before analysis is rela-
tively inexpensive for RaceMob’s evaluated programs. For
synchronization-intensive programs, their Pacer implemen-
tation adds high overhead, but RaceMob adds low overhead,
suggesting that RaceMob’s happens-before optimization is
particularly effective for the evaluated programs.

Comparison with other happens-before tracking. The
state-of-the-art sound and precise data race detection anal-
ysis FastTrack incurs 340% average overhead for a com-
parable implementation in Jikes RVM [10], or 750% for
the FastTrack authors’ implementation and evaluation [33].
Industry-standard tools such as Intel’s Inspector XE,11 Goo-
gle’s ThreadSanitizer v2 [64], and Helgrind [55] are largely
based on happens-before analysis. They add high run-time
overheads and are suitable only for testing runs.

The sampling-based happens-before race detector called
Pacer avoids analysis at most operations, but still requires
instrumenting all operations [17]. For sampling rates of 0%,
1%, and 3%, Pacer’s implementation in Jikes RVM incurs
33%, 52%, and 86% run-time overhead on average [17]—
significantly higher than LiteCollider’s overhead.

7.2.2 Detecting Real Data Races
Empirical comparison. Table 2 reports how many (true)
data races LiteCollider and LiteHB detect. For each potential
race pair from the sound set of lockset-violating access pairs,
we execute 10 trials each of LiteCollider and LiteHB. The
first column for each analysis reports distinct races reported
at least once across 10 trials. To account for uncertainty
about the repeatability of detecting a race reported in just

11 https://software.intel.com/en-us/intel-inspector-xe

LiteCollider LiteHB Overlap

hsqldb6 10 (10) 10 (10) 10 (10)
lusearch6 0 (0) 0 (0) 0 (0)
xalan6 17 (17) 17 (17) 17 (17)

avrora9 7 (6) 7 (7) 7 (6)
luindex9 2 (2) 2 (2) 2 (2)
lusearch9 0 (0) 0 (0) 0 (0)
sunflow9 2 (2) 2 (2) 2 (2)
xalan9 7 (7) 7 (7) 7 (7)

pjbb2000 7 (7) 7 (7) 7 (7)
pjbb2005 1 (1) 1 (1) 1 (1)

Total 53 (52) 53 (53) 53 (52)

Table 2. Data races reported by LiteCollider and LiteHB. The two
numbers are distinct races reported at least once and (in parenthe-
ses) at least twice, out of 10 trials. Overlap is distinct races reported
by both LiteCollider and LiteHB.

hsqldb6

lusearch6

xalan6

avrora9

luindex9

lusearch9

sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

20

40

60

80

100

O
v

e
r
h

e
a

d
 (

%
) 

o
v

e
r

u
n

m
o

d
if

ie
d

 J
V

M

DEA

Caper (first run)

Caper (steady state)

Figure 3. Run-time performance of Caper.

one trial, we also report, in parentheses, races reported in at
least two trials. We run LiteCollider configured with a target
maximum run-time overhead of rmax = 5% and a fixed wait
time of tdelay = 10 ms. The table omits 30 additional access
pairs (all in sunflow9 or xalan9) reported by LiteHB, which
are non-shortest, or dependent, races (Section 5.2).

LiteCollider detects all of the races detected by LiteHB,
with the caveat that LiteCollider detects one race in avrora9
in only one of the trials. LiteCollider’s per-trial coverage is
dependent on its (randomized) sampling policy, which could
benefit from further work. We have verified that the data
races reported by LiteCollider and LiteHB match those re-
ported by a publicly available implementation of FastTrack
in Jikes RVM from prior work [10].

Thus, despite using sampling-based collision analysis, Lite-
Collider provides essentially the same coverage as happens-
before analysis for the evaluated programs. Furthermore,
LiteCollider provides significantly lower, bounded overhead
and better scalability than LiteHB.

7.3 Detecting Potential Data Races Soundly
This section evaluates the performance and precision of Ca-
per, compared wih static analysis and dynamic alias analysis.

9

https://software.intel.com/en-us/intel-inspector-xe


7.3.1 Performance
Static analysis. Caper initially employs static analysis to
generate the set spPairs . Static analysis needs to execute
only once (or whenever the code changes) and does not
affect run time, so its performance is not crucial. Chord takes
at most 30 minutes to analyze any program.

Caper’s dynamic analysis. Figure 3 shows the overhead
added by Caper’s dynamic analysis over unmodified Jikes
RVM. Each bar is the mean of 25 trials, with 95% confidence
intervals centered at the mean. The first bar, DEA, shows
the overhead of reachability-based dynamic escape analysis
alone, which incurs 3% overhead on average. Caper (first
run) Caper’s dynamic analysis when it runs for the first time
for a program, i.e., when dpPairs = ∅ and deSites = ∅. Un-
der these conditions, the analysis finds many newly escaped
sites to add to deSites , incurring 27% average overhead.

In contrast, Caper (steady state), represents performance
during production, when prior testing (and production) runs
have added nearly all escaped sites to deSites . Under these
conditions, Caper’s dynamic analysis elides instrumentation
at sites in deSites , and it incurs little or no overhead from
instrumented sites being added to deSites . On average, Ca-
per (steady state) incurs 9% run-time overhead. These re-
sults suggest that Caper in steady state is efficient enough
for many production environments.

The results for xalan9 are unintuitive. We find that adding
any instrumentation to xalan9 improves performance relative
to the baseline. We are investigating this issue, which we
believe is due to Linux thread scheduling decisions.

Dynamic alias analysis. We find that our implementation
of dynamic alias analysis slows program execution by 13X
on average (results not shown). Admittedly, this implemen-
tation is not heavily optimized; we have implemented it
mainly for measuring its precision. But dynamic alias analy-
sis is inherently a heavyweight analysis because it must track
every accessed combination of thread, site, and variable, i.e.,
〈t, s, x〉, in order to detect future aliasing in the run.

7.3.2 Precision and Effectiveness
Precision. Table 3 shows potential races (unique, un-
ordered access pairs) reported by the static data race de-
tection analysis Chord, Caper, and dynamic alias analysis.
The table counts a potential race if it is reported at least
once across 10 trials. Although it is undecidable whether a
potential race is real or not, we assume that the vast major-
ity of potential races detected are false races; as evidence,
we note that predictive analyses have been able to expose
at most dozens, not thousands, of additional races beyond
those found by precise dynamic analysis [30, 38, 68].

The Static analysis columns show potential race pairs
identified by unsound and sound versions of Chord. For most
programs, the sound analysis reports tens of thousands of
potential races. In comparison, Chord’s unsound analysis,
which is less imprecise since it uses Chord’s may-alias lock-

Known Static analysis Caper Dyn. alias
races unsound sound analysis

hsqldb6 10 13,749 (5) 212,205 1,612 757
lusearch6 0 395 (0) 4,692 302 292
xalan6 17 70,263 (7) 83,488 1,241 581

avrora9 7 1,301 (5) 61,193 19,941 570
luindex9 2 6,015 (0) 10,257 192 193
lusearch9 0 441 (0) 7,303 34 39
sunflow9 2 24,616 (0) 28,587 200 1,086
xalan9 7 13,335 (0) 20,036 1,861 600

pjbb2000 7 12,708 (0) 29,604 11,243 1,679
pjbb2005 1 682 (0) 2,552 984 447

Table 3. Potential data races reported by two variants of static
analysis, Caper, and dynamic alias analysis. Known races are data
races reported by a precise detector on the large workload (see
Table 2). For unsound static analysis, the number in parenheses is
known data races missing from the set of reported potential races.

Static analysis Caper Dyn. alias analysis

hsqldb6 97% 44% 71%
lusearch6 73% 57% 52%
xalan6 74% 20% 8%

avrora9 99% 91% 54%
luindex9 33% 4% < 1%
lusearch9 84% < 1% < 1%
sunflow9 65% 14% 53%
xalan9 62% 28% < 1%

pjbb2000 72% 39% 35%
pjbb2005 97% 26% 8%

Table 4. Percentage of dynamic memory accesses that three sound
analyses identify as part of a potential data race.

set analysis [53], reports three times fewer potential races
on average. However, the unsound analysis is demonstrably
unsound: we find that it misses 17 of the 53 real data races
identified by LiteCollider and LiteHB. We have verified that
the potential races reported by sound static analysis, Caper,
and dynamic escape analysis include all known true races.

The last two columns of Table 3 show the precision of
Caper and dynamic alias analysis. Notably, Caper usually
provides substantially better precision (often 1–2 orders of
magnitude fewer potential races) than static analysis for all
but two programs (avrora9 and pjbb2000). For the most part,
dynamic alias analysis provides better precision than Ca-
per, which is unsurprising since dynamic alias analysis de-
tects aliasing and Caper detects reachability-based escaping.
However, in some cases, Caper actually reports fewer po-
tential races than dynamic alias analysis because Caper does
not count a site as escaped if it accesses a non-escaped ob-
ject, even if the object later becomes escaped. This effect
is particularly pronounced for sunflow9, whose main thread
initializes data before the data escapes and is accessed by
worker threads. Importantly, Caper’s approach is sufficient
both for detecting all true data races (Section 5.2) and for
clients that need sound knowledge of data races or shar-
ing [32, 42, 66] (Section 2.2).

10



Effectiveness. To estimate the effectiveness of Caper in
optimizing other dynamic analyses that must account for po-
tential data races [32, 42, 66], we compute how many dy-
namic (executed) accesses are identified as being part of a
potential data race. We expect this value to be proportional
to a client dynamic analysis’s run-time overhead. Table 4
shows the percentage of dynamic accesses that static analy-
sis, Caper, and dynamic alias analysis identify as being part
of a potential data race. Each percentage is computed as:∑

s|(∃s′|〈s,s′〉∈potentialRaces) freq(s)∑
s freq(s)

where potentialRaces is the set of potential races identified
by the analysis (e.g., dpPairs for Caper), and freq(s) is the
dynamic execution frequency of site s.

The table shows that static analysis’s high imprecision
leads to most executed accesses being potentially racy. Caper
improves precision substantially over static analysis for all
programs but avrora9. Although dynamic alias analysis usu-
ally identifies the most executed accesses as data race free,
Caper provides better precision for sunflow9 and hsqldb6,
due to analysis differences discussed above.

In summary, these results suggest that Caper is an efficient
and effective approach that, compared with alternate ap-
proaches, provides a reasonable tradeoff in balancing per-
formance and precision in detecting potential data races.

8. Related Work
Previous sections compared our LiteCollider analysis with
closely related work on sampling-based data race detec-
tors including DataCollider and RaceMob’s happens-before
analysis [29, 40] (Sections 2 and 7.2.1), and Caper with
static analysis and dynamic alias analysis. This section com-
pares LiteCollider and Caper with other existing work.

Dynamic escape analysis. Dynamic escape analysis (DEA)
identifies when thread-private data becomes shared (Sec-
tion 5.2). DEA can be implemented based on either first
shared access [35, 57, 62], reachability from shared con-
text [23], or variants on these approaches [44, 56].

First-shared-access-based analysis marks each field with
its original accessing thread [35, 56, 57, 62].12 These analy-
ses check at each access whether the current accessing thread
is the same as the original accessing thread, thereby de-
tecting the first shared access and marking the field shared.
Access-based analysis is unsound as a filter for more expen-
sive data race checks. Since no race detection metadata is
recorded for accesses to a field before its first shared access,
the data race detector cannot determine whether pre-sharing
accesses race with post-sharing accesses on this field.

Reachability-based DEA has the potential to be a sound
filter for data race detection, as we show in Section 5.2.

12 Nishiyama’s DEA marks an object escaped when a second thread ob-
tains a direct reference to the object, which is still unsound for race detec-
tion [56].)

However, existing data race detection techniques that make
use of reachability-based DEA may miss data races. The
TRaDe race detection analysis uses sound, reachability-
based DEA, but pairs it with an unsound optimization for
reprivatization of escaped objects [23]. The SOS race de-
tection analysis uses a less precise, but sound, reachability-
based DEA as part of a larger unsound optimization to de-
tect stationary objects [44]. Reachability-based DEA has
been deployed soundly in the implementation of thread-local
heaps [26] and software transactional memory [66].

Recent work introduces a field-precise dynamic analysis
to precisely track sharing across threads [37], but its over-
head is too high for production.

Optimizing data race detection. Wester et al. parallelize
happens-before and lockset analyses by using a speculation-
based technique called uniparallelism [73]. Low overhead
relies on having extra available cores for speculative exe-
cution. Veeraraghavan et al. employ uniparallelism to infer
data races, based on different outcomes under deterministic
synchronization schedules [70].

Several analyses detect conflicts between regions of code,
in order to detect the subset of true data races that may
violate region serializability in the current execution [10,
27, 46, 50, 67], trading coverage for performance. These
techniques either require custom hardware [46, 50, 67] or
incur substantial slowdowns [10, 27].

Custom hardware can accelerate data race detection by
adding on-chip memory for tracking vector clocks or lock-
sets, and extending cache coherence to identify shared ac-
cesses [24, 74, 76]. However, manufacturers have been re-
luctant to change already-complex memory and cache sub-
systems substantially to support race detection.

Increasing coverage. Predictive analysis and model check-
ing enhance race detection coverage without sacrificing pre-
cision [30, 38, 51, 68]. These analyses are inherently heavy-
weight and unsuited for production, but they cannot find all
real races due to the following limitations. Predictive analy-
sis finds data races in an execution other than the observed
execution [30, 38, 68], but coverage is still limited largely
by the observed execution. (Racageddon uses a combina-
tion of concolic testing and predictive analysis [30].) Model
checkers such as CHESS [51] can explore many thread inter-
leavings and/or inputs, but they suffer state-space explosion
and do not scale well to large programs.

Estimating harmfulness. Prior work tries to infer which
data races are most likely to be harmful (e.g., crash the pro-
gram, hurt performance, or corrupt data) [19, 20, 29, 34, 39,
54, 63]. Several approaches expose errors by exposing rare
but allowable behaviors, such as weak memory model be-
haviors, at racy accesses [19, 20, 34, 54, 63]. Prioritizing
races is complementary to our work, which seeks to expose
and detect data races. Researchers have argued persuasively
that essentially all data races are problematic because lan-

11



guages like Java and C/C++ provide virtually no guarantees
for them [2, 14, 15, 48] (Section 1).

Languages and types. Researchers have designed new lan-
guages or extended existing languages to ensure programs
are data race free by construction. Race-free languages re-
quire a new, constrained programming model [12, 36, 61].
Type-based approaches require programmer annotations to
assist type inference [1, 31]; writing annotations is tedious
and constraining. Boyapati et al. add ownership types to
an existing programming language, so that well-typed pro-
grams are guaranteed to be race free [18].

9. Conclusion
Data races are elusive, manifesting unexpectedly in produc-
tion runs. Sound and precise race detection is too expen-
sive for production runs, so we attack soundness and preci-
sion separately, introducing complementary approaches that
maintain a precise underapproximation and sound overap-
proximation of true data races—useful inputs both for de-
velopers and for other analyses and tools. LiteCollider is a
novel, precise race detector that adds bounded run-time over-
head and outperforms its closest competitor without sacrific-
ing coverage. Caper combines static and dynamic analyses
in a novel way to provide significantly better precision than
static analysis alone, without the high overhead of more-
precise dynamic analyses, without missing true data races
in observed executions. Together, these contributions and re-
sults demonstrate how to leverage production runs for data
race detection effectively, ultimately improving the reliabil-
ity and performance of production software systems.

Acknowledgments
We thank Baris Kasikci for detailed feedback on the text;
and Dan Grossman, Mayur Naik, and Aritra Sengupta for
discussions and advice.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe

Locking: Static Race Detection for Java. TOPLAS, 28(2):207–
255, 2006.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for
Rethinking Parallel Languages and Hardware. CACM, 53:90–
101, 2010.

[3] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer.
Detecting Data Races on Weak Memory Systems. In ISCA,
pages 234–243, 1991.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño Virtual Machine. IBM Systems Journal, 39(1):211–
238, 2000.

[5] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKin-

ley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The
Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. IBM Systems Journal, 44:399–
417, 2005.

[6] M. Arnold, M. Vechev, and E. Yahav. QVM: An Efficient
Runtime for Detecting Defects in Deployed Systems. In
OOPSLA, pages 143–162, 2008.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++. In OOPSLA, pages
81–96, 2009.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World. CACM, 53(2):66–75, 2010.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations. In PACT, pages 72–81, 2008.

[10] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Ef-
ficient, Software-Only Region Conflict Exceptions. In OOP-
SLA, pages 241–259, 2015.

[11] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA,
pages 169–190, 2006.

[12] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default. In
HotPar, pages 4–9, 2009.

[13] H.-J. Boehm. How to miscompile programs with “benign”
data races. In HotPar, 2011.

[14] H.-J. Boehm. Position paper: Nondeterminism is Unavoid-
able, but Data Races are Pure Evil. In RACES, pages 9–14,
2012.

[15] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. In PLDI, pages 68–78, 2008.

[16] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding
Out-of-Thin-Air Results. In MSPC, pages 7:1–7:6, 2014.

[17] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional Detection of Data Races. In PLDI, pages 255–
268, 2010.

[18] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks. In
OOPSLA, pages 211–230, 2002.

[19] J. Burnim, K. Sen, and C. Stergiou. Testing Concurrent
Programs on Relaxed Memory Models. In ISSTA, pages 122–
132, 2011.

[20] M. Cao, J. Roemer, A. Sengupta, and M. D. Bond. Prescient
Memory: Exposing Weak Memory Model Behavior by Look-
ing into the Future. In ISMM, pages 99–110, 2016.

[21] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory
Leak Detection Using Adaptive Statistical Profiling. In ASP-
LOS, pages 156–164, 2004.

[22] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and Precise Datarace Detection
for Multithreaded Object-Oriented Programs. In PLDI, pages
258–269, 2002.

12



[23] M. Christiaens and K. De Bosschere. TRaDe, A Topological
Approach to On-the-fly Race Detection in Java Programs. In
Symposium on Java Virtual Machine Research and Technol-
ogy Symposium, pages 15–15, 2001.

[24] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman,
and S. Qadeer. RADISH: Always-On Sound and Complete
Race Detection in Software and Hardware. In ISCA, pages
201–212, 2012.

[25] A. Dinning and E. Schonberg. Detecting Access Anomalies
in Programs with Critical Sections. In PADD, pages 85–96,
1991.

[26] D. Doligez and X. Leroy. A Concurrent, Generational Gar-
bage Collector for a Multithreaded Implementation of ML. In
POPL, pages 113–123, 1993.

[27] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J.
Boehm. IFRit: Interference-Free Regions for Dynamic Data-
Race Detection. In OOPSLA, pages 467–484, 2012.

[28] D. Engler and K. Ashcraft. RacerX: Effective, Static Detec-
tion of Race Conditions and Deadlocks. In SOSP, pages 237–
252, 2003.

[29] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective Data-Race Detection for the Kernel. In OSDI, pages
1–16, 2010.

[30] M. Eslamimehr and J. Palsberg. Race Directed Scheduling of
Concurrent Programs. In PPoPP, pages 301–314, 2014.

[31] C. Flanagan and S. N. Freund. Type Inference Against Races.
SCP, 64(1):140–165, 2007.

[32] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomic-
ity Checker for Multithreaded Programs. SCP, 71(2):89–109,
2008.

[33] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, pages 121–133, 2009.

[34] C. Flanagan and S. N. Freund. Adversarial Memory for
Detecting Destructive Races. In PLDI, pages 244–254, 2010.

[35] C. Flanagan and S. N. Freund. The RoadRunner Dynamic
Analysis Framework for Concurrent Programs. In PASTE,
pages 1–8, 2010.

[36] D. Grossman. Type-Safe Multithreading in Cyclone. In TLDI,
pages 13–25, 2003.

[37] J. Huang. Scalable Thread Sharing Analysis. In ICSE, pages
1097–1108, 2016.

[38] J. Huang, P. O. Meredith, and G. Rosu. Maximal Sound
Predictive Race Detection with Control Flow Abstraction. In
PLDI, pages 337–348, 2014.

[39] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data
Race Bugs: Telling the Difference with Portend. In ASPLOS,
pages 185–198, 2012.

[40] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowd-
sourced Data Race Detection. In SOSP, pages 406–422, 2013.

[41] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM, 21(7):558–565, 1978.

[42] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera:
Hybrid Program Analysis for Determinism. In PLDI, pages
463–474, 2012.

[43] N. G. Leveson and C. S. Turner. An Investigation of the
Therac-25 Accidents. IEEE Computer, 26(7):18–41, 1993.

[44] D. Li, W. Srisa-an, and M. B. Dwyer. SOS: Saving Time
in Dynamic Race Detection with Stationary Analysis. In
OOPSLA, pages 35–50, 2011.

[45] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes:
A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, pages 329–339, 2008.

[46] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm.
Conflict Exceptions: Simplifying Concurrent Language Se-
mantics with Precise Hardware Exceptions for Data-Races. In
ISCA, pages 210–221, 2010.

[47] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Cus-
tomized Program Analysis Tools with Dynamic Instrumenta-
tion. In PLDI, pages 190–200, 2005.

[48] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In POPL, pages 378–391, 2005.

[49] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
Effective Sampling for Lightweight Data-Race Detection. In
PLDI, pages 134–143, 2009.

[50] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory
Model for Concurrent Programming Languages. In PLDI,
pages 351–362, 2010.

[51] M. Musuvathi and S. Qadeer. Iterative Context Bounding
for Systematic Testing of Multithreaded Programs. In PLDI,
pages 446–455, 2007.

[52] M. Naik and A. Aiken. Conditional Must Not Aliasing for
Static Race Detection. In POPL, pages 327–338, 2007.

[53] M. Naik, A. Aiken, and J. Whaley. Effective Static Race
Detection for Java. In PLDI, pages 308–319, 2006.

[54] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically Classifying Benign and Harmful
Data Races Using Replay Analysis. In PLDI, pages 22–31,
2007.

[55] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In PLDI,
pages 89–100, 2007.

[56] H. Nishiyama. Detecting Data Races using Dynamic Escape
Analysis based on Read Barrier. In VMRT, pages 127–138,
2004.

[57] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race
Detection. In PPoPP, pages 167–178, 2003.

[58] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and
region serializability for all. In HotPar, 2013.

[59] PCWorld. Nasdaq’s facebook glitch came from race con-
ditions, 2012. http://www.pcworld.com/article/
255911/nasdaqs_facebook_glitch_came_from_race_
conditions.html.

[60] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
Context-Sensitive Correlation Analysis for Race Detection. In
PLDI, pages 320–331, 2006.

[61] M. C. Rinard and M. S. Lam. The Design, Implementation,
and Evaluation of Jade. TOPLAS, 20:483–545, 1998.

[62] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A Dynamic Data Race Detector for Multi-
Threaded Programs. In SOSP, pages 27–37, 1997.

[63] K. Sen. Race Directed Random Testing of Concurrent Pro-
grams. In PLDI, pages 11–21, 2008.

13

http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html
http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html
http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html


[64] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and
D. Vyukov. Dynamic Race Detection with LLVM Compiler.
pages 110–114, 2012.

[65] J. Ševčík and D. Aspinall. On Validity of Program Transfor-
mations in the Java Memory Model. In ECOOP, pages 27–51,
2008.

[66] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. En-
forcing Isolation and Ordering in STM. In PLDI, pages 78–88,
2007.

[67] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and
M. Musuvathi. Efficient Processor Support for DRFx, a Mem-
ory Model with Exceptions. In ASPLOS, pages 53–66, 2011.

[68] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan.
Sound Predictive Race Detection in Polynomial Time. In
POPL, pages 387–400, 2012.

[69] U.S.–Canada Power System Outage Task Force. Final Report
on the August 14th Blackout in the United States and Canada.
Technical report, Department of Energy, 2004.

[70] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy.
Detecting and Surviving Data Races using Complementary
Schedules. In SOSP, pages 369–384, 2011.

[71] C. von Praun and T. R. Gross. Object Race Detection. In
OOPSLA, pages 70–82, 2001.

[72] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race
Detection on Millions of Lines of Code. In ESEC/FSE, pages
205–214, 2007.

[73] B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and
S. Narayanasamy. Parallelizing Data Race Detection. In AS-
PLOS, pages 27–38, 2013.

[74] B. P. Wood, L. Ceze, and D. Grossman. Low-Level Detection
of Language-Level Data Races with LARD. In ASPLOS,
pages 671–686, 2014.

[75] X. Xie and J. Xue. Acculock: Accurate and Efficient Detec-
tion of Data Races. In CGO, pages 201–212, 2011.

[76] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-
Assisted Lockset-based Race Detection. In HPCA, pages
121–132, 2007.

14


	Introduction
	Background and Motivation
	Detecting Real Data Races Only
	Detecting All Data Races in Observed Executions

	Overview
	LiteCollider: Precise Data Race Detection
	How the Analysis Works
	Sampling Policy
	Optimizations

	Caper: Detecting All Potential Data Races
	Caper Overview
	Caper's Dynamic Analysis

	Implementation
	Detecting Data Races Precisely
	Detecting Potential Data Races Soundly

	Evaluation
	Methodology
	Detecting Data Races Precisely
	Performance
	Detecting Real Data Races

	Detecting Potential Data Races Soundly
	Performance
	Precision and Effectiveness


	Related Work
	Conclusion

