
Uniformization and density adaptation for point cloud data via graph Laplacian

Chuanjiang Luo Xiaoyin Ge Yusu Wang

The Ohio State University

(a) input (b) our result (c) our output density (d) ground truth density (e) PCD-Lloyd’s density
Figure 1: Given an arbitrarily distributed input point set sampled from a hidden surface, our method can produce an output point set with
both good local uniformity and a global density distribution precisely adapted to a prescribed target density function. (a) shows our input
point set. (b) shows our result adapted to a prescribed target density distribution as shown in (d). The density distribution obtained by our
output is shown in (c). (e) shows the density distribution obtained by a PCD-Lloyd’s relaxation method but with an input that is already very
close to the target distribution (see Section 3 for details). Both results are generated with a 5K sparse point set, and a 50K dense point set
(representing the hidden surface).

Abstract

Point clouds data is one of the most common types of input for ge-
ometric processing applications. In this paper we study the point
cloud density adaptation problem that underlies many preprocess-
ing tasks of points data. Specifically, given a (sparse) set of pointsQ
sampling an unknown surface and a target density function, the goal
is to adapt Q to match the target distribution. We propose a sim-
ple and robust framework that is effective at achieving both local
uniformity and precise global density distribution control. Our ap-
proach relies on the Gaussian-weighted graph Laplacian and works
purely in the points setting. While it is well-known that graph
Laplacian is related to mean-curvature flow and thus has denois-
ing ability, our algorithm uses certain information encoded in the
graph Laplacian that is orthogonal to the mean-curvature flow. Fur-
thermore, by leveraging the natural scale parameter contained in
the Gaussian kernel and combining it with a simulated annealing
idea, our algorithm moves points in a multi-scale manner. The re-
sulting algorithm does not require the input points to have a good
initial distribution (neither uniform nor close to the target density
distribution), which is required by most previous refinement-based
methods. We demonstrate the simplicity and effectiveness of our
algorithm with point clouds sampled from different underlying sur-
faces with various geometric and topological properties.

Keywords: point-based geometry, re-sampling, density control,
uniformity, graph Laplacian

1 Introduction

Point cloud data is one of the most common types of input data for
geometric processing applications. With the rapid advancement of
data acquisition technology, large amount of point cloud data are
now routinely generated to represent geometric objects. In recent
years, there has been significant interest on performing geometric
modeling and processing tasks directly from point-based represen-
tations. However, the raw point clouds generated by a 3D scanner
are usually noisy, over-dense and/or have non-uniform distribution.
Therefore, it is often desirable to simplify, smooth, or resample
these point clouds to improve their quality before feeding them to
subsequent geometric procession tasks (e.g., surface reconstruction,
point cloud based rendering and feature detection). Among these
aforementioned processes, point cloud uniformization and down-
sampling have been well studied in the past decades, e.g., [Lipman
et al. 2007; Balzer et al. 2009; Öztireli et al. 2010; Chen et al.
2013]. However, starting with a noisy and poorly distributed point
set, how to make its distribution conform to a user defined target
density distribution is still an open question.

In this paper, we study this density adaptation problem that under-
lies many pre-processing tasks of a point cloud data. Given a set of
pointsQ (usually sparse) and P (usually denser) both sampled from
an unknown surface M, and a target density function g : M → R,
the goal is to move Q to a new set of points Q̂ that matches the
target density function g onM , where the surfaceM is represented
by the denser point set P . We propose a simple and effective frame-
work for this problem. Our approach leverages the behavior of the
Gaussian-weighted graph Laplacian, and by combining it with a
simulated annealing idea, it works in a multi-scale manner. It does
not require the point set Q to be a subset of P , and the distribution
of Q can be very different from the target distribution g.

Related work. Given a set of points, projecting them onto an im-
plicitly defined surface (i.e., moving least square) is a widely used
approach to obtain point-set surface representations; e.g, [Levin
2004; Alexa et al. 2003; Amenta and Kil 2004]. Various further pro-
cessing to “consolidate” ([Alexa et al. 2003]) these points are pro-
posed, including the simplification [Pauly et al. 2002], anisotropic

smoothing [Lange and Polthier 2005] and geometry-aware resam-
pling [Öztireli et al. 2010; Chen et al. 2013]. Recently, [Lipman
et al. 2007] introduced the Locally Optimal Projection (LOP) oper-
ator that moves a set of pointsQ to obtain a nice distribution for the
hidden surface approximated by another set of input points P via
“repelling-force”. An improved weighted-LOP operator was pro-
posed in [Huang et al. 2009]. This, combined with a novel normal
estimation and propagation algorithm, gives rise to a robust frame-
work that can output a set of clean and evenly distributed points
associated with accurate normal information.

Except for [Lipman et al. 2007; Huang et al. 2009], which targets
an even (uniform and well-separated) distribution, the work afore-
mentioned typically focus on denoising, and there is no clear re-
quirement nor control over the density distributions of the output
points. In this paper, we consider an orthogonal problem that aims
at producing a set of points adapted to an arbitrarily user-defined
target distribution.

Another category of density adaption methods were developed with
the assumption that the underlying surface mesh is known [Auren-
hammer 1987; Du et al. 2002; Balzer et al. 2009; Li et al. 2010].
These approaches often leverage a Voronoi-like structure to help
enforce local uniformity, and then use a Lloyd’s relaxation type
process [Lloyd 1982] to iteratively adjust point locations till they
converge. In particular, adaptive sampling to match a target density
on surfaces can be achieved by using weighted Voronoi diagram or
constraint centroidal Voronoi tessellation (CCVT) [Aurenhammer
1987; Du et al. 2002; Balzer et al. 2009; Li et al. 2010]. While a
good local uniformity can be achieved, the adjustments of points
location in these methods tend to be local. Hence they often require
that the input point set has a good initial distribution already close
to the target density. Our method has no such requirement, and can
be applied for arbitrary point set input.

Our contributions We present a simple and effective density
adaptation algorithm for points data. The main contributions are
as follows. We believe that the simplicity and effectiveness of our
algorithm will help advocate its practical usage as a preprocessing
step to improve points quality.

1. Our algorithm can work in a pure points data setting and re-
quires only the construction of the (Gaussian-weighted) graph
Laplace operator, therefore is easy to implement. We make
the connection between our approach with the standard Ker-
nel Density Estimation (KDE), and this connection itself is of
independent interest.

2. By leveraging some properties of the graph Laplacian as well
as a simulated annealing idea, our algorithm can achieve both
good local uniformity / well-separateness among points, and
accurate output density control. It does not require input
points to be in a good initial distribution close to the target
distribution (see Figure 1).

3. Our algorithm is simple, effective, and robust to noise, small
holes as well as boundaries present in input points.

2 Density Adaptation Algorithm

Assume we have an underlying surface M embedded in R3. Our
input is (i) a set of n points P = {p1, . . . , pn} sampled, not nec-
essarily uniformly, from on and around M; (ii) another set of m
points Q, and (iii) a target density function g : M→ R+ (the form
that g is given is discussed in Section 2.3). The density adaptation
problem aims to move Q to a new set of points Q̂ that matches the
target density function g. If the target g is the uniform distribution,
we also call this process the uniformization of Q. The role of P is
to serve as a point-set approximation of the underlying surface M:

Its distribution can be very different from the target distribution.
Furthermore, Qmay or may not be a subset of P (it is also possible
that Q = P), and can be far sparser than P .

In Section 2.1 we describe how to move Q to obtain a uniformly
distributed set of points Q̂, to illustrate the main ideas and compo-
nents. We then explain in Section 2.3 how to achieve a non-uniform
distribution.

Gaussian-weighted graph Laplacian. Given a set of points
Q = {q1, . . . , qm} sampled from a surface (2-manifold) M, the
Gaussian-weighted (GW) graph Laplace operator LQt is a linear
operator such that given any function f : M → R with values
available at points in Q, we have:

LQt f(qi) =
1

mt2

m∑
j=1

e−
‖qi−qj‖

2

t (f(qi)− f(qj)). (1)

Although the above formulation involves all pairs of points qi and
qj , due to the exponential decaying effect of the Gaussian kernel,
we only need to consider those qj withinO(

√
t) distance to qi when

estimating Eqn (1). Hence in practice, the construction of the GW-
Laplace operator LQt requires only the proximity graph of Q.

Figure 2: Left: input 170K raw scan data; Middle: 10K downsam-
pled and then uniformized; Right: zoom-in details of boundaries.

There has been much theoretical study of this graph Laplacian and
its variants. In the limit as the number of points m tends to∞ and
the parameter t tends to 0 at appropriate rates, and if the points Q
are uniformly sampled from the manifold M, then LQt converges
to the Laplace-Beltrami (also called the manifold Laplacian) 4M

for M [Belkin 2003]. In the case when Q is not sampled from a
uniform distribution, but rather, from a distribution p : M → R+,
it turns out that [Hein et al. 2007], for any function f : M→ R:

LQt f(x)
π

4
p(x)4M +

π

2
〈∇p(x),∇f(x)〉 (2)

where∇ denotes the gradient operator.

2.1 Uniformization

Consider the coordinate functions X,Y, and Z, which returns the
x-, y-, and z-coordinate for a point x ∈ R3, respectively. For any
vector ~v, note that 〈~v,∇X(x)〉 = ~v.x (i.e, the x-component of
vector ~v). Similarly, 〈~v,∇Y(x)〉 = ~v.y, and 〈~v,∇Z(x)〉 = ~v.z.
Let p : M → R denote the density function that the current set of
points Q is sampled from. Now apply LQt to the three coordinate
functions

−→
P = [X Y Z]t. By Eqn (2) we then derive:

LQt
−→
P (x)

π

4
p(x)4M

−→
P (x) +

π

2
∇p(x). (3)

It is known that 4M
−→
P (x) specifies the so-called mean-curvature

flow: This vector lies in the normal direction ~n(x) of M at x, and
its magnitude is the mean-curvature of M at x. This motivates the
Laplacian-based iterative denoising approaches for surfaces [Des-
brun et al. 1999; Lange and Polthier 2005], by repeatedly projecting
a point in the direction of 4M

−→
P (x), and is also behind the mean-

shift types approaches for high-dimensional data analysis.

We instead focus on the second term ∇p(x), which has not been
used much so far in applications. Being the gradient of a function
on M,∇p(x) lies in the tangent plane TM(x) of M at x, and is thus
orthogonal to the first term. In other words, LQt

−→
P (x) can be writ-

ten as two orthogonal terms as in Eqn (3), with the first one being
the projection in the normal direction, and the second one being the
projection in the tangent space. If Q is uniformly distributed, then
the corresponding density function p is a constant function, imply-
ing ∇p(x) = 0 for all x ∈ M. Hence to uniformize Q, we aim to
nullify ∇p(x). Specifically, our algorithm, shown in Algorithm 1,
will repeatedly move points inQ in the direction of the tangent pro-
jection of LQt

−→
P (x) (which approximates∇p(x)) till this projection

becomes zero for all points in Q – at which moment, Q reaches a
uniform distribution. (Another interpretation of this tangent com-
ponent via kernel density estimator is given in the Appendix A.)

input : Two sets of points P and Q
output: New point set Q forming a uniform distribution of the

underlying surface M approximated by P
begin

for (t = 256t0; t ≥ 0.5t0; t = t/2)
for (k = 0; k < IterNum; k ++)

Step 1: Compute the tangent projection ~V‖(Q) of
LQt
−→
P (Q) for all points in Q ;
Step 2: Move Q in direction ~V‖(Q) by step-size µ(k) ;
Step 3: Project Q to the underlying surface approximated

by P ;
end for

end for
end

Algorithm 1: Uniformization algorithm

Before we explain the algorithm, we remark that as mentioned ear-
lier, the role of the point set P is to provide an approximation of
the underlying surface. In our algorithm, we only use P to esti-
mate tangent spaces. In particular, given a point q, we approximate
the tangent plane TM (q) at q as follows: let p ∈ P be the nearest
neighbor of q in P . TM (q) is taken as the best plane fitting the
k-nearest neighbors of p in P in the least square sense. The default
value of k is 15. We also note that there is a parameter t in the Gaus-
sian kernel of LQt : Intuitively, only points within a region of radius
Θ(
√
t) around q will influence LQt

−→
P (q). The parameter t provides

a natural way to decide the scale-level, and as we will see, other pa-
rameters in our algorithm often depend on this “neighborhood size”√
t.

We now describe the main steps of Algorithm 1.

(Step 1): We compute LQt
−→
P (q) at each point q ∈ Q. Let ~V‖(q)

denote the projection of LQt
−→
P (q) on the estimated tangent plane

TM(q). In Algorithm 1, we use LQt
−→
P (Q) (resp. ~V‖(Q)) to repre-

sent the set of LQt
−→
P (q) (resp. the set of ~V‖(q)) for all q ∈ Q.

(Step 2): To nullify the tangent component, we move q in the direc-
tion of ~V‖(q). Intuitively, ~V‖(q) approximates the gradient ∇p(q)
of the current density function p, and is pointing from a denser to a
sparser region of Q. By moving points in this direction, we spread
them away from denser regions. The displacement vector ~V‖(q) is

zero for all q ∈ Q only when Q achieves a uniform distribution.

Specifically, we move q to q̃ = q + µ(k)~V‖(q), where µ(k) is a
step-size used in the k-th iteration of the inner for-loop. We now
discuss how to set this step-size. In a sense, we are performing a
gradient-descent type of approach to minimize the difference be-
tween the current density and the target density. We use the follow-
ing non-adaptive annealing strategy to balance the simplicity of our
algorithm and to avoid getting stuck in local minima [Robbins and
Monro 1951]. We set µ(k) = µ(0)/(1 + b k

T
c), where the initial

step size µ(0) is
√
t/2 where t is the parameter used in the graph

Laplacian LQt . The step size is constant for the first T iterations,
allowing points to find the general location in that scale, before an-
nealing (decreasing) it at a slow pace. T is a parameter that needs
to be empirically set. In all our experiments, we set T = 2, which
provides a good tradeoff for both speed and accuracy.

(Step 3): After q is moved to q̃ = q + µ(k)~V‖(q), we need to
project q̃ back to the underlying surface. This is achieved by sim-
ply projecting q̃ to the estimated tangent space TM(q). This step
contains a least-square fitting (to approximate the tangent plane)
and a projection, which makes our uniformization algorithm robust
w.r.t. reasonable amount of noise. See Figure 3 for an example.

(a) noisy input (b) our output (c) target density (d) our density

Figure 3: (a): Input are 5K points Q over 50K dense points P :
uniform noise of magnitude 1.5% of the diameter is added at each
point. (b): Output points adapted to the target density function
shown in (c). Note that these points are also smoothed by our al-
gorithm. (d): Density map of our output points. The correlation of
output density and target density is 0.99 and L2-error is 0.015.

Choice of t. As discussed earlier, the parameter t involved in
LQt
−→
P (q) roughly specifies the neighborhood size (scale) we con-

sider around each point q. At the beginning when the distribution
of Q is still far from the target distribution, we use a large t value
so that the displacement of each q is guided by the global distribu-
tion of points in Q at this point. As the distribution of Q becomes
closer to the target, we use smaller and smaller t to perform lo-
cal refinement. Specifically, we adjust t as follows. We start with
t = 256t0, where t0 is the square of the average distance between
a point to its nearest neighbor in the input point set Q. We perform
IterNum = 24 iterations of the non-adaptive annealing step (inner
for-loop in Algorithm 1). We then reduce t to its half and repeat
until t = 0.5t0. We observe that this strategy, combined with the
simple non-adaptive annealing approach described above, is both
efficient and effective at recovering from local minima even when
the initial distribution is far from the target. An example is shown
in Figure 1 and will be explained in more detail in Section 3.

Well-separateness. Interestingly, it turns out that by reducing
t to be smaller than t0, we can obtain well-separateness among
points where points are even spaced with no points get too close.
Intuitively, when t is smaller than t0, only the immediate neighbors
of q will contribute when computing LQt

−→
P (q) (analogous to one-

ring neighbors of q in a mesh); and these points need to form a
somewhat regular pattern around q for ~V‖(q) to be zero.

q

q1

q2

q3

q4

q5

v2

v1v5

v4
v3

TM (q)See the right figure for an illustra-
tion where all points are already
projected onto the tangent plane
TM (q): For small t, only the im-
mediate neighbors q1, . . . , q5 of q affect LQt

−→
P (q). By Eqn (1),

each qi will contribute a vector vi which is some scaling of q − qi,
and ~V‖(q) ≈

∑5
i=1 vi. Intuitively, an evenly distributedQ tends to

form to ensure that this sum is zero for all points q. See Figure 4 for
the effect of reducing t. In particular, note that we already achieve a
good uniform distribution when t = t0 (as reflected by the low L2-
error between the output density and uniform distribution). How-
ever, by further reducing t to be 0.5t0, while L2 error of the output
density distribution changes little, we can see in Figure 4 (b) and
(c) that the points become more evenly spaced (well-separated).

Initial distribution. The two control variables, t in the graph
Laplace operator and the step size µ(k) differentiate our algorithm
from Lloyd’s relaxation type local refinement methods (description
of some variants can be found in the Supplement). Both t and µ(k)
play a role analogous to the “temperature” in the simulated anneal-
ing method. At the beginning we will use a higher temperature
which allows us to use more global information and move faster.
Gradually the temperature decreases, allowing us to use more local
information and move slower for local refinement. This is the rea-
son our method can achieve an accurate target density even when
the input points distribution is far from the target. See Figure 1 and
Section 3 for examples and for comparison.

(a) L2 error v.s. choice of t (b) t = t0 (c) t = 0.5t0

Figure 4: (a) plots the L2-error of the density of intermediate point
set Q as the parameter t decreases in Algorithm 1. The points ob-
tained when t = t0 and t = 0.5t0 are shown in (b) and (c): note
that at t = t0, while the distribution is already close to uniform
(small L2-error), points are not yet well-separated.

2.2 Boundaries and Holes

It turns out that LQt behaves in a fundamentally different manner
for points around boundaries of a surface M [Belkin et al. 2012].
Specifically, in contrast to Eqn (2), for a point x ∈ ∂M , we now
have:

LQt f(x)
1√
t
· π

1/2

2
p(x)∂~nf(x) + o(

1√
t
), (4)

where ~n is the outward normal at x: namely, ~n lies in the tangent
plane TM(x) at x and is normal to the boundary curve ∂M. Terms
from Eqn (2) are now hidden in the second term of Eqn (4). If we
plug in the coordinate functions

−→
P as f , the first term in Eqn (4)

becomes π1/2

2
√
t
p(x)~n, which lies in the tangent plane TM(x). In

other words, for any point p ∈ Q, the tangent projection ~V‖(q) of
LQt
−→
P (q) is now dominated by this first term (due to its 1√

t
scal-

ing factor) instead of by the gradient of the current density function
∇p. Our algorithm, by moving points in the direction of ~V‖(q), ex-
tends points across the boundary in the tangent plane in the outward
normal direction ~n. Such extension can close small holes (missing
data): see Figure 5 (b) where the small regions of missing data

around the center of the front cover of the car are now filled. See
also an example in the Supplement.

If the boundary is large (and thus may be real boundary), then
such extending effect is no longer desirable. One may think that
a straightforward way to handle this is as follows: For a point q, if
its current position is far from its nearest neighbor p̃ in the dense
point P , say, d = ‖q − p̃‖ ≥ α for a threshold α, then we con-
sider it to be too far from the boundary and can just project it back
to p̃ (instead of projecting it onto the tangent plane at p̃) . How-
ever, this approach has two shortcomings: (1) while holes of size
O(α) can be filled, points around boundaries will also be extended
by about O(α) distance (since points within O(α) distance to the
true boundary will not be projected back); and (2) there tends to be
accumulation of points along the boundaries (due to the projection
of points back to their nearest neighbors in P), thus points distri-
bution around boundaries are not uniform. We need a strategy that
can seal small holes while not extending the real boundaries.

To this end, we take the following multi-scale strategy: Instead of
using a fixed threshold α to decide whether to project a point back
to the boundary or not, we choose a multi-scale threshold α = 3

√
t

depending on the current scale. That is, we project a point q back to
its nearest neighbor p̃ ∈ P only if d = ‖q−p̃‖ ≥ 3

√
t. Since at any

time, there are points within O(
√
t)-distance outside the boundary,

the true boundary is now seen as interior at the current scale t. Fur-
thermore, since the algorithm projects outside points back to the
boundary gradually as the scale t decreases, there is little accumula-
tion formed at the boundaries because the uniformization algorithm
(Steps 1–3) can now spread out those points projected back suffi-
ciently fast. Hence our algorithm achieves good distribution even
around the boundaries: See Figure 5.

(a) input point set (b) our result, large β

(c) our result, small β (d) PCD-Lloyd’s result

Figure 5: (a) Input points. (b) and (c) show our outputs, with large
β small holes are filled while large boundaries are preserved in
(b); while with small β the headlights are untouched in (c). (d)
shows the output of the PCD-Lloyds method (described in Section
4) which achieves a less uniform distribution. Furthermore, there
is no flexibility in controlling whether a hole can be filled or not.

One last issue is that we do not wish to, as t (thus the scale) de-
creases, project a point from an already filled hole back to the
boundary: this could happen when the radius of an already filled
hole is bigger than 3

√
t as t becomes small. This can be addressed

by leveraging the behavior of graph Laplacian around boundaries.
In particular, according to Eqn (4), LQt

−→
P (q) has a significantly

larger magnitude at the boundary than in the interior due to the fac-
tor 1√

t
. In comparison, a point in the middle of an already filled

hole is now an interior point, and thus has a much lower magnitude
of LQt

−→
P (q) (as its scaling factor is only O(1), see Eqn (2)). So in-

stead of using only the condition d > 3
√
t, we now project a point q

back to p̃ if (d > 3
√
t) and (|LQt

−→
P (q)| > λ), where λ is twice the

median magnitude of all LQt
−→
P (x). By projecting back only points

with large magnitude of LQt
−→
P (q), points from filled holes will not

be projected back and a sealed hole will not be broken again as the
scale t decreases. Finally, to have a more direct control on the size
of the holes sealed, we use a parameter β and project a point q back
only if

(d > 3
√
t) and [(|LQt f(x)| > λ) or (d > β)].

This will leave holes with radius larger than β un-filled. In Figure
5 (b) and (c), by adjusting the only parameter β, we can choose
whether to fill the holes for the headlights of the car or not. From
Figure 5, we also note that our algorithm achieves a much better
uniform distribution than the Lloyd’s method (see e.g, the front and
the side of the car). Furthermore, it is important to note that the
Lloyds-type or iterative CCVT-type methods do not provide control
on what can be filled, while our algorithm can provide this flexibil-
ity.

We remark that an alternative possible approach for this task could
be to first perform certain region growing procedure on the point set
P to fill the hole. The graph Laplace LPt w.r.t. the dense point set P
(instead of Q) can be potentially used to perform region growing.
However, this approach, if it works, will be computationally more
expensive, as it operates on the dense point set P , while our current
approach only operates on the sparse set Q.

2.3 Non-uniform density adaptation

(a) target density (b) our result density (c) our result point set

Figure 6: (a) Target density and (b) our output density function as
achieved by the 10K output points shown in (c).

The algorithm to obtain a non-uniform target distribution g : M→
R for points in Q follows the same framework as the case of uni-
formization. The only modification is that, at each iteration, we
now wish to nullify ∇p(q) − ∇g(q) for each point q. Hence in-
stead of moving a point q in the direction of ~V‖(q), we now move
it in the direction of 2

π
~V‖(q)−∇g(q) where 2

π
~V‖(q) approximates

∇p(q). Assume that we can obtain g(x) for any query point x. To
estimate ∇g(q) at each q ∈ Q, we locally fit a quadratic function
in the tangent plane TM(q) using points within

√
t distance to q.

The target density function g : M→ R needs to satisfy the property
that

∫
M
g(x)dx = 1. However, very often, given that M is not

known, we are given an empirical target density function g̃ : M→
R which is a scaled version of g; that is, g̃(x) = c · g(x) for some
constant c. (For example, g̃(x) = x.x2 + x.y2 + x.z2.) In such a
case, we need to estimate the constant c = g̃/g.

The integral
∫
M
g(x)dx can be approximated using points in Q by∑m

i=1 g(qi)Ai, where Ai is the area of the underlying surface M
represented by each sample point qi. Following the integral esti-
mation in [Luo et al. 2009], we estimate Ai as follows: project the
local neighbors Qi ⊂ Q (points from Q within

√
t distance from

qi) onto the tangent plane TM(q). Compute the Voronoi diagram
of the projection of these local neighbors Qi in TM(q) and take the

area of the Voronoi region associated to qi as Ai. This Voronoi dia-
gram is only computed locally for a small number of points, and is
fast in practice. Now we have:

m∑
i=1

g(qi)Ai = 1⇒ 1

c

m∑
i=1

g̃(qi)Ai = 1⇒ c =

m∑
i=1

g̃(qi)Ai.

Note that the estimation of c needs to be done only once. Some
examples of obtaining non-uniform distribution are in Figure 1, 3,
6, 9, and Table 1.

3 Experiments

(a) (b) (c) (d)

Figure 7: (a) Input 5K points Q. (b) Our output when P = Q. (c)
shows the output of [Huang et al. 2009] when P has 10K and (d)
shows its output when P has 40K points. (The output of [Huang et
al.] when P = Q is almost identical to input points.)

Several examples of obtaining uniform and non-uniform target dis-
tributions can be found in Figure 1, 2, 3, 5, and 6. More results and
applications will be shown in this section.

Comparison with weighted LOP. For the uniformization case, we
compare our results with the weighted LOP operator approach in
[Huang et al. 2009]. We note that a main advantage of our algo-
rithm1 is that we obtain good results even when the point set P (to
approximation the hidden surface) is rather sparse, including when
P = Q; see Figure 7. The algorithm of [Huang et al. 2009] typi-
cally requires that the ratio of |P ||Q| is large (say ≥ 10). The Lloyd’s
relaxation style methods (to be described shortly) also requires the
presence of a dense point set P and perform slightly worse than the
weighted LOP operator, so we omit the results due to limited space.

Comparison with weighted PCD-Lloyds and PCD-CCVT. Fur-
thermore, note that the weighted LOP operator approach cannot
adapt Q to an arbitrary density distribution. Hence for the case
of non-uniform target distribution, we compare our results with
both a weighted Lloyd’s relaxation method (weighted Voronoi di-
agram) adapted for handling point clouds data, and a point-clouds
(PCD) version of the Constrained Centroidal Voronoi Tessellation
(CCVT). Both of weighted Lloyd’s relaxation and CCVT methods
have traditionally been developed for meshed surfaces. Here, we
adapt them to PCD-versions to handle point clouds data. Lloyd’s
relaxation is a Voronoi diagram based relaxation method, and can
be easily adapted to handle points data by approximating Voronoi
cells using points from the dense set P . To handle non-uniform
target distribution, we assign input points with weights and use
the power diagram to replace the Voronoi diagram [Aurenham-
mer 1987]. We refer to this method as the weighted PCD-Lloyd’s
method (or PCD-Lloyd for short); see the Supplement for the de-
tailed description. Constrained Centroidal Voronoi Tessellation
(CCVT) can be used to produce a sample set with user defined
density distribution [Du et al. 2002]. Popular algorithms to obtain
CCVT are also relaxation-based processes to iteratively adjust point
locations. Here we use a simple PCD adaptation of such iterative

1An important part of [Huang et al. 2009] is robust normal estimation
and propagation. Here we only focus on its uniformization effect.

Size of Q
data |P | = 25K |P | = 50K

Our Alg. Init. Input power diagram CCVT Our Alg. Init. Input power diagram CCVT Output

5K

fertility 0.998 / 0.023 0.881 / 0.149 0.888 / 0.145 0.881 / 0.150 0.998 / 0.020 0.908 / 0.167 0.929 / 0.147 0.926 / 0.148
cow 0.998 / 0.023 0.887 / 0.135 0.895 / 0.130 0.893 / 0.132 0.998 / 0.022 0.920 / 0.113 0.934 / 0.104 0.923 / 0.105
elephant 0.988 / 0.058 0.932 / 0.115 0.923 / 0.123 0.921 / 0.125 0.990 / 0.044 0.954 / 0.095 0.954 / 0.095 0.944 / 0.105
kitten 0.999 / 0.016 0.921 / 0.132 0.930 / 0.124 0.927 / 0.126 0.999 / 0.016 0.951 / 0.102 0.963 / 0.089 0.962 / 0.090
venus 0.999 / 0.013 0.885 / 0.143 0.896 / 0.137 0.895 / 0.138 0.999 / 0.014 0.920 / 0.118 0.933 / 0.109 0.932 / 0.110

10K

fertility 0.998 / 0.025 0.751 / 0.219 0.759 / 0.216 0.752 / 0.220 0.998 / 0.024 0.710 / 0.214 0.768 / 0.188 0.745 / 0.189
cow 0.998 / 0.024 0.850 / 0.161 0.855 / 0.160 0.852 / 0.162 0.998 / 0.024 0.866 / 0.147 0.881 / 0.139 0.880 / 0.140
elephant 0.988 / 0.076 0.882 / 0.151 0.876 / 0.155 0.874 / 0.156 0.990 / 0.065 0.922 / 0.122 0.914 / 0.129 0.912 / 0.130
kitten 0.999 / 0.017 0.890 / 0.152 0.901 / 0.145 0.898 / 0.147 0.999 / 0.017 0.922 / 0.128 0.934 / 0.119 0.932 / 0.121
venus 0.999 / 0.013 0.826 / 0.172 0.836 / 0.167 0.833 / 0.169 0.999 / 0.013 0.880 / 0.143 0.891 / 0.137 0.889 / 0.138

15K

fertility 0.997 / 0.028 0.647 / 0.297 0.656 / 0.295 0.651 / 0.298 0.998 / 0.025 0.796 / 0.330 0.805 / 0.327 0.803 / 0.328
cow 0.998 / 0.024 0.712 / 0.218 0.725 / 0.214 0.722 / 0.215 0.998 / 0.022 0.845 / 0.161 0.858 / 0.155 0.856 / 0.156
elephant 0.983 / 0.093 0.820 / 0.185 0.820 / 0.186 0.817 / 0.187 0.987 / 0.081 0.911 / 0.131 0.904 / 0.136 0.903 / 0.137
kitten 0.999 / 0.018 0.783 / 0.206 0.796 / 0.202 0.792 / 0.203 0.999 / 0.016 0.896 / 0.148 0.908 / 0.140 0.906 / 0.141
venus 0.999 / 0.013 0.653 / 0.240 0.663 / 0.237 0.659 / 0.238 0.999 / 0.013 0.845 / 0.163 0.855 / 0.159 0.853 / 0.160

Table 1: Correlation/L2 error comparisons. The “Init. Input” is the input fed to the PCD-Lloyds and PCD-CCVT methods, and it is already
close to target distribution; while the input to our algorithm is rather far from target distribution, typically has a correlation less than 0.1.

CCVT framework as described in the Supplement, and we refer to
it as the PCD-CCVT method.

Both the Lloyd’s and relaxation-based CCVT approaches are lo-
cal methods, where the Voronoi centers/generators are repeatedly
updated locally. Hence, while being very simple and effective at
local refinement, they are somewhat deficient at making large ad-
justments to point locations, tend to get stuck in local minima, and
require a good input distribution already close to the target distri-
bution. To improve their performance, we first obtain an adaptive
subsample from the dense points P using a strategy similar to the
importance sampling approaches (adaptive dart throwing) used in
blue-noise sampling, to generate a set of points Q that is already
close to the target distribution: we feed this Q to both the weighted
PCD-Lloyd’s and the PCD-CCVT methods.

In Table 1, we compare the accuracy of the output density distribu-
tion of our method with both PCD-Lloyd’s and PCD-CCVT meth-
ods, where we measure the quality of the output points by (i) the
statistical correlation of the density function g̃ of output points with
the target density g, and (ii) the L2-error, which is simply ‖g−g̃‖

‖g‖ by
treating g and g̃ as two m-vectors with m = |Q|. Our algorithm is
able to achieve much more accurate target distribution, especially
when the ratio between |P ||Q| gets smaller. Typically, the improve-
ment of both PCD-Lloyd’s and PCD-CCVT methods over its input
distribution is not significant, although it does help to improve lo-
cal regularity / well-separateness of points (which is not reflected in
the L2-error and the correlation). If we feed the same input (as the
input to our algorithm) to both methods, their outputs are far from
target distributions, and thus these results are not reported.

Another example is shown in Figure 1, which is a hard case since
points have to move through the many tunnels (e.g, arms and the
connection between heads) to adjust their distribution. The distri-
bution of input points fed to the weighted PCD-Lloyd’s method is
already close to the target distribution, with a correlation of 0.91
with the target distribution. However, the weighted PCD-Lloyd’s
method fails to improve the point distribution much, where its out-
put distribution, shown in (e), has a correlation of 0.93 with the tar-
get distribution. Our algorithm, on the other hand, takes in as input
a quite different distribution (shown in (a)) far from target distri-
bution with a correlation -0.04 with the target distribution, yet still
achieving 0.99 correlation in the output distribution (shown in (d)).
(If we feed our input to the weighted PCD-Lloyd’s method directly,
its output has only a correlation of 0.22 with the target distribution.)

We remark however, that the PCD-Lloyd’s and PCD-CCVT meth-
ods typically converge in fewer iterations than our algorithm. For
example, the PCD-Lloyd’s typically converges within 30 itera-

tions for most test data in Table 1, while our algorithm will run
24 × 10 = 240 (as shown in Algorithm 1) iterations. Our algo-
rithm requires more iterations both because it takes a multi-scale
approach to avoid getting stuck in local minimal and because it
achieves a much more accurate target distribution.

sample DDA
RAPS,

Anisotropy
Zoom-in

view

 0
 1
 2
 3
 4

 0 0.018 0.036 0.054 0.072
|d|

-40
-30
-20
-10

 0

 0 0.018 0.036 0.054 0.072
|d|

 0
 1
 2
 3
 4

 0 0.018 0.036 0.054 0.072
|d|

-40
-30
-20
-10

 0

 0 0.018 0.036 0.054 0.072
|d|

Figure 8: The DDA power-spectrum, radial-average power spec-
trum (RAPS) and the anisotropy plot. Each output has 40K points,
and the dense point cloud P has 100K points. Reducing the number
of points in Q maintains similar DDA power spectrum, although
small features in the model start to be smoothed. The RAPS and
anisotropy plot are widely used in evaluating point distributions,
especially in the context of blue noise sampling. Though we do not
claim the blue noise property, we still include them here for com-
pletion.

Well-separateness. In Figure 8, we show the evenness of our
output points using the so-called DDA (Differential Domain Anal-
ysis) power-spectrum [Wei and Wang 2011]. Intuitively, the DDA
spectrum shows the kernel density estimates (smooth histogram) of
pairwise distances between sample points. White means high value
and black means low value. A white ring of certain radius imply
that many pairs of sample points share this pairwise distance value,
say r. The black disk in the center implies the absence of the sample
pairwise distances which smaller than r. We note that the power-
spectrum of our output shows a clear white ring with dark interior,
indicating the evenness of the points we produce.

Geometry-aware sampling. In Figure 9, we show an example
where our density adaption algorithm is used to obtain a geometry-
aware sub-sampling of input points. In particular, our target density
function g here is a smoothed version of the mean-curvature. To
obtain the g(x) value at a point q, we simply take the normal pro-
jection of the graph Laplacian LQt

−→
P (q): recall Eqn (3), this normal

projection (the first term in Eqn (3)) is proportional to the mean-
curvature flow. To reduce the variation of the density function, we
average this approximated mean-curvature value at q with those of
its neighbors to smooth the density function. It is interesting to note
is that the geometry-aware sub-sampling can be achieved using the
same graph Laplacian framework as used for density adaption.

(a) target density (b) our result density (c) our result point set

Figure 9: (a) (smoothed) mean curvature as target density, (b)
our output density map, and (c) the output samples. Here |P | =
50k, |Q| = 5k. The correlation between the target and our output
distribution is 0.9875, and L2-error of our output distribution is
0.0271.

Time complexity. Assuming that a k-nearest neighbor search in n
points takesO(logn) time, our algorithm runs inO(I|Q|(log |P |+
log |Q|)), where I is the number of iterations of the inner for-loop
in Algorithm 1. Our current implementation, over |P | = 25K
points, takes 31, 81 and 169 seconds for |Q| = 5K, 10K, and 15K,
respectively. Over |P | = 50K, it takes 33, 84, and 172 seconds for
|Q| = 5K, 10K, and 15K, respectively. Its dependency on P is only
log |P |. Hence the time increase is small when P gets larger.

Limitations. Given the averaging nature of the graph Laplacian,
our algorithm has limitations in reconstructing density functions
that have sharp changes. It will also be interesting to see how to
preserve sharp features of the hidden surface as we adjust the point
locations during the density adaptation algorithm. To this end, the
framework of bilateral blue noise sampling in [Chen et al. 2013]
could be useful, which we aim to investigate.

References

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2003. Computing and rendering point set
surfaces. IEEE Trans. Vis. Comput. Graphics 9, 1, 3–15.

AMENTA, N., AND KIL, Y. J. 2004. Defining point-set surfaces.
ACM Trans. Graph. 23, 3, 264–270.

AURENHAMMER, F. 1987. Power diagrams: Properties, algorithms
and applications. SIAM J. Comput. 16, 1 (Feb.), 78–96.

BALZER, M., SCHLÖMER, T., AND DEUSSEN, O. 2009.
Capacity-constrained point distributions: a variant of Lloyd’s
method. SIGGRAPH ’09, ACM Trans. Graph. 28, 3, 86:1–86:8.

BELKIN, M., QUE, Q., WANG, Y., AND ZHOU, X. 2012. Toward
understanding complex data: graph laplacians on manifolds with
singularities and boundaries. In Conf. Learning Theory (COLT),
36.1–36.26. JMLR – Proceedings Track 23.

BELKIN, M. 2003. Problems of Learning on Manifolds. PhD
thesis, The University of Chicago.

BOTEV, Z. I., GROTOWSKI, J. F., AND KROESE, D. P. 2010. Ker-
nel density estimation via diffusion. Ann. Statist. 38, 5, 2916–
2957.

CHEN, J., GE, X., WEI, L.-Y., WANG, B., WANG, Y., WANG,

H., FEI, Y., QIAN, K.-L., YONG, J.-H., AND WANG, W. 2013.
Bilateral blue noise sampling. ACM Trans. Graph. 32, 6 (Nov.),
216:1–216:11.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. In 26th Ann. Conf. Computer Graphics and In-
teractive Techniques, SIGGRAPH ’99, 317–324.

DU, Q., GUNZBURGER, M. D., AND JU, L. 2002. Constrained
centroidal voronoi tessellations for surfaces. SIAM J. Sci. Com-
put. 24, 5 (May), 1488–1506.

HEIN, M., AUDIBERT, J.-Y., AND LUXBURG, U. V. 2007.
Graph laplacians and their convergence on random neighbor-
hood graphs. J. Mach. Learn. Res. (JMLR) 8, 1325–1368.

HUANG, H., LI, D., ZHANG, H., ASCHER, U., AND COHEN-OR,
D. 2009. Consolidation of unorganized point clouds for surface
reconstruction. ACM Trans. Graph. 28, 5, 176:1–176:7.

LANGE, C., AND POLTHIER, K. 2005. Anisotropic smoothing of
point sets. Computer Aided Geometric Design 22, 7, 680 – 692.

LEVIN, D. 2004. Mesh-independent surface interpolation. In
Geometric Modeling for Scientific Visualization, G. Brunnett,
B. Hamann, H. Mller, and L. Linsen, Eds., Mathematics and Vi-
sualization. Springer Berlin Heidelberg, 37–49.

LI, H., WEI, L.-Y., SANDER, P. V., AND FU, C.-W. 2010.
Anisotropic blue noise sampling. SIGGRAPH Asia ’10, ACM
Trans. Graph. 29, 6, 167:1–167:12.

LIPMAN, Y., COHEN-OR, D., LEVIN, D., AND TAL-EZER, H.
2007. Parameterization-free projection for geometry reconstruc-
tion. ACM Trans. Graph. 26, 3 (July).

LIU, Y., WANG, W., LÉVY, B., SUN, F., YAN, D.-M., LU,
L., AND YANG, C. 2009. On centroidal voronoi tessella-
tion—energy smoothness and fast computation. ACM
Trans. Graph. 28, 4 (Sept.), 101:1–101:17.

LLOYD, S. P. 1982. Least square quantization in pcm. IEEE
Transactions on Information Theory 28, 2, 129–137.

LUO, C., SUN, J., AND WANG, Y. 2009. Integral estimation from
point cloud in d-dimensional space: A geometric view. In Proc.
25th ACM Sympos. on Comput. Geom., 116–124.

MARRON, J. S., AND WAND, M. P. 1992. Exact mean integrated
squared error. The Annals of Statistics 20, 2, pp. 712–736.

ÖZTIRELI, A. C., ALEXA, M., AND GROSS, M. 2010. Spectral
sampling of manifolds. ACM Trans. Graph. 29, 6, 168:1–168:8.

PAULY, M., GROSS, M., AND KOBBELT, L. P. 2002. Efficient
simplification of point-sampled surfaces. In Proceedings of the
conference on Visualization ’02, VIS ’02, 163–170.

ROBBINS, H., AND MONRO, S. 1951. A stochastic approximation
method. Annals of Mathematical Statistics 22, 400–407.

WEI, L.-Y., AND WANG, R. 2011. Differential domain analy-
sis for non-uniform sampling. ACM Trans. Graph. 30, 4, 50:1–
50:10.

A Connection to Kernel Density Estimation

It turns out that there is an alternative way to interpret the tangent
projection ~V‖(q) of the graph Laplacian LQt

−→
P (q) performed on

the coordinates functions
−→
P = [X,Y,Z] via the standard kernel

density estimator (KDE). Specifically, suppose current points Q =
{q1, . . . , qm} are i.i.d. sampled with respect to the density function
p : M → R. Now consider the following popular Gaussian kernel
density estimator [Marron and Wand 1992] that gives rise to an

empirical density function g̃ : R3 → R (to approximate p) with
support being the ambient space (which is R3 in our case): at any
x ∈ R3, we have 2:

g̃(x) =
1

m

m∑
i=1

Kt(x, qi), where Kt(x, qi) =
1

πt
e−
‖x−qi‖

2

t .

The ambient gradient of this empirical density function (w.r.t. the
coordinates of the ambient space R3) is:

∇g̃(x) =
2

mt

n∑
i=1

(qi − x)Kt(x, qi) =

2

mt
· 1

πt2

m∑
i=1

[e−
‖x−pi‖

2

t (qi − x)] =
2

π
LQt
−→
P (x).

(5)

Now if we restrict this empirical density function to the hidden sur-
face M, denoted by g̃′ := g̃|M, then we have that the gradient of
g̃′ at a point x ∈ M is simply the projection of ∇g̃(x) onto the
tangent space Tx at x. This projection, is exactly 2

π
~V‖(x), which

matches what we have (the second term) in Eqn (3). In other words,
the density gradient we obtained can also be viewed as the gradient
of the empirical Gaussian kernel density estimator restricted to the
manifold case (instead of in the ambient space).

While the connection between the Gaussian kernel density estima-
tor and heat diffusion process has been investigated in the Euclidean
space [Botev et al. 2010], here we build the connection with the
graph Laplacian, and also the connection for the manifold case. We
believe that this connection itself is interesting. Eqn (5), combined
with the theoretical studies on the Gaussian-weighted graph Lapla-
cian, helps to provide better understanding of the ambient gradient
of the kernel density estimator g̃. For example, by Eqn (5) and Eqn
(3), it now becomes evident that the normal component of∇g̃ is in
fact proportional to the mean-curvature flow at a point x in the inte-
rior of a manifold. As another example, suppose the input domain
M is a singular manifold, which consists of a set of (potentially
intersecting) manifolds with boundaries. Recent work in [Belkin
et al. 2012] shows that LQt f behaves drastically different around the
singular set, which includes the boundary of each manifold patch,
non-smooth folds in each manifold patch, as well as intersections
of multiple pieces of manifolds. In particular, for a point x around
the singular set, Eqn (2) and (3) no longer hold; instead, an equation
with a form similar to Eqn 4 holds. Such singular behavior will now
carry over to the gradient of the KDE density estimator. The projec-
tion of LQt

−→
P (x) in the tangent space at x (if it can be defined) will

no longer reflect the gradient of the true density function. Hence to
handle domains with singularities, different strategies are necessary
for points around singularities if true density is desirable.

2The general form of the Gaussian kernel below should be Kt(x, y) =
1

(πt)d/2
e−
‖x−qi‖

2

t . We choose the dimension of the Gaussian kernel to

be the intrinsic dimension d = 2.

