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Abstract – Speech separation can be treated as a mask estimation problem where interference-

dominant portions are masked in a time-frequency representation of noisy speech. In super-

vised speech separation, a classifier is typically trained on a mixture set of speech and noise.

It is important to efficiently utilize limited training data to make the classifier generalize well.

When target speech is severely interfered by a nonstationary noise, a classifier tends to mistake

noise patterns for speech patterns. Expansion of a noise through proper perturbation dur-

ing training helps to expose the classifier to a broader variety of noisy conditions, and hence

may improve separation performance. In this study, we examine the effects of three noise

perturbations on supervised speech separation: noise rate, vocal tract length, and frequency

perturbation at low signal-to-noise ratios (SNRs). We evaluate speech separation performance

in terms of classification accuracy, hit minus false-alarm rate and short-time objective intelli-

gibility (STOI). The experimental results show that frequency perturbation is the best among

the three perturbations in terms of improved speech separation. In particular, we find that
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frequency perturbation is effective in reducing the error of misclassifying a noise pattern as a

speech pattern.

Index Terms – Speech separation, supervised learning, noise perturbation.
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1 Introduction

Speech separation is a task of separating target speech from noise interference. The task

has a wide range of applications such as hearing aid design and robust automatic speech

recognition (ASR). Monaural speech separation is proven to be very challenging as it only uses

single-microphone recordings, especially in low SNR conditions. One way of dealing with this

problem is to apply speech enhancement [7] [8] [14] on a noisy signal, where certain assumptions

are made regarding general statistics of the background noise. The speech enhancement

approach is usually limited to relatively stationary noises. Looking at the problem from

another perspective, computational auditory scene analysis (CASA) [24], which is inspired by

psychoacoustic research in auditory scene analysis (ASA) [2], exploits perceptual principles to

speech separation.

In CASA, interference can be reduced by applying masking on a time-frequency (T-F)

representation of noisy speech. An ideal mask suppresses noise-dominant T-F units and

keeps the speech-dominant T-F units. Therefore, speech separation can be treated as a mask

estimation problem where supervised learning is employed to construct the mapping from

acoustic features to a mask. A binary decision on each T-F unit leads to an estimate of the

ideal binary mask (IBM), which is defined as follows.

IBM(t, f) =

{
1, if SNR(t, f) > LC

0, otherwise
(1)

where t denotes time and f frequency. The IBM assigns the value 1 to a T-F unit if its SNR

exceeds a local criterion (LC), and 0 otherwise. Therefore, speech separation is translated

into a binary classification problem. Recent studies show IBM separation improves speech

intelligibility in noise for both normal-hearing and hearing-impaired listeners [3] [18] [25] [1].

Alternatively, a soft decision on each T-F unit leads to an estimate of the ideal ratio mask

(IRM). The IRM is defined below [21].

IRM(t, f) = (
10(SNR(t,f)/10)

10(SNR(t,f)/10) + 1
)β (2)

where β is a tunable parameter. A recent study has shown that β = 0.5 is a good choice for

the IRM [27]. In this case, mask estimation becomes a regression problem where the target

is the IRM. Ratio masking is shown to lead to slightly better objective intelligibility results

than binary masking [27]. In this study, we use the IRM with β = 0.5 as the learning target.

Supervised speech separation is a data-driven method where one expects a mask estimator

to generalize from limited training data. However, training data only partially captures the

true data distribution, thus a mask estimator can overfit training data and do a poor job in

unseen scenarios. In supervised speech separation, a training set is typically created by mixing

clean speech and noise. When we train and test on a nonstationary noise such as a cafeteria
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noise, there can be considerable mismatch between training noise segments and test noise

segments, especially when the noise resource used for training is restricted. Similar problems

can be seen in other supervised learning tasks such as image classification where the mismatch

of training images and test images poses a great challenge. In image classification, a common

practice is to transform training images using distortions such as rotation, translation and

scaling, in order to expand the training set and improve generalization of a classifier [17] [4]. We

conjecture that supervised speech separation can also benefit from training data augmentation.

In this study, we aim at expanding the noise resource using noise perturbation to improve

supervised speech separation. We treat noise expansion as a way to prevent a mask estimator

from overfitting the training data. A recent study has shown speech perturbation improves

ASR [15]. However, our study perturbs noise instead of speech since we focus on separating

target speech from highly nonstationary noises where the mismatch among noise segments is

the major problem.

This paper is organized as follows. Section 2 describes the system used for mask estimation.

Noise perturbations are covered in section 3. We present experimental results in section 4.

Section 5 concludes the paper.

2 System Overview

To evaluate the effects of noise perturbation, we use a fixed system for mask estimation

and compare the quality of estimated masks as well as the resynthesized speech that are

derived from the masked T-F representations of noisy speech. While comparison between

an estimated mask and an ideal mask reveals the spectrotemporal distribution of estimation

errors, resythesized speech can be directly compared to clean speech. As mentioned in Section

1, we use the IRM as the target of supervised learning. The IRM is computed from the

64-channel cochleagrams of premixed clean speech and noise. The cochleagram is a time-

frequency representation of a signal [24]. We use a 20 ms window and a 10 ms window shift

to compute cochleagram in this study.

We perform IRM estimation using a deep neural network (DNN) and a set of acoustic

features. Recent studies have shown that DNN is a strong classifier for ASR [19] and speech

separation [28]. As shown in Fig. 1, acoustic features are extracted from a mixture sampled

at 16 kHz, and then sent to a DNN for mask prediction. To incorporate temporal context

and obtain smooth mask estimation, we use 5 frames of features to estimate 5 frames of the

IRM [27]. Since each frame of the mask is estimated 5 times, we take the average of the 5

estimates.

The acoustic features we extract from mixtures are a complementary feature set (AMS +

RASTAPLP + MFCC) [26] combined with gammatone filterbank (GFB) features. To compute

15-D AMS, we derive 15 modulation spectrum amplitudes from the decimated envelope of an

input signal [16]. 13-D RASTAPLP is derived by applying linear prediction analysis on the
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Figure 1: Diagram of the proposed system.

RASTA-filtered bark-scale power spectrum of an input signal [11]. We follow a standard

procedure to compute 31-D MFCC. To derive GFB features, an input signal is passed to a

64-channel gammatone filterbank, the response signals are decimated to 100 Hz to form 64-D

GFB features.

We use classification accuracy, hit minus false-alarm (HIT−FA) rate and short-time objec-

tive intelligibility (STOI) score [22] as three criteria for measuring the quality of the estimated

IRM. Since the first two criteria are defined for binary masks, we calculate them by binarizing

a ratio mask to a binary one. In this study, we follow Equation 3 and Equation 1.

SNR(t, f) = 10log10(
IRM(t, f)2

1 − IRM(t, f)2
) (3)

During the mask conversion, the LC is set to be 5 dB lower than the SNR of a given mixture.

The three criteria evaluate the estimated IRM from three different perspectives. Classifica-

tion accuracy computes the percentage of correctly labeled T-F units in a binary mask. In

HIT−FA, HIT refers to the percentage of correctly classified target-dominant T-F units and

FA refers to the percentage of wrongly classified interference-dominant T-F units. HIT−FA

rate is well correlated with human speech intelligibility [16]. In addition, STOI is computed

by comparing the the short-time envelopes of clean speech and resynthesized speech obtained

from IRM masking, and it is a standard objective metric of speech intelligibility [22].

3 Noise perturbation

The goal of noise perturbation is to expand noise segments to cover unseen scenarios so that

the overfitting problem is mitigated in supervised speech separation. A recent study has

found that three perturbations on speech samples improve ASR performance [15]. These

perturbations were used to expand the speech samples by spectral perturbation. The three

perturbations are introduced below. Unlike this study, we perturb noise samples instead of
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Figure 2: Illustration of noise rate perturbation.

perturbing speech samples, as we are dealing with highly nonstationary noises.

3.1 Noise Rate (NR) Perturbation

Speech rate perturbation, a way of speeding up or slow down speech, is used to expand training

utterances during the training of an ASR system. In our study, we extend the method to vary

the rate of nonstationary noises. We increase or decrease noise rate by factor γ. When a noise

rate is being perturbed, the value of γ is randomly selected from an interval [γmin, 2 − γmin].

The effect of NR perturbation on a spectrogram is shown in Fig. 2.

3.2 Vocal Tract Length (VTL) Perturbation

VTL perturbation has been used in ASR to cover the variation of vocal tract length among

speakers. A recent study suggests that VTL perturbation improves ASR performance [13].

VTL perturbation essentially compresses or stretches the medium and low frequency compo-

nents of an input signal. We use VTL perturbation as a method of perturbing a noise segment.

Specifically, we follow the algorithm in [13] to perturb noise signals:

f ′ =

fα, if f ≤ Fhi
min(α,1)

α

S
2
−

S
2
−Fhimin(α,1)

S
2
−Fhi min(α,1)α

(S
2
− f), otherwise

(4)

where α is the wrapping factor, S is the sampling rate, and Fhi controls the cutoff frequency.

Fig. 3(a) shows how VTL perturbation compresses or stretches a portion of a spectrogram.

The effect of VTL perturbation is visualized in Fig. 3(b).

3.3 Frequency Perturbation

When frequency perturbation is applied, frequency bands of a spectrogram are randomly

shifted upward or downward. We use the method described in [15] to randomly perturb noise

samples. Frequency perturbation takes three steps. First, we randomly assign a value to each
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Figure 3: (a) Mapping function for vocal tract length perturbation. The frequencies below a cutoff are
stretched if α > 1, and compressed if α < 1. (b) Illustration of vocal tract length perturbation. The medium
and low frequencies are compressed in this case.
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Figure 4: Illustration of frequency perturbation.

T-F unit, which is drawn from a uniform distribution.

r(f, t) ∼ U(−1, 1) (5)

Then we derive the perturbation factor δ(f, t) by averaging the assigned values of neighboring

time-frequency units. This averaging step avoids large oscillations in spectrogram.

δ(f, t) =
λ

(2p+ 1)(2q + 1)

f+p∑
f ′=f−p

t+q∑
t′=t−q

r(f ′, t′) (6)

where p and q control the smoothness of the perturbation, and λ controls the magnitude of the

perturbation. These tunable parameters are decided experimentally. Finally the spectrogram

is perturbed as follows.

S̃(f, t) = S(f + δ(f, t), t) (7)

where S(f, t) represents the original spectrogram and S̃(f, t) is the perturbed spectrogram.

Interpolation between neighboring frequencies is used when δ(f, t) is not an integer. The effect

of frequency perturbation is visualized in Fig. 4.
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4 Experimental Results

4.1 Experimental Setup

We use the IEEE corpus recorded by a male speaker [12] and six nonstationary noises from

the DEMAND corpus [23] to create mixtures. All signals are sampled at 16 KHz. Note that

all recordings of the DEMAND corpus are made with a 16-channel microphone array, we use

only one channel of the recordings since this study is on monaural speech separation.

The DEMAND corpus has six categories of noises. We choose one noise from each category

to represent distinct environments. The six nonstationary noises, each is five-minute long, are

described as follows.

1. The “Street” category:

The SCAFE noise, recorded in the terrace of a cafe at a public square.

2. The “Domestic” category:

The DLIVING noise, recorded inside a living room.

3. The “Office” category:

The OMEETING noise, recorded in a meeting room.

4. The “Public” category:

The PCAFETER noise, recorded in a busy office cafeteria.

5. The “Nature” category:

The NPARK noise, recorded in a well visited city park.

6. The “Transportation” category:

The TMETRO noise, recorded in a subway.

To create a mixture, we mix one IEEE sentence and one noise type at -5 dB SNR. This low

SNR is selected with the goal of improving speech intelligibility in mind where there is not

much to improve at higher SNRs [10]. The training set uses 600 IEEE sentences and randomly

selected segments from the first two minutes of a noise, while the test set uses another 120

IEEE sentences and randomly selected segments from the second two minutes of a noises.

Therefore, the test set has different sentences and different noise segments from the training

set. We create 50 mixtures for each training sentence by mixing it with 50 randomly selected

segments from a given noise, which results in a training set containing 600×50 mixtures.

The test set includes 120 mixtures. We train and test using the same noise type and SNR

condition.

To perturb a noise segment, we first apply short-time Fourier transform (STFT) to derive

noise spectrogram, where a frame length of 20 ms and a frame shift of 10 ms are used. Then

we perturb the spectrogram and derive a new noise segment. To evaluate the three noise

perturbations, we create five different training sets, each consists of 600×50 mixtures. We
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train a mask estimator for each training set and evaluate on a fixed test set (i.e. the 120

mixtures created from the original noises). The five training sets are described as follows.

1. Original Noise: All mixtures are created using original noises.

2. NR Perturbation: Half of the mixtures are created from NR perturbed noises, and the

other half are from original noises.

3. VTL Perturbation: Half of the mixtures are created from VTL perturbed noises, and the

other half are from original noises.

4. Frequency Perturbation: Half of the mixtures are created from frequency perturbed

noises, and the other half are from original noises.

5. Combined: Half of the mixtures are created from applying three perturbations altogether,

and the other half are from original noises.

As already mentioned, we extract a set of four complementary features (AMS + RASTA-

PLP + MFCC + GFB) from mixtures. Delta features are appended to the feature set. A

four-hidden-layer DNN is employed to learn the mapping from acoustic features to the IRM.

Each hidden layer of the DNN has 1024 rectified linear units [20]. Dropout [5] and adaptive

stochastic gradient descent [6] are used to train the DNN.

4.2 Parameters of Noise Perturbation

In this section, three sets of experiments are carried out to explore the parameters used in the

three perturbations to get the best performance. To facilitate parameter selection, we create

five smaller training sets, following the same configuration in Section 4.1 except that we use

480 IEEE clean sentences to create 480×20 training mixtures. Another 120 IEEE sentences

(different than the test ones in Section 4.1) are used to create 120 test mixtures only for

the purpose of choosing parameter values (i.e. a development set). The speech separation

performance is evaluated in term of STOI score.

In NR perturbation, the only adjustable parameter is the rate γ. We can slow down a noise

by setting γ < 1, or speed it up using γ > 1. To capture various noise rates, we randomly

draw γ from an interval [γmin, 2 − γmin]. We evaluate various intervals in term of speech

separation performance. As shown in Fig. 5, the interval [0.1, 1.9] (i.e. γmin = 0.1) gives the

best performance for six noises.

In VTL perturbation, there are two parameters: Fhi controls cutoff frequency and α the

warping factor. Fhi is set to 4800 to roughly cover the frequency range of speech formants.

We randomly draw α from an interval [αmin, 2 − αmin] to systematically stretch or shrink the

frequencies below the cutoff frequency. Fig. 6 shows the effects of different intervals on speech

separation performance. The interval of [0.3, 1.7] (i.e. αmin = 0.3) leads to the best result for

the majority of the noise types.
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Figure 5: The effect of the minimum noise rate γmin for NR perturbation.

In frequency perturbation, a 161-band spectrogram derived from a noise segment is per-

turbed using the algorithm described in Section 3.3. We set p = 50 and q = 100 to avoid

dramatic perturbation along time and frequency axes. We experiment with different perturba-

tion intensity λ. As shown in Fig. 7, λ = 1000 achieves the best performance for the majority

of the noise types.

4.3 Evaluation Results and Comparisons

We evaluate the three perturbations with the parameter values selected in Section 4.2 and the

five large training sets described in Section 4.1. The effects of noise perturbations on speech

separation are shown in Table 1, Table 2 and Table 3, in terms of classification accuracy,

HIT−FA rate and STOI score respectively. The results indicate that all three perturbations

lead to better speech separation than the baseline where only the original noises are used.

Frequency perturbation performs better than the other two perturbations. Compared to only

using the original noises, the frequency perturbed training set on average increases classi-

fication accuracy, HIT−FA rate and STOI score by 8%, 11% and 3%, respectively. This

indicates that noise perturbation is an effective technique for improving speech separation

results. Combining three perturbations, however, does not lead to further improvement over

frequency perturbation.

A closer look at Table 2 reveals that the contribution of frequency perturbation lies mainly

in the large reduction in FA rate. This means that the problem of misclassifying noise-

dominant T-F units as speech-dominant is mitigated. This effect can be illustrated by vi-

sualizing the masks estimated from the different training sets and the ground truth mask in
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Figure 6: The effect of the minimum wrapping factor αmin for VTL perturbation.
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Figure 7: The effect of the perturbation intensity λ for frequency perturbation.
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Table 1: Classification accuracy (in %) for six noises at -5 dB

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 73.0 84.0 80.0 70.3 82.7 80.3 78.4
NR Perturbation 80.2 88.5 85.3 77.9 88.5 85.1 84.2
VTL Perturbation 80.1 87.7 84.9 77.8 89.2 85.5 84.2
Frequency Perturbation 84.4 88.6 86.7 80.6 90.0 86.7 86.2
Combined 81.8 88.0 86.1 78.9 89.6 86.6 85.2

Table 2: HIT−FA rate (in %) for six noises at -5 dB, where FA is shown in parentheses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 55 (37) 70 (23) 65 (28) 50 (40) 69 (22) 63 (32) 62 (30)
NR perturbation 64 (24) 77 (15) 72 (18) 60 (26) 77 (12) 72 (21) 70 (19)
VTL Perturbation 64 (24) 76 (16) 71 (19) 60 (27) 78 (10) 72 (21) 70 (20)
Frequency Perturbation 69 (17) 77 (14) 74 (15) 63 (21) 79 (9) 74 (18) 73 (16)
Combined 67 (21) 77 (15) 73 (16) 61 (25) 78 (10) 74 (18) 72 (18)

Table 3: STOI (in %) of separated speech for six noises at -5 dB, where STOI of unprocessed mixtures is
shown in parentheses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 73.7 (64.1) 87.5 (79.3) 80.0 (67.8) 71.4 (62.5) 80.2 (67.7) 85.9 (77.5) 79.8 (69.8)
NR perturbation 76.5 (64.1) 89.2 (79.3) 82.5 (67.8) 74.1 (62.5) 83.2 (67.7) 87.4 (77.5) 82.1 (69.8)
VTL Perturbation 76.1 (64.1) 88.7 (79.3) 82.2 (67.8) 74.0 (62.5) 83.6 (67.7) 87.2 (77.5) 82.0 (69.8)
Frequency Perturbation 78.2 (64.1) 89.1 (79.3) 83.3 (67.8) 75.1 (62.5) 84.1 (67.7) 87.8 (77.5) 82.9 (69.8)
Combined 77.0 (64.1) 88.6 (79.3) 82.7 (67.8) 74.7 (62.5) 83.8 (67.7) 87.6 (77.5) 82.4 (69.8)

Fig. 8 (e.g. around frame 150). When the mask estimator is trained with the original noises,

it mistakenly retains the regions where target speech is not present, which can be seen by

comparing the top and bottom plots of Fig. 8. Applying frequency perturbation to noises

essentially exposes the mask estimator to more noise patterns and results in a more accurate

mask estimator, which is shown in the middle plot of Fig. 8.

In addition, we show HIT−FA rate for voiced and unvoiced intervals in Table 4 and Table

5 respectively. We find that frequency perturbation is effective for both voiced and unvoiced

intervals.

While classification accuracy and HIT−FA rate evaluate the estimated binary masks, STOI

directly compares clean speech and the resynthesized speech. As shown in Table 3, frequency

perturbation yields higher average STOI scores than using original noises with no perturbation

and NR and VTL perturbations.

Finally, to evaluate the effectiveness of frequency perturbation at other SNRs, we carry out

additional experiments at -10 dB and 0 dB input SNRs, where we use the same parameter

12
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Figure 8: Mask comparisons. The top shows a ratio mask obtained from training on original noises, the middle
shows a mask obtained from training on frequency perturbed noise, and the bottom shows the IRM.

Table 4: HIT−FA rate (in %) during voiced intervals, where FA is shown in parentheses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 50 (44) 70 (26) 62 (33) 48 (45) 71 (24) 55 (42) 59 (36)
NR perturbation 60 (32) 75 (21) 69 (24) 57 (33) 79 (15) 63 (33) 67 (26)
VTL Perturbation 62 (30) 75 (21) 70 (24) 60 (31) 80 (13) 65 (31) 69 (25)
Frequency Perturbation 66 (24) 76 (20) 72 (21) 62 (27) 80 (13) 67 (29) 70 (22)
Combined 65 (27) 76 (20) 72 (21) 61 (30) 80 (13) 68 (28) 70 (23)

Table 5: HIT−FA rate (in %) during unvoiced intervals, where FA is shown in parentheses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 48 (33) 61 (22) 59 (25) 41 (36) 57 (20) 61 (27) 54 (27)
NR perturbation 54 (20) 70 (11) 64 (15) 48 (22) 62 (9) 68 (16) 61 (16)
VTL Perturbation 52 (21) 68 (13) 64 (15) 45 (24) 62 (8) 68 (16) 60 (16)
Frequency Perturbation 59 (12) 68 (11) 66 (11) 48 (18) 62 (6) 70 (13) 62 (12)
Combined 55 (18) 68 (12) 64 (13) 46 (22) 62 (8) 69 (14) 61 (14)

13



OSU Dept. of Computer Science and Engineering Technical Report #16, 2014

−10 dB −5 dB 0 dB
55

60

65

70

75

80

85

90

95

SNR

S
T

O
I

 

 

unprocessed

original noise

perturbated noise

Figure 9: The effect of frequency perturbation in three SNR conditions. The average STOI scores (in %) across
six noises are shown for unprocessed speech, separated speech by training on original noises, and separated
speech by training on frequency perturbed noises.

values as for -5 dB SNR. Fig. 9 shows frequency perturbation improves speech separation in

terms of STOI in each SNR condition. Also, we find that frequency perturbation remains the

most effective among the three perturbations at -10 dB and 0 dB SNR.

5 Concluding Remarks

In this study, we have explored the effects of noise perturbation on supervised monaural speech

separation at low SNR levels. As a training set is usually created from limited speech and

noise resources, a classifier likely overfits the training set and makes poor predictions on a test

set, especially when background noise is highly nonstationary. We suggest to expand limited

noise resources by noise perturbation.

We have evaluated three noise perturbations with six nonstationary noises recorded from

daily life for speech separation. The three are noise rate, VTL, and frequency perturbations.

When a DNN is trained on a data set which utilizes perturbed noises, the quality of the

estimated ratio mask is improved as the classifier has been exposed to more scenarios of noise

interference. In contrast, a mask estimator learned from a training set that only uses original

noises tends to make more false alarm errors (i.e. higher FA rate), which is detrimental to

speech intelligibility [29]. The experimental results show that frequency perturbation, which

randomly perturbs the noise spectrogram along frequency, almost uniformly gives the best

speech separation results among the three perturbations examined in this study in terms of

classification accuracy, HIT−FA rate and STOI score.

Finally, this study adds another technique to deal with the generalization problem in super-

vised speech separation. Previous studies use model adaptation [9] and extensive training [28]

to deal with the mismatch of SNR conditions, noises and speakers between training and test-

14
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ing. Our study aims at situations with limited training noises, and provides an effective data

augmentation method that improves generalization in nonstationary environments.
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