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Abstract – Although deep neural network (DNN) acoustic models are known to be inherently

noise robust, especially with matched training and testing data, the use of speech separation

as a frontend and for deriving alternative feature representations has been shown to improve

performance in challenging environments. We first present a supervised speech separation

system that significantly improves automatic speech recognition (ASR) performance in re-

alistic noise conditions. The system performs separation via ratio time-frequency masking;

the ideal ratio mask (IRM) is estimated using DNNs. We then propose a framework that

unifies separation and acoustic modeling via joint adaptive training. Since the modules for

acoustic modeling and speech separation are implemented using DNNs, unification is done by

introducing additional hidden layers with fixed weights and appropriate network architecture.

On the CHiME-2 medium-large vocabulary ASR task, and with log mel spectral features as

input to the acoustic model, an independently trained ratio masking frontend improves word

error rates by 10.9% (relative) compared to the noisy baseline. In comparison, the jointly

trained system improves performance by 14.4%. We also experiment with alternative feature

representations to augment the standard log mel features, like the noise and speech estimates

obtained from the separation module, and the standard feature set used for IRM estimation.
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Our best system obtains a word error rate of 15.4 percent (absolute), an improvement of 4.6

percentage points over the next best result on this corpus.

Index Terms – Time-frequency masking, ratio masking, joint training, robust ASR, CHiME-2.
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1 Introduction

The introduction of deep neural network based acoustic models (DNN-AM) [11] has had a

substantial impact on improving current ASR systems. Not only has DNN-AMs improved

performance in relatively clean conditions [34], it has also boosted noise robustness [35, 47].

Our recent study investigates a feature based technique to improve ASR performance in

noise [29]. In contrast to model adaptation, feature based ASR techniques keep the ASR

backend unchanged during recognition, and perform speech/feature enhancement to handle

noise. Such techniques can therefore be used with any ASR backend, be it Gaussian mixture

model (GMM) based or DNN based.

The systems presented in [29] uses a time-frequency (T-F) masking based speech separation

frontend. In T-F masking, the mixture energy at each T-F unit of the signal is weighted using

a gain that is inversely proportional to the amount of noise it contains. The matrix of gains,

typically called a time-frequency mask, is estimated directly from the input signal. The ideal

ratio mask, which is defined as the ratio of the clean signal energy to the noisy signal energy at

each T-F unit [37], is used in [29], and is estimated using DNNs. The results show that using

such a speech separation system with DNN-AMs works reasonably well, but improvements

compared to GMM based acoustic models (GMM-AM) are not as large.

With DNNs, it has also been observed that using a speech separation frontend does not

always improve performance [29, 35]. This is especially true when log mel-spectral features,

which have been shown to work better than cepstral features [25, 29], are used as input and

when testing conditions are similar to the training conditions. A strategy commonly used with

GMMs is retraining the ASR system using the enhanced features to minimize mismatch [44].

But frontends invariably introduce distortions, and with DNN-AMs retraining can sometimes

negatively affect performance [29, 35]. An alternative strategy with GMM-AMs has been

joint or adaptive training – the enhancement and the recognition modules are optimized

jointly [2, 15, 23]. A probabilistic formulation of both the enhancement frontend and the

GMM-AMs lends itself to expectation maximization (EM) style iterative training.

In adaptive training, the acoustic models are trained in a ‘canonical’ feature space. The

frontend feature/model transformation morphs the original input features to this canonical

space. This has two advantages. First, the canonical acoustic models are more amenable to

adaptation. If the feature/model transforms are learned at test time, like in the case of vector

Taylor series (VTS) model adaptation, transforming the canonical models performs better

than transforming the models trained in the original input space [2, 15]. Second, the errors

made by the frontend are modeled much better.

An example of joint/adaptive training is VTS based noise adaptive training (VTS-NAT),

which uses VTS model adaptation to deal with noise and channel mismatch [15]. VTS-NAT

is an iterative two-stage EM algorithm. It first trains a GMM-AM using clean or noisy

data. In the first stage of the algorithm, the parameters of the GMM-AM are kept fixed
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and the distortion parameters (noise and channel statistics) for VTS-model adaptation are

learned from the data. In the second stage, the distortion parameters are kept fixed and the

parameters of the GMM-AM are updated so as to maximize the likelihood of the data given

the adapted models. The algorithm iterates between these two stages until convergence.

Most adaptive training algorithms are tailored for GMM-AMs. In the context of DNN-

AMs, a speaker adaptive training strategy was proposed in [1], where a discriminative speaker

code and a non-linear feature transform are learned to transform the original features to

the representation in the first hidden layer of the DNN-AM. The acoustic model parameters

remain unchanged during adaptive training. The canonical feature space is implicitly defined

by the representation learned by the first hidden layer of the DNN-AM. Such joint adaptive

training strategies, to the best of our knowledge, have not been proposed in the context of

noise robustness.

This paper proposes a strategy for jointly training a ratio-masking based speech separa-

tion frontend and a DNN-AM. We call the proposed framework joint adaptive training for

DNN-AMs (DNN-JAT). Even though the model parameters are not updated during test

time, we call the proposed training strategy ‘adaptive’ to differentiate it from the simpler

approach of retraining the acoustic model using the transformed features without modifying

the transformation in itself – an approach that has been classified as joint training [20]. Joint

training schemes have been used successfully with GMM-AMs [44], but not so much with

DNN-AMs [7,35].

Since separation as a frontend gives limited performance gains when using DNN-AMs, we

also study how ASR performance can be improved by augmenting the traditional log mel

spectra with additional features when training the acoustic models. For example, noise-aware

training (NAT) proposed in [35] uses a crude estimate of noise obtained by averaging the first

and the last few frames of each utterance as an additional input. This improved performance

on the Aurora-4 corpus [31] by 3.9% (relative). It was shown in [30] that instead of using

such an estimate, speech separation can be used to obtain a more accurate estimate of noise.

Additionally, features like speech estimate and residual noise estimate, which can both be

derived from speech separation, are shown to further improve performance. We analyze the

performance that can be obtained using these alternative feature representations in the context

of joint adaptive training. We also study whether the feature set that is traditionally used

as input by supervised mask estimation algorithms adds any further information when they

are used for acoustic modeling. We note that [30] presents a preliminary version of this work.

Apart from studying additional features for acoustic modeling, this article presents extended

analysis and results compared to [30].

This paper is organized as follows. The proposed systems are presented in Section 2,

followed by an in-depth evaluation in Section 3. We conclude with a discussion in Section 4.
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2 System description

For the DNN-JAT system that we present here, it is assumed that there is not a lot of chan-

nel mismatch between training and testing, and that speech separation primarily addresses

background noise. Channel mismatch, like those caused by microphone characteristics and

room reverberation, is typically addressed by learning the channel impulse response within

a model based probabilistic framework when using GMMs [21]. With DNNs, channel effects

can, arguably, be handled by collecting more training data (see, e.g., [47]). For example,

additional recordings can be made using a new cell phone with previously unseen microphone

characteristics if an ASR system has to be deployed on it. Alternatively, feature mapping

can also be used [29]. Unlike channel mismatch, background noise can be more uncertain and

harder to deal with.

We present joint adaptive training in the context of a speech separation frontend that

handles background noise via time-frequency masking. A block diagram of the proposed

system is shown in Figure 1. The goal of the frontend is to estimate a time-frequency mask,

an ideal ratio mask in our case, which is used to weight the energy at each T-F bin of the

noisy spectra. The ideal mask is defined as the ratio of the speech to mixture energy at each

T-F bin, assuming that speech and noise are uncorrelated [27,37]:

M
(r)
t (c) =

Xt(c)

Xt(c) + Nt(c)
(1)

Here, M(r) is the IRM, X and N are the clean and the noise (mel) spectrogram, respectively,

and t and c index time and frequency; and we assume that the mixture energy Yt(c) =

Xt(c) +Nt(c). It is easy to see that, with perfect estimation, masking using the IRM restores

the clean spectra. The components of the system are described in detail below.

2.1 Speech separation

As mentioned, speech separation is done in a supervised fashion via ratio masking using DNNs.

DNNs have now become the standard in supervised speech separation [13,19,24,29,41,44,45].

Apart from mask estimation, binary [42] or ratio [13, 27, 29], they have also been used in

other ways. In [24], recurrent neural networks (RNNs) are used to denoise cepstral features.

Weninger et al. use bidirectional long short-term memories, a more sophisticated variety of

recurrent nets, for denoising and show that they work better than plain RNNs [44]. Xu et

al. use DNNs to estimate the log power spectral coefficients and found them to work better

than statistical speech enhancement algorithms [45]. In [41], it was shown that, in the context

of speech separation, ratio masking is perhaps the most effective way to handle background

noise when using DNNs. This is largely because 1) ratio masks are inherently normalized and

bounded targets, and 2) denoising via masking is less sensitive to estimation errors.
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Figure 1: (Color online) A block diagram of joint noise adaptive training. The two main components of the
system, speech separation and acoustic modeling, are shown along with how they are joined into a single
framework.

We perform IRM estimation in the 26-channel mel spectrogram domain spanning frequen-

cies in the range 50 Hz to 7 kHz. A window size of 20 msec and a hop size of 10 msec are used.

The IRM is estimated using a system similar to the one presented in [29], but is simplified

so that it can be easily incorporated into the joint framework. The following feature set is

extracted at every time frame from the noisy input signal:

• 13 dimensional relative spectral filtered perceptual linear predictive cepstral coefficients

(RASTA-PLP) [10]. The features for 7 contiguous frames are spliced together to add

context.

• Amplitude modulation spectrograms (AMS) [18]. 15-dimensional AMS features are ex-

tracted separately for each of the 26 frequency bands in the mel spectrogram. They are

then concatenated to form the input feature for a time-frame.

• 31 dimensional broadband and narrowband mel frequency cepstral coefficients (MFCC).

Narrowband MFCCs, which are extracted using an analysis window of 200 msec [5], add

a lot more context than broadband MFCCs, which use a 20 msec window. Similar to

RASTA-PLPs, the MFCC features of 7 contiguous frames are spliced together to form

the input representation.

The context size while forming features is fixed to 7 to keep a check on the input dimensionality.

The above features when concatenated together forms a 915-dimensional (13×7 + 15×26 +
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31×2×7) input feature, which is fed to a 3 hidden layer DNN that simultaneously estimates

the IRM for all 26 frequency channels. Each hidden layer has 1024 nodes. Through cross-

validation, we found 3 layers and 1024 nodes to be sufficient; decreasing the number of layers

increased estimation error, and increasing both the number of layers and the number of nodes

did not significantly improve performance. The DNN is trained with a dropout rate of 0.3 for

both the input and the hidden layers. The hidden nodes use rectified linear activations (ReLU)

[26] and the output nodes sigmoidal activations. The weights are learned using mini-batch

stochastic gradient descent with AdaGrad [8] and momentum. The momentum is linearly

increased from 0.1 to 0.5 over the first 5 epochs after which it is set to 0.9. Mini-batch size is

set to 256. The weights are initialized to small random values. We also normalize the L2 norm

of incoming weights of the hidden nodes to 1 after each update [12]. The DNN is trained for

50 epochs to minimize the cross-entropy error criterion. The learning rate is set to 0.01 for

the first 10 epochs, 0.005 for the next 20 epochs, and 0.001 for the last 20 epochs.

Note that the IRM estimation algorithm in [29] estimates masks at the subband and the

fullband levels, and then combines these estimates over a window in the post-processing stage

to explicitly incorporate context. The proposed system, on the other hand, incorporates

context at the feature level.

2.2 Acoustic modeling

Motivated by the studies in [30,35], we experiment with multiple input feature representations

apart from the commonly used noisy log mel spectrogram (NMS). Some of these features are

derived using the IRM estimated by the speech separation module. Given an estimated IRM,

M̂(r), we can obtain an estimate of both speech and noise as follows:

N̂t = (1− M̂
(r)
t )�Yt, (2)

X̂t = (M̂
(r)
t )α �Yt. (3)

Here, X̂ and N̂ correspond to estimates of the clean and noise mel spectrogram. A tunable

parameter α (≤ 1) exponentially scales-up IRM estimates to reduce the speech-distortion

introduced by masking at the expense of retaining some noise. Note that to obtain noise

estimate, the mask is not scaled. Exponentiation is done point-wise. � denotes point-wise

multiplication.

We use the following input feature representations based on the above estimates:

• NMS: Noisy log-compressed mel spectrogram along with deltas and double deltas. After

sentence level mean normalization, features from 11 contiguous time frames are spliced

together, as is commonly done, to incorporate context. The dimensionality of this feature

is 858.

• NMS + SNE: This feature uses the NMS feature and appends it with a ‘stationary’
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noise estimate obtained by averaging the first and the last 15 frames of the noisy mel

spectrogram. This feature set replicates the system proposed in [35]. The dimensionality

of this feature is 884.

• NMS + DNE: This feature uses the NMS feature and appends it with a ‘dynamic’ noise

estimate obtained using the estimated IRM. The noise estimate is obtained as per Eq. 2,

and is smoothed using a 9th order ARMA filter [4]. A 9th order filter roughly smooths

over a window of 19 time-frames, which is the same as the number of frames needed to

create an input feature representation for NMS features after the context for deltas and

double deltas are taken into consideration. The dimensionality of this feature is 884.

• NMS + DNE + SE: Same as above, but also appends an estimate of speech obtained by

smoothing X̂ in Eq. 3 using a 2nd order ARMA filter. 2nd order filters were suggested

in [4, 5]. The dimensionality of this feature is 910.

• NMS + fIRM: The NMS feature appended with the features defined in Section 2.1 for

IRM estimation. The dimensionality of this feature is 1773.

• NMS + fIRM + DNE + SE: Same as above, but with smoothed speech and noise esti-

mates as additional features. The dimensionality of this feature is 1825.

The DNN-AMs consist of 7 hidden layers, each with 2048 nodes, and are trained in a way

similar to the DNNs used for IRM estimation. Dropout rate is fixed to 0.3 for all layers. The

hidden nodes use ReLU activations and the output layer uses softmax activation. Mini-batch

stochastic gradient descent with AdaGrad and momentum is used for weight optimization,

and the L2 norm of the weights of each node is normalized to 1. The network is trained for

50 epochs. The learning rate is set to 0.005 for the first 30 epochs and 0.001 for the final 20

epochs. Momentum is linearly updated from 0.1 to 0.5 over the first 5 epochs, and is set to

0.9 starting the 6th. The weights are initialized to random values; no pre-training is used.

A subset of the development set was chosen for cross-validation during training, to ensure

that the models converge and that they do not overfit to the training data. We found that

both AdaGrad and dropout are necessary when training 7-layer ReLU models as they tend

to overfit easily. In general, obtaining an appropriate hyper-parameter setting for the simpler

stochastic gradient descent based optimization was found to be especially hard.

2.3 Joint adaptive training

The main goal behind joint adaptive training is to unify separation and acoustic modeling.

Typically, the output of separation undergoes further processing before it is fed to the acoustic

model. In our joint system, we model these processing steps as fixed hidden layers of a single

deep network. They are shown in darker gray in Figure 1 and includes operations like log-

compression, feature normalization, delta calculation, and feature splicing. Interestingly, all of
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these operations can be performed within a DNN framework using appropriate weights and/or

network architecture. For example, delta features can be calculated using a linear activation

layer with weights as below [39]:

[
Ot

4Ot

]
=

[
0 I 0

−I 0 I

]
︸ ︷︷ ︸

W4

 Ot−1

Ot

Ot+1

 . (4)

Here, Ot is the static feature at time t, I is the identity matrix, and W4 is the weight matrix

of the hidden layer. The above formulation calculates deltas over a window of 3 frames, but it

can be extended trivially to more than 3 frames and for calculating double-deltas. Further, the

connections from the preceding layer can be modified so that this layer receives static features

from multiple, consecutive time frames as is necessary for delta calculation. The other fixed

layers can be modeled in a similar fashion. We outline the steps briefly below, assuming an

NMS based input feature representation for the acoustic model:

1. Given the noisy mel spectrogram, Y, and the estimated IRM, M̂(r), we start with masking

to obtain an estimate of the clean (log compressed) mel spectrogram, X̂, using Eq. 3.

2. Next, we append deltas and double-deltas by multiplying the features with the delta

weight matrix, W4. Since delta components are a temporal feature, the static features

from contiguous time-frames are spliced together before multiplying them with W4.

3. Finally, we do sentence level mean and global variance normalization followed by a an-

other splicing operation to form the input to the DNN-AM. The mean and the variance

are re-estimated after every epoch.

With the above formulation, it is easy to see that the two modules can now be trained

jointly; with the fixed hidden layers cast as a ‘neural network,’ the error gradients from the

DNN-AM can flow through them back to the speech separation module. While training such a

system, we initialize both the acoustic model and the IRM estimator using the independently

trained DNNs. The trainable weights of both networks are then tuned together for a few

additional epochs. The number of additional epochs is set using cross-validation. In our

recipe, we run the joint DNN for 10 epochs; the WER on the development set is calculated

after every epoch and the model that gives the least WER is chosen. We found that DNN-JAT

converges withing the 7-9 epochs in most of our experiments. Training the joint DNN with

randomly initialized weights is an extremely difficult optimization task; it is unreasonable to

expect a randomly initialized network to implicitly learn an appropriate masking function. An

important detail that needs to be considered during training is the gradient of the masking

operation. This gradient involves a term that is inversely proportional to M̂
(r)
t because of log

compression. This value can easily dominate the gradients that reach the mask estimation
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module of the joint framework, especially when the estimated IRM values are close to zero.

To prevent such a scenario, we explicitly clip the gradients so that they do not exceed a

preset maximum. Via cross-validation, we found this parameter to be not too critical in terms

of final performance; most values between 2 and 100 seem to work reasonably well. In our

experiments, we set it to 5. The other hyperparameters during joint adaptive training are the

same as those used during the final epoch of independent training.

3 Results

3.1 Experimental setup

The proposed system is evaluated on the CHiME-2 corpus [40], which is a medium-large vo-

cabulary corpus based on WSJ0-5k. The corpus simulates a family living room; the utterances

are reverberant, and are artificially mixed with real recorded noise at signal-to-noise ratios

(SNRs) in the range [−6, 9] dB. Even though the corpus is binaural, our system is monaural;

we simply average the left and right ear recordings for all experiments1. The IRM estimator

needs noisy and the corresponding clean recordings to define the targets at the time of train-

ing. Since such recordings are not provided with the corpus, we artificially mix the reverberant

noise-free utterances in the training set with randomly selected segments of the noise record-

ings provided with the corpus. The fraction of recordings at each SNR is the same as in the

official noisy-reverberant training set. This new set is used only to train the IRM estimator

when it is trained independent of the DNN-AM.

In order to obtain senone (or tied-triphone state) labels for training the DNN-AM, a

maximum-likelihood trained GMM-HMM system is used. The clean training set of WSJ0

is used to train and subsequently align the utterances. Based on the pruning parameters,

the system ended up with 3298 senones. The DNN-AMs are trained using the official noisy-

reverberant training set. The same set is also used for joint adaptive training – after initial-

ization the joint model is optimized solely to improve the ASR criterion (i.e., cross-entropy).

All systems are implemented using the HTK Toolkit [46]. During decoding, we use a

bigram language model unless stated otherwise, and the CMU pronunciation dictionary. The

standard GMM-based Viterbi decoder implemented in HTK is modified to function as a hybrid

decoder.

3.2 Development set results

We first present results on the development set (si dt 05) of CHiME-2. Experiments on this

set are used to 1) choose an appropriate value for α in Eq. 3, 2) decide whether or not to

retrain the system using masked features, 3) finalize what additional features to include as

input to the DNN-AM, and 4) finalize the setup of the joint adaptive training framework.

1The target azimuth is always 0◦, so averaging the left and right ear recordings improves SNR.
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Table 1: WER on the development set (si dt 05) of the CHiME-2 corpus for various values of α. The NMS
feature representation is used. Note that α = 0 corresponds to directly using noisy features, which forms the
baseline. The best performance in each condition is marked in bold

α
si dt 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

0.0 43.3 34.3 29.0 25.4 21.6 19.6 28.9
0.3 39.7 31.8 27.1 23.4 20.6 18.7 26.9
0.5 39.4 31.2 27.0 23.0 20.4 18.8 26.6
0.7 39.4 30.8 27.0 23.7 20.5 19.2 26.8
1.0 40.9 32.6 27.6 24.2 21.5 19.9 27.8

All parameters are chosen to optimize performance on the development set. Note that the

recipe for training the DNNs is fixed as described before. No attempt was made to optimize

it separately for each subtask.

3.2.1 Choosing an appropriate value for α

The parameter α controls how the estimated ratio mask is scaled. Values > 1 would shrink

the estimated IRM closer to 0, thereby increasing noise suppression while at the same time

introducing some distortion to speech. On the other hand, values < 1 will scale IRM estimates

towards 1, reducing speech distortion at the expense of leaving some noise in the masked mel-

spectrogram. The chosen value reflects a tradeoff between residual noise and speech distortion.

The WER obtained for various values of α are shown in Table 1. The NMS feature is used to

train the DNN-AM for the systems described in this section.

Our baseline, which is to directly use the noisy features as input, corresponds to the system

that uses a value of 0 for α. An average WER of 28.9 percent is obtained using such a system.

With masking used in the traditional fashion, i.e., with α = 1, an average WER of 27.8 percent

is obtained; an improvement of 1.1 percentage points over the baseline. But more interestingly,

using a smaller value for α further improves performance. Although most values between 0

and 1 give improvements, the value 0.5 is found to be the best; α = 0.5 improves the WER

by 2.3 percentage points compared to the baseline. As has been noted in other studies, using

separation as a frontend does not always yield performance gains with DNN-AMs [29, 35].

This is perhaps because of the distortions introduced in speech while attempting to remove

noise. Reducing distortion at the expense of retaining residual noise seems more helpful when

using DNN-AMs. Setting α to a value < 1 also has the added advantage of shrinking the

gradients of the log operation during joint adaptive training. For the rest of the systems that

we present, unless otherwise stated, the value of α will be set to 0.5 while performing masking.

Next, we experiment with the conventional joint training framework which simply retrains

the acoustic models using masked features. We obtain masked features for training using

Eq. 3 with α set to 0.5. As is typically done, the same training recipe as was used to train

the original acoustic models is used but with masked features instead of the noisy ones. The
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Table 2: WER on the development set (si dt 05) of the CHiME-2 corpus using acoustic models retrained
on masked data, with α set to 0.5. The NMS feature representation is used. The best performance in each
condition is marked in bold

α
si dt 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

0.3 43.9 34.7 29.1 25.7 21.1 19.4 29.0
0.5 41.0 32.7 27.6 23.8 20.3 18.5 27.3
0.7 39.8 31.5 27.1 23.0 20.3 18.3 26.6
1.0 39.7 31.7 26.9 23.3 20.3 18.6 26.7
1.5 43.1 33.7 28.9 24.5 21.8 19.6 28.6

Table 3: WER on the development set (si dt 05) of the CHiME-2 corpus when the same data is used to train
the mask estimator and the acoustic model.

α
si dt 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

0.0 42.7 33.9 28.9 25.2 21.7 19.2 28.6
0.5 38.4 30.5 26.5 22.9 20.8 18.9 26.3

cross-validation set is used to ensure that there was no overfitting. The WERs obtained after

retraining is shown in Table 2. As before, we measure WERs as a function of α. When

α = 0.5, the value used for obtaining masked features while training, we get an average WER

of 27.3 percent. It improves to 26.6 when α is set to 0.7. The difference in performance is

mainly in the lower SNR conditions. In general, it is observed that when α is set to a value

between 0.5 and 1, better results are obtained. While it is surprising that αs other than 0.5

perform better, it may be because, when trained using masked features, it is better to remove

more noise during testing. From the results it is clear that retraining using masked data does

not outperform the system that is trained on noisy data, when using masked features. The

noisy dataset contains signals at (long-term) SNRs ranging from -6 dB to 9 dB. And we can

see from the results that, as the input SNR of the signal improves, the WER decreases. When

we use masked features with a carefully tuned α, it is likely that some noise gets removed

without significantly distorting speech. In other words, masking improves SNR of the input

signal without introducing additional speech distortions. We believe this is the reason why

using masked features with noisy acoustic models yields similar performance as the retrained

models. Based on these results, the acoustic models are not retrained using masked features

in the rest of the experiments.

From the presented results, it is clear that estimated IRMs significantly improve perfor-

mance. To check whether masking helps because it is trained on data that the acoustic model

has not seen, we trained the acoustic model using the same data that was used to train the

IRM estimator. Results are shown in Table 3. As can be seen, the obtained performance is

very similar to those obtained using the original system (see Table 1). Masking still improves

performance when the same data is used to train the DNN-AM.
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Table 4: WER on the development set (si dt 05) of the CHiME-2 corpus using an 8-layer DNN for acoustic
modeling.

α
si dt 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

0.0 43.2 34.7 29.4 25.1 21.9 19.7 29.0
0.5 39.5 31.4 26.7 23.3 20.6 19.4 26.8

Finally, to confirm that improvements due to masking is not because the full model now

has more tunable parameters, we trained an 8 hidden layer DNN-AM instead of a 7 layer

model that was used to generate the results in Table 1. Adding another layer to the DNN-AM

adds more parameters than what gets added by having a masking frontend. From the results,

which are shown in Table 4, we can see that simply making the system more complex does

not improve performance, and that masking still provides gains. Based on these results we

can conclude that masking, by itself, adds value to the system. It is likely because masking,

conceptually, is an apt frontend ‘feature transformation’ to remove noise; it is hard to discover

it by simply using more data and (or) additional parameters.

3.2.2 Performance with additional features

Given that masking improves performance, we now experiment with the additional features

described in Section 2.2. The results are shown in Table 5.

It can be seen from the results that when using SNE, no significant improvements are

obtained over the baseline in Table 1, with and without masking. Using DNE performs slightly

better. This is expected as the noises in CHiME-2 are highly non-stationary. It is unlikely

that the first and the last 15 frames are representative enough of the noise characteristics

in the middle of an utterance. Adding speech estimate in addition to DNE performs the

best, improving performance by 1.7 and 0.7 percentage points, respectively, compared to the

baseline. When the features used for IRM estimation are appended to NMS, a WER of 26.3

percent is obtained which is close to the performance obtained after masking when only the

NMS feature is used. After enhancing the NMS feature, performance of ‘NMS+fIRM’ further

improves to 25.2 percent. Adding speech and noise estimates derived from the separation

frontend does not improve performance any further. It is worth noting that using only the

‘fIRM’ features resulted in an average WER of 37.1 percent (not shown in the table), which

is worse than the systems presented here.

From the results, we can conclude that: 1) Masking consistently helps improve performance

in all conditions. 2) Using fIRM features in combination with the traditional NMS features

performs the best; adding speech and noise estimates further does not help reduce WER.

3.2.3 Joint adaptive training

We now apply joint adaptive training to the following systems:
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Table 5: WER on the development set (si dt 05) of the CHiME-2 corpus using additional features.

System
si dt 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

NMS + SNE 43.2 34.0 29.1 25.0 21.7 19.0 28.7
Masked NMS + SNE 38.8 30.9 26.8 22.8 20.3 18.4 26.3
NMS + DNE 42.1 33.8 28.5 24.7 21.5 19.1 28.3
Masked NMS + DNE 38.3 30.3 26.5 22.7 20.1 18.4 26.0
NMS + DNE + SE 40.3 33.0 27.4 23.1 21.0 18.2 27.2
Masked NMS + DNE + SE 38.3 31.0 26.5 22.4 19.7 17.8 25.9
NMS + fIRM 39.6 31.7 26.7 22.5 19.9 17.5 26.3
Masked NMS + fIRM 37.9 29.9 25.2 21.9 19.4 17.2 25.2
NMS + fIRM + DNE + SE 40.7 32.9 27.3 23.2 20.2 18.1 27.0
Masked NMS + fIRM + DNE + SE 37.9 29.9 25.2 21.6 19.1 17.5 25.2

• DNN-AM that uses the ‘NMS’ feature as its input. The IRM estimated by the separation

module enhances the NMS features using Eq. 3 which is then used as input to the DNN-

AM. Joint adaptive training is used to further enhance the NMS feature and adapt the

DNN-AM (NMS + JAT)2.

• DNN-AM that uses the ‘NMS + DNE + SE’ feature as its input. The noise and speech

estimates are obtained using the initial IRM estimator that is trained independent of the

DNN-AM. Joint adaptive training is used to enhance the NMS feature and the DNN-AM

(NMS + DNE + SE + JAT(1)).

• DNN-AM that uses the ‘NMS + DNE + SE’ feature as its input. Joint adaptive training

is used to enhance all three input features and the acoustic model (NMS + DNE + SE

+ JAT(2)).

• DNN-AM that uses the ‘NMS + fIRM’ feature as its input. Joint adaptive training is

used to enhance the NMS feature and the DNN-AM (NMS + fIRM + JAT).

All joint systems improve performance over their independently trained counterparts, as can

be seen from the results in Table 6. As before, using additional features continues to perform

better than only using the NMS feature as input to the DNN-AM. Interestingly, using the

noise and speech estimates obtained from the initial estimate of the IRM (‘NMS + DNE + SE

+ JAT(1)’ in the table) performs better than recalculating them from the mask estimated by

the joint system (‘NMS + DNE + SE + JAT(2)’ in the table). The reason for this becomes

clear when we look at the masks generated by the joint system. An example is shown in

Fig. 2. As can be seen, the mask generated by the jointly trained model (Figs. 2(f) and

(h)) attenuates noise a lot more than those generated by the independently trained models

(Figs. 2(e) and (g)). Since joint adaptive training improves IRM estimation by optimizing the

ASR loss, the resultant mask preserves spectro-temporal patterns that are most important for

2Whenever the suffix ‘+ JAT’ is used, it means that the NMS component of the feature is enhanced via masking and that the
mask is obtained through joint adaptive training.
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Table 6: WER on the development set (si dt 05) of the CHiME-2 corpus using joint adaptive training.

System
si dt 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

NMS + JAT 37.9 30.5 26.1 22.0 20.0 18.2 25.8
NMS + DNE + SE + JAT(1) 37.2 29.5 25.8 21.5 19.4 17.5 25.1
NMS + DNE + SE + JAT(2) 37.4 29.8 25.6 21.9 19.8 17.8 25.4
NMS + fIRM + JAT 37.1 29.4 24.9 20.9 18.8 17.3 24.7

Table 7: WER on the test set (si et 05) of the CHiME-2 corpus using a bigram language model.

System
si et 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

NMS 37.9 30.1 25.9 21.1 18.3 16.5 25.0
Masked NMS 33.0 26.6 23.9 19.5 16.6 15.8 22.6
NMS + JAT 32.1 25.6 23.1 18.6 16.1 15.1 21.7
Masked NMS + DNE + SE 33.2 26.7 22.4 18.7 15.4 14.5 21.8
NMS + DNE + SE + JAT(1) 31.4 24.8 21.4 18.1 15.1 14.1 20.8
NMS + fIRM 32.9 25.6 21.8 18.5 15.5 14.2 21.4
Masked NMS + fIRM 31.2 24.9 20.7 18.0 15.0 13.6 20.6
NMS + fIRM + JAT 30.5 24.5 21.2 17.5 14.4 13.5 20.3

recognition. The independently trained model, on the other hand, tries to estimate a mask

that can transform the noisy spectrogram to the clean spectrogram as closely as possible.

Note that these two criteria are neither mutually exclusive nor the same: Even signals that

do not ‘sound’ the same as the underlying clean speech signal may be perfectly recognizable

by an ASR system just as binary masked noise signals are recognizable to both humans and

machines [17,28]. Given that the IRM estimated by the joint system retains only the essential

spectro-temporal patterns, the quality of the speech and noise estimate obtained using it will

not necessarily be as good as those obtained from the original estimated IRM. This is likely

the reason why ‘NMS + DNE + SE + JAT(1)’ performs slightly better than ‘NMS + DNE +

SE + JAT(2)’. Consistent with the results presented in the previous section, ‘NMS + fIRM

+ JAT’ performs the best with an average WER of 24.7 percent on the development set.

3.3 Test set results

We now report performance on the test set using the best performing systems on the develop-

ment set. The first set of results is generated using a bigram language model, which was also

used for evaluations on the development set. The results are shown in Table 7. As can be seen,

our baseline system trained using the NMS features gives an average WER of 25.0 percent,

which is in itself better than the previous best results on this corpus using a GMM-HMM

system by 6.7% (relative) [44]. The system in [44] uses bidirectional long short-term memory

based feature enhancement and a discriminatively trained, speaker adapted GMM-HMM sys-

tem. Using the estimated ratio mask to enhance the noisy speech improves performance by

2.4 percentage points compared to the baseline (‘Masked NMS’ in the table). Note that the
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Figure 2: (Color online) Example of masking: (a) Log-mel spectrogram of a clean utterance. (b) Log-mel
spectrogram of the utterance with reverberation. (c) Log-mel spectrogram of the utterance with noise and
reverberation. The SNR, with respect to reverberant speech, is -3 dB. (d) The ideal ratio mask. (e) The IRM
estimated by the independently trained mask estimator. (f) The IRM estimated by the joint model. (g) The
noisy log-mel spectrogram enhanced using the estimated IRM. (h) The noisy log-mel spectrogram enhanced
using the IRM estimated by the joint model.

Table 8: WER on the test set (si et 05) of the CHiME-2 corpus using a trigram language model.

System
si et 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

NMS 31.8 25.0 21.0 16.5 13.9 12.9 20.2
Masked NMS 27.2 21.6 18.9 15.6 13.0 11.6 18.0
NMS + JAT 26.0 20.8 18.1 14.8 12.3 11.5 17.3
Masked NMS + DNE + SE 26.2 20.7 18.0 14.7 11.7 11.0 17.0
NMS + DNE + SE + JAT(1) 25.6 19.6 16.8 13.8 10.7 10.6 16.2
NMS + fIRM 26.6 20.7 16.8 14.2 11.3 10.4 16.7
Masked NMS + fIRM 25.6 19.9 15.4 13.4 10.8 10.1 15.9
NMS + fIRM + JAT 25.1 19.2 15.1 12.8 10.5 9.5 15.4
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Table 9: A few published results on the CHiME-2 test set (si et 05). All systems use a trigram language
model, except for [38] which uses discriminative language models and minimum Bayes risk decoding.

System
si et 05

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

Discriminative features, models, decoding [38] 44.1 35.5 28.1 21.2 17.4 14.8 26.9
BLSTM + discriminative models [44] 42.7 33.9 27.5 21.8 18.4 16.2 26.7
RNN [3] 38.1 29.1 23.0 17.9 15.0 13.6 22.8
LSTM + discriminative GMMs + NMF [9] 33.8 25.7 20.3 15.5 13.0 11.9 20.0
DNN-JAT (this paper) 25.1 19.2 15.1 12.8 10.5 9.5 15.4

ASR models are not retrained using masked speech. ‘NMS + JAT’, which jointly trains the

IRM estimator and the DNN-AM that is trained on the NMS feature, improves performance

by another 0.9 percent compared to ‘Masked NMS’. The ‘NMS + DNE + SE’ system ob-

tains WERs similar to ‘NMS + JAT’ on average, after the NMS features are enhanced using

the estimated IRM. NMS + JAT seems to do better in low SNR conditions (-6 dB and -3

dB) and ‘NMS + DNE + SE’ works better in high SNR conditions (0 dB, 6 dB and 9 dB).

‘NMS + DNE + SE + JAT(1)’ produces an average WER of 20.8 percent, 1 percentage point

better than the corresponding system that does not use joint adaptive training. NMS+fIRM

performs comparably to ‘NMS + DNE + SE + JAT(1)’, obtaining an average WER of 21.4

percent. Masking and joint adaptive training improves performance to 20.6 percent and 20.3

percent, respectively. ‘NMS + fIRM + JAT’ obtains the lowest WER and is 18.8% (relative)

better than our baseline (19.5% (relative) better at -6 dB).

Table 8 shows the performance obtained when a trigram language model is used. Perfor-

mance of each system improves by roughly 5 percentage points. The baseline WER improves

from 25 percent to 20.2 percent. ‘NMS + DNE + SE + JAT(1)’ obtains a WER of 16.2 per-

cent. ‘NMS + fIRM + JAT’ improves it further to 15.4 percent, 23.8% better (relative) than

the baseline. Upon comparing performance at different SNR conditions, it can be inferred

that the final system improves SNR by 3 to 6 dB in terms of ASR performance: The WERs

that ‘NMS + fIRM + JAT’ obtains at -6 dB and 3 dB are similar to those obtained by the

baseline at -3 dB and 9 dB, respectively.

4 Discussion

We list a few results from literature on the CHiME-2 corpus in Table 9. The systems described

in [38] and [44] are GMM-HMM systems, and use a feature enhancement frontend, along with

discriminative features and discriminative acoustic modeling [32]. As can be seen, the system

proposed in this paper outperforms them by a large margin. The recently proposed system

in [3] uses recurrent nets and NMS features without any enhancement. The joint system

outperforms it by 7.4 percentage points, highlighting the utility of the proposed robust feature

frontend. It is likely that RNNs and discriminative training strategies can further improve
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performance of the proposed framework. The system in [9] proposes model combination –

it uses an NMF feature enhancement frontend and discriminatively trained GMM-AMs, and

combines it with a long short-term memory based acoustic model. It obtains an average

WER of 20.0, 4.6 percentage points worse than the proposed system. We note that, the

system described in this paper, and those in [44] and [3] make use of aligned clean and noisy

data which was disallowed in the original CHiME-2 challenge. To overcome this limitation, it

will be worth investigating in the future whether mask estimators trained using other speech

corpora can be used for initializing the joint systems; joint adaptive training can then be

performed only using the noisy utterances.

As we noted before, the masks generated by the jointly trained model attenuate noise a

lot more than those generated by the independently trained models, while preserving spectro-

temporal patterns that are important for recognition. There appears to be a disconnect be-

tween the objectives commonly used for mask estimation (SNR improvement) and ASR (WER

reduction), and our past work has shown that SNR improvements and ASR improvements

(or speech intelligibility) are not fully correlated [28]. Joint adaptive training, on the other

hand, directly optimizes a criterion that is important to improve ASR. Since ASR and speech

intelligibility tend to correlate [28], such joint adaptive training schemes may provide an al-

ternative, more appropriate criterion to optimize for speech separation algorithms that focus

on intelligibility. Moreover, the proposed joint adaptive training strategy is quite flexible, and

can easily be adapted to work with other separation frontends like feature mapping [24,29,44].

The fact that an IRM estimator can be optimized using an ASR criterion may be lever-

aged to adapt an already trained mask estimator to unseen conditions. With minimal noisy

adaptation data and no aligned clean utterances, the weights of the IRM estimator can be

updated by using the joint framework. Note that the necessary senone labels for training the

joint system can be obtained by aligning the adaptation data using an unadapted ASR model

– a commonly used strategy in ASR. In the event that the mask labels for training the IRM

estimator can be obtained or generated from data, the loss function can be easily modified to

weight the contribution of the acoustic model loss and the mask estimator loss during adap-

tation. With limited adaptation data, model adaptation with additional regularization as has

been proposed for speaker adaptation [22] will also be an interesting approach to consider.

An interesting future study will be the incorporation of discriminative training [14,16] into

our framework to allow higher-level sequence structure to influence separation and acoustic

modeling. Having language model level sequence information influence speech separation

has always been a challenge. Systems like convolutional NMF [36] and structure-preserving

models [43] only account for short term sequence structure. Discriminative modeling, on the

other hand, improves performance by optimizing model parameters to maximize the posterior

probability of the correct word sequence. With joint adaptive training, it becomes fairly

straightforward to use such well studied sequence training strategies to improve performance

of speech separation.
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The senone labels for training DNN-AMs were obtained by aligning the clean training data.

When only the noisy data is available, such high quality labels cannot be directly obtained

from the training set. An alternative is the iterative procedure outlined in [6]: First, train

the best GMM-HMM system from the data, and use it to generate senone labels and train a

DNN-AM. Next, use the trained DNN-AM to re-align the training data and update senone

labeling. The DNN-AM can now be retrained with the revised alignments. Training can

iterate between the last two steps multiple times, as long as improvements in performance

are observed. Using such a strategy, we were able to train a DNN-AM that closely matched

the performance obtained by the system presented here using the scripts provided with the

KALDI ASR toolkit [33]. Compared to the baseline error rate of 20.2 percent as shown in

Table 8, the system obtains an average WER of 21.4 percent. With off-the-shelf sequence

discriminative training [14, 33], the performance further improves to 19.5 percent. Note that

a similar strategy was proposed in [3].

To conclude, we have proposed novel ways for improving the state-of-the-art in noise robust

ASR using time-frequency masking. The results show that by using speech separation to

provide smooth estimates of speech and noise to a DNN-AM, substantial improvements in

performance can be obtained. Moreover, appending the features that are commonly used

for separation and acoustic modeling to form the input of a DNN-AM also helps improve

performance. Finally, a joint adaptive training framework is proposed for DNN-AMs. DNN-

JAT unifies separation and acoustic modeling and consistently improves performance over the

corresponding independently trained models.
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