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Occlusion-Free Focus+Context Streamline Visualization

with Deformation

Xin Tong, Chun-Ming Chen, Han-Wei Shen and Pak Chung Wong

(a) (b) (c) (d)

Fig. 1: (a) and (b) illustrate our interactive 3D lens with the point model. (a) Before applying the lens, the vortex is hidden by the
streamlines in the front. (b) After applying the lens with the point model, the streamlines in front of the lens are removed to revel
the vortex. (c) and (d) illustrate interactive lens with the line model. (c) Before applying the lens, the inner structure of the vortex
is hidden. (d) The inner structure is now revealed after applying the lens with the line model. The outside of the vortex is cut into
two halves and pushed to the side.

Abstract— Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many
streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features.
A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting
streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden features in detail. In this
paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields.
We define a view-dependent focus+context technique that moves the streamlines occluding the focus area using a novel displacement
model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone
that accommodates the deformed streamlines, and solve the displacement of the contextual streamlines interactively with a goal of
preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool
using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.

Index Terms—Flow visualization, focus+context, streamline, deformation, occlusion

1 INTRODUCTION

Streamlines are commonly used for visualizing three-dimensional flow
fields. Streamlines show the trajectories of particles moving along the
directions of the flow field and thus provide insight into intricate be-
haviors of the flow field. Flow features like sinks, sources, saddles, and
vortices can be visually identified by streamline visualization. How-
ever, when too many streamlines are shown, getting a clear view of
important flow features is difficult. Even though a single streamline
does not cause much occlusion compared with geometry of higher di-
mensions, such as surfaces or volumes, mixing many streamlines of
different depths together can generate a very confusing image. This
is not only because streamlines in the front will occlude those in the
back but also because part of the streamlines in the back will show
through; therefore, discerning the exact depths of the visible stream-
line segments becomes very difficult.

Although through interactive seeding of streamlines one can con-
trol the amount of occlusion and visual cluttering, it makes find-
ing specific flow features–and hence understanding their surrounding
context–more difficult. To reach a balance between displaying too
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much information and displaying too little, focus+context(F+C) tech-
niques provide a nice solution for highlighting the details in the focus
area without losing the context. In this paper, we present a streamline
deformation technique to achieve a F+C view of three-dimensional
streamlines. The previous streamline deformation approaches [3] [21]
deform the three-dimensional space of the flow field, which indirectly
deforms the streamlines embedded in the new space. The main draw-
back of the space deformation approaches is that a deformed contin-
uous 3D space [21] can fail to generate a complete void to eliminate
occlusion. Also, because those methods are object space approaches,
they may not adapt to arbitrary view directions.

Rather than indirectly deforming the occluding streamlines in the
deformed space, we present a novel view-dependent deformation
model that deforms the streamlines directly by moving its vertices in
the two-dimensional screen space. To achieve the deformation, the
user first defines a focus region, which can be an arbitrary location
in screen space. Alternatively, the focus region can be defined as an
area in screen space enclosing user-selected focus streamlines. Then,
streamlines occluding the focus region are deformed and moved out of
the focus region based on two deformation models, a point model and
a line model. The point model moves streamlines away from the center
of the focus region, while the line model cuts the streamlines along the
principal axis line of the focus region and moves the streamlines away
from the line to its sides. Based on the shape of the focus area, choos-
ing between these two models can ensure a smooth transformation of
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the deformed streamlines. Because our deformation is performed in
the screen space, the deformation can automatically adapt to new view
directions.

To show the efficacy of our deformation model, in this paper we
present an interactive tool to explore streamlines in three dimensional
space. We create a tool that uses a lens metaphor to allow users to
freely move away streamlines from selected areas on the screen to
reveal the structure underneath. We also present additional examples
to define the focus area, including streamline bundles, location-based
streamlines, and multi-focuses. A graphics processing unit (GPU)-
based parallel computation of the deformation allows the exploration
to be done in real-time. To test the effectiveness of our system, we
applied our deformation framework to explore several real flow field
datasets to find hidden features in the streamlines.

The rest of the paper is organized as follows. In Section 2, we
briefly review several solutions for occlusion-removal in the context
of 3D rendering, with a focus on F+C techniques and deformation
methods. Then, we discuss our algorithm and two deformation mod-
els in Section 3. We describe how to apply our deformation model
to create an interactive tool in Section 4, and present some examples
to define focus streamlines in Section 5. We show the results of ap-
plying our techniques to explore two datasets in Section 6 and discuss
important implementation details in Section 7. The performance of
our GPU-based implementation is discussed in Section 8, followed by
some concluding remarks in Section 9.

2 RELATED WORKS

Overcoming occlusion is an important but challenging problem in 3D
visualization. Several approaches have been proposed in the past to
avoid or remove occlusion. In direct volume rendering [11], transfer
functions are designed to assign proper voxel transparencies to reveal
hidden features in the data. Li et al. [13] argued that the use of trans-
parency fails to convey enough depth information for the transparent
layers. They use cutaways to remove occlusion and expose important
internal features. McGuffin et al. [17] used a deformation approach to
allow users to cut into, open up, spread apart, or peel away parts of
the volumetric data in real time, which makes the interior of the vol-
ume visible while preserving the surrounding contexts. Qu et al. [19]
proposed to zoom in the routes in visualizing 3D urban environments.
In this work, roads are broadened by 2D seam carving, and landmarks
are enlarged with a grid-based zooming technique. An occlusion-free
route is visualized by scaling the buildings that occlude the route.

In 3D streamline visualization, many streamline selection or place-
ment approaches have been proposed with a goal to minimize occlu-
sion or visual clutter. Mattausch et al. [16] applied magic volume,
region of interest driven streamline placement, and spotlights to alle-
viate the occlusion problem. Li and Shen [12] proposed an image-
based streamline generation approach that places seeds on the 2D im-
age plane, and then unprojects the seeds back to 3D object space to
generate streamlines. Occlusion is avoided by spreading out stream-
lines in the image space. Marchesin et al. [15] defined the overlap
value, the average number of overlapping streamlines for each pixel
in the image space, to quantify the level of cluttering and remove the
streamlines that have high overlap values on their projected pixels. Lee
et al. [10] proposed a view-dependent streamline placement method.
In their method, streamlines will not be generated if they occlude re-
gions that are deemed more important, characterized by Shannon’s
entropy. Another method to alleviate streamline occlusion is to reduce
the opacity of the occluding streamlines. Park et al. [18] applied multi-
dimentional transfer functions (MDTFs) based on physical flow prop-
erties to change the color and opacity of streamlines. Xu et al. [24]
proposed to make the streamlines in lower entropy regions more trans-
parent to reduce occlusion. The above occlusion-aware streamline
placement methods and transparency modulation methods have their
downsides. The problem for the streamline removal methods is that
some interesting streamlines may not be shown when they occlude
many other streamlines. On the other hand, for the transparency mod-
ulation methods, it is difficult to judge the relative depths among the
semi-transparent streamlines, and those streamlines can become a dis-

traction. Our F+C streamline deformation method can solve the oc-
clusion problem with better user control while keeping all the input
streamlines more easily to be seen.

Fous+Context techniques have been used by different applications
that magnify the focus objects while preserving the surrounding con-
text. The techniques include fisheye views [5, 20, 6] and magnification
lens [9, 23, 25]. In flow visualization, 3D lenses have been applied to
show the focus region with greater details [4, 16]. van der Zwan et

al. [22] blended several levels of detail with a halo-like shading tech-
nique to simultaneously show multiple abstractions. These methods
can reduce occlusion in 3D but do not completely keep the focus ob-
jects out of occlusion.

Our approach is more related to the following works with F+C flow
visualization using spatial deformation. Correa et al. [3] proposed
an illustrative deformation system for F+C visualization of discrete
datasets. Deformation is used to expose the internal focus region, and
an optical transformation is applied to mark up the context region. Be-
cause in their method the deformation is performed in data space, the
focus can be occlusion-free for only certain view directions but not for
some other views. Tao et al. [21] devised a deformation framework
specifically for streamlines. This method deforms the data grid, and
generates streamlines based on the deformed grid. It magnifies the
streamlines in the focus while compressing the context region. In their
method, because deforming space cannot move individual streamlines
according to their specific locations, it does not completely solve the
occlusion problem for certain views. Both Correa and Tao’s methods
are view-independent, which means the deformation can fail to remove
occlusion for certain views. In contrast to these two deformation ap-
proaches, our new approach displaces the streamline vertices in 2D
screen space and hence can achieve efficient occlusion-free rendering
for an arbitrary view.

3 ALGORITHM

The goal of our algorithm is to expose interesting features in the fo-
cus area by deforming the occluding streamlines. In our deformation
model, depending on the approximate shapes of the focus area, two
shape models, the point model and the line model, are used. For each
of the two shape models, we design a screen-space deformation algo-
rithm that displaces vertices of the occluding streamlines. The defor-
mation creates a void region to allow a clear view of the interesting
features from arbitrary view directions.

3.1 Algorithm Overview

The input to our algorithm is a set of densely distributed stream-
lines, which can be roughly divided into focus streamlines and context
streamlines. Focus streamlines are what the user is interested in vi-
sualizing without any occlusion. The context streamlines are the rest.
Any streamlines that block the focus streamlines will be deformed and
moved to the side. To perform the deformation, our F+C deformation
model divides the screen space into three regions: focus region, transi-
tion region, and context region, as shown in Figure 2. The focus region
is a user-specified region in the screen space that contains the interest-
ing features; the transition region is the area that is immediately adja-
cent to the focus region and contains the deformed streamlines; and the
context region is the rest of the screen space that contains undeformed
streamlines. Although streamlines are defined in 3D space, our defor-
mation takes place only in the 2D screen space, i.e., streamlines are
deformed without changing their original depth. For this reason, our
shape model described below in Section 3.2 is defined in 2D space.

The goal of the deformation is to compress and move the occlud-
ing streamline segments in the focus region to the transition region. To
make space for the streamlines, streamline segments that are originally
in the transition region will also be compressed and moved towards
the outer boundary of the transition region. Essentially, the occluding
streamlines in the focus region and the streamlines originally in the
transition region are deformed and compressed in the transition region
and leave the feature of interest to the view in the focus region occlu-
sion free. The occluding streamlines are deformed but never removed,
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providing the context to the focus area. Any other streamlines outside
of these two regions remain unchanged.

There are two design goals for our deformation model:
1. The deformed streamline should preserve its shape, even though

the shape is compressed. In other words, the relative positions of the
streamlines and their vertices should be preserved.

2. After the deformation, the vertices should be distributed on the
streamline as uniformly as possible. In other words, any two connected
vertices on a streamline should not be placed too far from each other,
compared to other pairs of connected vertices. Otherwise, the stream-
lines will tend to be jagged and a long edge between two connected
vertices may cut across the focus region.
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Fig. 2: Sketches of the two deformation models: (a) the point model
(b) the line model. The region inside the black boundary is the fo-
cus region. The region between the black and green boundaries is the
transition region. The region outside the green boundary is the con-
text region. During the deformation, the vertex moves from Porig to
Pnew. In (a) O is the center of the black ellipse, while in (b) O is the
intersection point between the line AB and the perpendicular line of
AB passing through Porig. M and N are the intersection points between
the line OPorig and the two boundaries.

In our deformation model, the deformation of a streamline is
achieved by displacing its projected vertices in the screen space. Basi-
cally, during the deformation, we displace the deformed vertices away
from the center of the focus region. The amount of the displacement
is determined by each streamline vertex’s distance to the center of the
focus. We design a displacement function to distribute the deformed
streamlines in the transition region with their shapes preserved, in or-
der to satisfy our first design goal. In addition, an adjustment is applied
to the vertex displacement to make the deformed streamlines satisfy
our second design goal.

3.2 Shape Models

We designed two shape models, a point model and a line model, to
represent the shape of the focus area. Figure 2 illustrates these two
models. The point model is designed for focus areas that have a cir-
cular shape, while the line model is for focus areas that have a linear
shape. Both shapes are typical for streamlines.

Point Model As shown in Figure 2a, the point model is composed
of a 2D focus area (the inner black ellipse in the figure), a transition
area (the area between the inner black ellipse and the outer green el-
lipse), and its center O. The inner focus area can also be represented
by a convex polygon. Each of the convex polygon and the ellipse-
based focus areas has its own advantages. The convex polygon model
can more tightly cover the focus streamlines, while the ellipse focus
has a relatively smoother and more regular shape and can be repre-
sented analytically. The center of the focus area in the point model is
the reference point from which the streamlines are moved away.

Line Model Figure 2b shows our line model. The line model is
composed of a principal axis line (line AB), a linear bounding area
immediately outside of the principal axis (inside the black boundary)
that represents the focus region, and an expanded area outside of the
inner focus (the area between the black and the green boundaries). We
call this bounding shape open blinds, because it looks like two window
blinds that are open. Around the two end points A and B, the shape

of the open blinds is represented by the tanh function. Line AB and
the opening width can be arbitrarily defined by the user or generated
from the axes of the minimal enclosing ellipse if focus streamlines are
selected. During the deformation, we cut the streamlines in the open
blinds region by the axis line and move the streamlines to both sides
of the axis line along the direction normal to AB, until the focus area
is clear. More details about using the line model for deformation will
be explained below in Section 3.3.

The point model and the line model are suitable for streamlines of
different shapes. If we apply the point model to straight streamlines
distributed in an area in Figure 2b, then the streamline vertices will be
moved too far away from the centroid point and hence some vertices
will have to travel a long distance to the region around the point A
or B, resulting in a large distortion for the deformed streamlines. On
the other hand, if we apply the line model to streamlines that have a
circular shape, we have to cut the streamline and hence unnecessarily
change the connectivity of the streamlines. The overall shape of the
streamlines decides which model to use. In our algorithm, we use a
minimal enclosing ellipse to measure the roundness of the focus area.
If the major radius of the ellipse is much larger than the minor radius,
then we use the line model; otherwise, we use the point model.

3.3 Deformation Model

Instead of computing the new vertex positions for the deformed
streamlines all at once, our method achieves the deformation by dis-
placing its vertices iteratively. When a streamline is deformed, in each
iteration the position of a vertex on the streamline is modified based on
two considerations. First, the vertex should gradually move out of the
focus area. Second, the vertex should not be placed too far away from
its neighboring vertices. Based on these considerations, we control the
displacement of a vertex using two subcomponents, each of which is
represented by a velocity and a moving direction. Mathematically, the
vertex movement can be written as:

P′ = P+v×~w+vc ×~u (1)

where P′ is the new position of the vertex, P is the old position, v×~w
representing the movement that makes the point leave the focus area,
and vc ×~u makes sure that the new point position is not too far from
its neighbors. Hereafter we call v×~w as the major displacement, and
vc ×~u as the minor adjustment. Below we explain each of the terms in
detail.

3.3.1 Major Displacement

At each iteration, the streamline vertex moves away from the focus
area along the direction ~w at a speed of v. The moving direction ~w
is related to the underlying shape model in use. For the point model,
as shown in Figure 2a, ~w is from the centroid O to the current vertex
position P, i.e. ~w ‖ OP, which is also shown in Figure 5. If the line
model is used, shown in in Figure 2b, ~w is the normal direction of the
line AB. If we draw a line through point P and perpendicular to AB, it

intersects with AB at O, and we have ~w ‖ ~OP ⊥ ~AB.
For both the point model and the line model, we generalize the def-

inition of ~w as:

~w = normalize
(

~OP
)

(2)

The moving speed v determines the amount of major displacement
in one iteration. Based on how far the streamline vertex has traveled,
we change the value of v in different iterations. Note that v can be
positive or negative. When v is positive, the vertex moves along the
direction of ~w. When v is negative, the vertex moves along the opposite
direction of ~w. When v = 0, the vertex stops moving.

Assuming d0 is the distance between O and the vertex’s original

position Porig, i.e. d0 = | ~OPorig|, and d is the distance between O and

the vertex’s final position Pnew after deformation, i.e. d = | ~OPnew|,
because the vertex moves outwards, we have d > d0. For the vertex
to reach a distance of d from O, the speed of the movement for P is
determined by how much the point has yet to travel, that is:
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v = (d−| ~OP|)×α (3)

where α is a constant that has a value in (0,1). It controls the magni-
tude of the moving speed. An empirical value of α is 0.01. Because

| ~OP| keeps increasing during the deformation, the speed of v keeps
decreasing, until it becomes 0. This is when the vertex stops moving
and arrives at its final position Pnew.

As shown in Figure 2a and Figure 2b, if we draw a line from O
along the ~w, this line intersects with the boundary of the focus region
(the black boundary) at M and intersects with the outer boundary of
the transition region (the green boundary) at point N. If we ignore
the minor adjustment for now, the major displacement moves a vertex
from its original position Porig to the new position Pnew along the line
OM.

We now discuss how to compute the distance d, which determines
the final position of each streamline vertex after the deformation. First,
to move the vertex out of the focus area and into the transition area, we
should have d > | ~OM|. Because we want to preserve the shape of the
streamline according to our design goal, d is made to be a monotoni-
cally increasing function of the original distance d0, which transforms

| ~OP| from d0 to a larger value d. We use a function G that takes a
normalized value of d0 as such a function to transform from d0 to d

d = G

(

d0

T

)

×T (4)

where T is the distance between O and the outer boundary of the tran-

sition region along the moving direction of ~w, i.e. T = | ~ON|. d0 is
normalized by diving its value by T .

The Figure 3a is an illustration of the point model similar to Fig-
ure 2a , marked with the several distances to illustrate the displace-

ment function G(x). The normalized value of | ~ON| is 1. We define

r as the normalized value of |OM|, i.e. r =
| ~OM|

T . Because d0 varies

in the range [0, | ~OM|], d0

T
varies in the range [0,1]. Because d varies

in the range [| ~OM|, | ~ON|], d
T

varies in the range [r,1]. Essentially, G
monotonically transforms a value in [0,1] to a larger value in [r,1].

3.3.2 Displacement Function

The goal of the displacement function G is to transform a value in
[0,1] to a larger value in [r,1]. Instead of using a linear function, we
apply the idea from the transformation function of fisheye lens[20] to
design a non-linear displacement function G that gives us a smoother
transition of the deformation across the region boundary. Without loss
of generality, here we assume a point model with a circular boundary
shown in Figure 3a to explain the idea. Below, we first give the design
goal of the function G, and then solve G.
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Fig. 3: (a) Illustration of the point model in the normalized space. (b)
Blue dotted line: normalized displacement function G in Equation 10
when r = 0.5. Red line: a reference displacement function F(x) = x,
which gives no displacement for the entire domain.

Our first criterion is that, as shown in Figure 3a, a vertex located at
O should be moved to the inner boundary of the transition region at M,
and a vertex located at the outer boundary of the transition region at N
should remain on the outer boundary. So we have:

G(0) = r (5)

G(1) = 1 (6)

Secondly, the function G must be a monotonically increasing func-
tion to make sure that the deformed streamlines and their vertices have
the same relative positions after the deformation. This way, the de-
formed streamline keeps a similar shape and the chance for neighbor-
ing streamlines to cut cross each other decreases. A positive value of
the first derivative of G makes sure the G is monotonically increasing,
written as:

dG(x)

dx
> 0 (7)

To describe the next criterion, we need to clarify the meaning of

the first derivative of the displacement function
dG(x)

dx
. If we apply the

deformation based on G in the entire space of the focus region and

the transition region, we get a distorted space.
dG(x)

dx
describes the

amount of distortion in the deformed space at a point whose distance
to O is x. We know that in the region outside of the transition region,
referred to as the context region, no streamlines are deformed and the
space is not distorted. So G(x) = x for x > 1 in the context region,

and thus
dG(x)

dx
is 1 for any points in context region. To ensure that the

amount of distortion smoothly changes from the transition region to

the context region at their boundary point N in Figure 3a,
dG(x)

dx
should

be continuous at that point. So we know the
dG(x)

dx
at point N should

also be 1, that is:

dG(x)

dx

∣

∣

∣

∣

∣

x=1

= 1 (8)

Finally, our last design criterion is that, from a position near O to
a position far from O, the amount of distortion should also change
monotonically. During the displacement, the deformed streamlines
are squeezed into a smaller space. In other words, the input x is in
the range [0,1], while the output G(x) changes its value in the range of
[r,1]. Because the range of G(x) is smaller than the range of x, we have
dG(x)

dx < 1 for x∈ [0,1). Thus, the value of
dG(x)

dx should monotonically
increase from a value less than 1 to the value 1 when x changes from
0 to 1. The change of the distortion amount is the second derivative of

displacement function
dG2(x)

dx2 . Because the distortion is monotonically
increasing, the second derivative of G should be greater than 0, written
as:

d2G(x)

dx2
> 0 (9)

Combining the four criteria from Equation 5 - 9, we can solve the
displacement function G. There is more than one solution for G, and
we use the simplest one as:

G(x) =
(r−1)2

−r2x+ r
−

1

r
+2 x ∈ [0,1] (10)

To show that the above function satisfies the four criteria, we plot
Equation 10 in Figure 3b. The figure clearly shows that Equation 5
and Equation 6 are satisfied. The blue dotted line is the values of G.
The red line is a reference function, which means no displacement in
the entire domain. We see that G is monotonically increasing, which
satisfies Equation 7. Its slope reaches 1 at the point of x = 1, which
satisfies Equation 8. The slope gradually increases, which satisfies
Equation 9. The value of r is the intersection point of the blue line with
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the y-axis. The larger r we use in G, the smaller transition region we
get, the smaller space the deformed streamlines need to be squeezed
in, and hence more distortion will happen to the deformed streamlines.

If we use the displacement function G to move a regular grid with
our two shape models, we get the deformed grids shown in Figure 4.
Note that we create a void focus region at the center of the grid, be-
cause G(x) ≥ G(0) = r for x ∈ [0,∞), all the streamline vertices will
be cleared out from the focus region. The existence of the void region
is the difference between our method and the traditional fisheye lens
methods. We also notice that for the same amount of distortion (same
value of r) in space we can create a larger void space with the line
model shown in Figure 4b than the point model shown in Figure 4a.
Besides, in the point model, some parts of the space are stretched, and
other parts are compressed; while in the line model, all the spaces are
compressed, and none of the space is stretched.
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Fig. 4: Deformed grids using two shape models with r = 0.5.

3.3.3 Minor Adjustment

Pl
Pr

O

P
u u

w

Fig. 5: The two displacement directions ~w and ~u for the point at P,
using the point model as example. Pl and Pr are the two vertices con-
nected to P on this streamline.

The minor adjustment does not contribute much to the movement
of a vertex but helps to make the vertices uniformly distributed on a
streamline and thus satisfies the second design goal of our deforma-
tion model. In the general process of particle advection to generate
streamlines, there is a maximum step size to avoid the edge between
two adjacent vertices becoming too long, or the streamline will tend
to be jagged. During our deformation process, some edges can be
stretched more, especially when using the point shape model, which
makes those portions of the streamline jagged. Furthermore, the long
edge can cut across and hence still occlude the focus region, which is
undesired.

A simple solution to avoid this long edge problem during deforma-
tion is to insert vertices into the long edge to break it into short edges.
However, this is not efficient, especially when the deformation is done
by GPU where it is more difficult to add more geometry. So our solu-
tion is not to insert additional vertices but instead to move the vertices
along the streamline to make the vertices uniformly distributed across
the streamline.

As shown in Figure 5, the vertex P is connected to two vertices at
point Pl and point Pr with two edges. A local approach to uniformly

distribute the vertices over the streamline is that each vertex moves
towards the farther one of the two neighboring vertices through mul-
tiple iterations. This shortens the longest edge in each iteration, and
eventually no edge is much longer than the other edges.

The minor adjustment vc ×~u is a product of a constant adjustment
speed vc and an adjustment direction ~u. ~u is a normalized direction
parallel to the longer connected edge, which is defined as:

~u =











normalize( ~PPl), if | ~PPl|> | ~PPr|

normalize( ~PPr), if | ~PPl|< | ~PPr|
~0, if | ~PPl|= | ~PPr|

When the length of the left edge | ~PPl| is larger than the length of the

right edge | ~PPr|, the moving direction is the same as the vector ~PPl

and vice versa. If the lengths of the left edge and right edge are equal,

then ~u =~0, which means no minor adjustment is needed.
Note that the minor adjustment may move the vertex in a direction

other than ~OP, which ends up changing ~w in the next iteration. This
change is not recoverable for the later iterations. So when the view
direction or the focus region is changed during the deformation, if we
continue the deformation with the new value of ~w or T , then we can
still keep the focus region occlusion-free, but we may not be able to
preserve the shape of deformed streamlines in the transition region.
The only solution is to recover the streamlines’ original positions and
redo the deformation from the first iteration.

4 INTERACTIVE 3D LENS

In this section we introduce a streamline exploration tool, interactive
3D lens, based on the deformation algorithm described above. The in-
teractive lens is useful when users do not have prior knowledge about
data and want to freely explore the streamlines that have been com-
puted. To overcome the occlusion problem, the lens can be placed
anywhere in image space with an adjustable depth to peel away the
occluding streamlines layer by layer. Specifically, the lens defines a
focus area, and any streamlines inside the lens in image space and
closer to the viewer than the far side of the lens are moved away as the
context streamlines.

We design our interactive 3D lens as a 3D cylindrical object, shown
as the black cylinder in Figure 6 . The axis of the cylinder is perpen-
dicular to the screen, i.e., the z axis of the NDC(Normalized Device
Coordinates) space, and the surface of the lens is placed on the xy
plane of the NDC space. The length of the cylinder is used as the lens
depth. The lens will move away any streamlines that intersect with the
lens cylinder and keep other streamlines unchanged. To reveal stream-
lines at different depths, users can change the length of the lens.

su
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Fig. 6: The 3D lens in NDC space. The blue cube denotes the 3D NDC
space. The yellow square denotes the 2D screen space. The lens has an
ellipse-shaped surface on the plane of the screen. The red streamline
intersects with the black 3D lens, and thus will be deformed. The
two green streamlines do not touch the 3D lens, and thus will remain
unchanged.

In our implementation, because only the streamlines passing
through the lens are to be deformed, we test the intersection be-
tween the lens cylinder and all the streamlines in the NDC space. To
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test whether a streamline passes through the lens, we simply check
whether there exists at least one vertex from this streamline that is
enclosed by the cylinder and do not check the intersection of line seg-
ments between two consecutive streamline vertices with the cylinder
to improve the performance. As the example shows in Figure 6, there
are three streamlines (one red and two green). Only the red streamline
that intersects with the lens will be deformed. Once the streamlines
that intersect the lens are identified, we use our deformation model to
deform the streamlines.

In the interactive system, users can use the mouse to modify the
size, shape, and orientation of the lens surface on the screen to specify
the focus region. In addition, users can use the mouse wheel to change
the lens depth to explore the streamlines at different depths. Note that
the axis of the lens is always parallel to the view direction, so users can
change the view angle to reveal different portions of the field. An in-
teractive demonstration of the lens can be found in the accompanying
video.

Figure 1 shows examples of the interactive 3D lens using the point
and the line deformation model, respectively. In Figure 1a, the straight
streamlines in the front occlude the vortex-like streamlines in the back.
In Figure 1b, we use a lens with the point deformation model to move
the straight streamlines away and reveal the vortex gradually through
animation (please see the accompanying video). In Figure 1c, users
want to see the inner structure of the vortex. So a lens with the line
deformation model of open blinds is used to break the outside of the
vortex into two parts. In Figure 1d, the inner structure, which was pre-
viously occluded, now becomes visible. Users can also interactively
decrease the lens depth to allow the deformed streamline to go back to
its original position.

In summary, the interactive 3D lens uses our view-dependent defor-
mation model to explore and reveal the hidden streamlines in the flow
field. Because the lens is always perpendicular to the image space,
users can rotate the field and change the depth of the lens to explore
the 3D space. Users can progressively discover the features at differ-
ent depths even when the features are deeply buried inside the field.
Because our deformation can be performed interactively, users can go
back and forth to replace the deformed streamlines to enhance their
understanding of the 3D features. Finally, users can rotate and adjust
the shape of the lens surface interactively to explore the field in differ-
ent orientations.

5 FOCUS STREAMLINES

In the previous section we showed that the interactive 3D lens based
on our deformation model can help the user freely explore the stream-
lines. Because our method can reveal the occluded streamlines while
preserving the context, it can also be applied to highlighting user-
specified feature streamlines defined by the user. Below we describe
two ways to define the focus streamlines. One is through pick-
ing streamline bundles, which are groups of streamlines with sim-
ilar shapes and close proximity (Section 5.1). The other is choos-
ing streamlines by locations, which shows the streamlines that pass
through a user-selected region (Section 5.2). We use these two meth-
ods to demonstrate the utility of our deformation model but note that
the selection of the focus streamlines is not limited to these two meth-
ods. For example, users can query all the streamlines by using some
geometric predicates, such as having their average curvature, torsion or
curl within a particular range. Because the focus streamlines may dis-
tribute over multiple screen locations, a single focus region enclosing
all the focus streamlines may be too big to display the focus stream-
lines tightly. Thus, in Section 5.3 we discuss how to group the focus
streamlines by their screen locations to form multiple convex focus
regions and apply deformation to each focus region independently.

In this paper, we use two 3D flow field datasets to generate stream-
lines as examples, including Hurricane Isabel and Solar Plume. Hur-
ricane Isabel was a strong hurricane in the west Atlantic region in
September 2003. The resolution of the dataset is 500 × 500 × 100.
Solar Plume is a simulation of the solar plume on the surface of the
Sun. The resolution of the dataset has a resolution of 126×126×512.

5.1 Streamline Bundles

To allow the user to select streamlines of interest, one approach is to
first bundle similar streamlines together. Because in general the flow
directions in local regions change smoothly, the corresponding stream-
lines will have similar shapes if they are spatially close to each other.
Based on this idea, we cluster the input streamlines into streamline
bundles based on their locations and shapes and show the bundles to
the user. The user can then select one or more bundles of streamlines
as the focus streamlines and use our deformation model to remove the
occlusion and reveal their spatial locations and the surrounding con-
text. Because a streamline can be long and may change its complexity
in different regions, we want to separate a streamline into multiple
segments so that the streamline segments with similar shapes are clus-
tered together. To segment the streamlines, we use a distribution-based
segmentation algorithm proposed by Lu et al. [14]. In their method,
the shape of a streamline is represented as a distribution of several flow
features such as curvature, torsion and curl. Then the streamline is split
at a vertex where the difference of the feature distributions between the
two halves is the maximum. The splitting is performed recursively un-
til the difference between the two halves is less than a threshold or the
segment is too short to be split. After this segmentation, within each
segment the complexity does not vary much.

After the segmentation, we cluster the streamline segments using
hierarchical clustering, which builds a tree structure and can output a
desired number of clusters selected by the user. We use the mean of
closest point distance [2] to compute the distance between two stream-
lines.

Fig. 7: Eight streamline bundles from the total 36 bundles of Isabel
dataset.

Figure 7 illustrates the user interface that lists some of the stream-
line bundles from the Isabel hurricane dataset. We can see a cluster
with circular streamlines from the hurricane eye region and some with
elongated streamlines from other regions. The user can select one or
several of them as the focus streamlines. A demonstration of using
streamline bundles to perform deformation is shown in the accompa-
nying video.

5.2 Streamline Selection by Locations

The focus streamlines can also be selected directly by their spatial
locations. Users sometimes are interested in the flow behavior in a
particular spatial region. In our system, users are allowed to place a
small axis-aligned cube in the domain, and then the streamlines pass-
ing through this region are selected as the focus streamlines.

As shown in Figure 8, the green cube represents the user-selected
region, and the streamlines that pass through this region are used as the
focus, while the surrounding context streamlines are deformed away.
The user can move the cube along its axes and the system can imme-
diately recalculate the focus streamlines and perform the deformation.

5.3 Grouping Focus Streamlines into Multiple Focuses

Different from using the interactive 3D lens where the focus is always
in a single local region, the user-selected feature streamlines may scat-
ter in different regions in the domain. For example, the user can select
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Fig. 8: Streamlines passing through the green cube are selected as the
focus. A point deformation model with a convex polygon shape focus
region is used in the deformation.

several clusters from different regions. In such a case, a single defor-
mation shape model may open up the space too much, which results in
a large empty space in the focus area. To fix this problem, instead of
using only one focus, we group the selected streamlines on the screen
into multiple focus areas based on their screen locations and generate
one focus area for each group. This allows us to generate tighter focus
areas and avoid deforming too many streamlines.

As we divide the feature streamlines into multiple groups, we make
sure that the groups do not overlap too much in screen space. Two
streamlines that are too close to each other are grouped together. We
use the axis-aligned bounding box (AABB) to represent one stream-
line or one group of streamlines to accelerate the grouping process. If
the AABBs of two groups of streamlines overlap or are closer than a
threshold in any dimension, we merge the two groups into one group.
We perform such grouping in a bottom-up manner, that is, we first
treat each streamline as a group, and then merge two groups if the two
groups’ AABBs are too close, until none of the groups are closer to
each other than a threshold. Note that we try to make the threshold of
minimum group distance large enough so that the transition regions of
two groups will not overlap. Thus, we prevent a vertex from receiving
displacements from two different deformation focuses.

Fig. 9: Multi-focuses deformation with the ellipse-shaped focus re-
gion.

In Figure 9, the streamlines from three vortex-like bundles in the
Isabel dataset are picked as the focus streamlines. Because the stream-
lines from two of the bundles on the right overlap with each other
on the screen, our grouping method places them in the same group.
Then two focus regions are generated from the two groups of the fo-
cus streamlines. Each focus region performs its deformation indepen-
dently. Suppose we instead use only one big focus region to enclose all
the focus streamlines; the streamlines between the two focus regions

in Figure 9 will all be moved away from their original positions, which
results in unnecessary loss of context. Thus, grouping streamlines in
screen space provides smaller focus regions and preserves more con-
text.

6 EXPLORATION

With the proposed deformation algorithm, as well as the interactive 3D
lens and focus streamline selection methods, we design an interactive
system for streamline exploration. In this section, we use our explo-
ration system to explore the Plume dataset in three different ways:
exploring the streamlines at different depths, from different view di-
rections, and at different locations.

(a) (b)

(c) (d)

Fig. 10: Exploring streamlines at different depths by the interactive
3D lens with different lens depths.

Exploration with Different Depths Different streamlines of dif-
ferent depths may be projected to the same screen location, and the
ones with smaller depths will occlude the ones with larger depths.
Our interactive 3D lens can help show the streamlines at all differ-
ent depths with reduced occlusion. To do this, we can exploit the 3D
lens that uses the line deformation model with open blinds to explore
the streamlines, as shown in Figure 10. In Figure 10a, initially the
lens does not touch any streamlines so no streamline is deformed. We
see a vertical vortex-like object close to the surface of the volume.
Then in Figure 10b, we push the lens into the volume by increasing
the lens depth until the lens touches the outer portion of the vortex. At
this point, the lens cuts the outer part of the vortex and pushes those
occluding streamlines away to reveal the inner structure of the vor-
tex. By continuing to push the lens into the volume, we move away
the vortex and see the blue horizontal streamlines in the center of the
volume, shown in Figure10c. Finally in Figure10d, we increase the
lens depth even more to remove the straight streamlines and a funnel
shaped vortex is revealed in the back of the volume.

Exploration with Different View Directions A 3D object may
look very different from different views; hence it is important to view
a 3D feature from different view directions to obtain a complete un-
derstanding of its shape. Because our deformation model is view-
dependent, we can adapt to the environment that surrounds a feature
and remove the occlusion from all viewing angles. Furthermore, the
user can get different context information from the different views. In
Figure 11, we view a streamline bundle from four different sides of
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(a) front (b) back

(c) left (d) top

Fig. 11: Views of a bundle from different view directions.

the volume. This bundle shows a turbulent flow structure with straight
tails. Figure 11a and Figure 11b give the views from the front and
back of the bundle respectively. We can compare both views of these
streamlines and see the slight difference at the center of the bundle.
Note that a yellow vortex is preserved at the upper-left of Figure 11a
but is not visible from the opposite view in Figure 11b. Figure 11c
is a view from the left of the volume. This view of the bundle looks
very different from what can be seen from the previous two viewing
directions. The contexts are almost all stretched long streamlines. Fig-
ure 11d views the focus streamlines from the top. We can see some
curvy vertical streamlines from this view. The yellow vortex visible
in the context of Figure 11a is again visible from this view and has a
more complete shape than that in Figure 11a.

(a) (b)

(c) (d)

Fig. 12: Exploring flow features at different locations. The streamline
picking cube moves bottom up from (a) to (d).

Exploration with Different Locations A location-based picking
tool allows the user to freely select streamlines passing through the

selected region and trace the streamlines both forward and backward
from that region. Here we illustrate the exploration of the streamlines
from different locations around a vortex. In Figure 12, the stream-
lines passing though the selected location indicated by the green cube
are shown. In Figure 12a, we place the cube at the bottom of the
space. A narrow vortex is selected and shown with some wider vortex-
shaped streamlines on the side. This image tells us that the flow pass-
ing through the selected region extends to the top and the side of the
surrounding area. When we move the cube up, a new set of focus
streamlines is selected as shown in Figure 12b. From the tails of the
focus streamlines on the left, we know that this selected location is
on the left side of the flow. We keep moving the cube up to see the
focus streamlines, as shown in Figure 12c. As can be seen, the flow
behaviors are different on the top and the bottom of the regions. The
vortex on the top is located in a small region, while the vortex at the
bottom extends to a wider area. Finally, we move the cube to the top
of the volume, shown in Figure 12d. From this location, we only see a
small vortex, and a few horizontal streamlines showing the flow mov-
ing along that direction. Note that the four images in Figure 12 all
preserve the context features, such as the purple vortex on the left and
the horizontal straight streamlines on the right. A demonstration of
this exploration is shown in the accompanying video.

7 IMPLEMENTATION DETAILS

This section describes the implementation details of our deformation
algorithm and the streamline exploration system.

As mentioned above, the focus area can be represented by a con-
vex polygon, which is computed from the convex hull of the focus
streamlines. Instead of computing the 2D convex hull from all the ver-
tices of the focus streamlines for each view, we first generate the 3D
convex hull of those vertices and then project the vertices of the 3D
convex hull to the screen. This projected 2D convex hull is then used
as the focus region. Projecting the 3D convex hull to the screen is
similar to computing the convex hull in 2D, as discussed in article [7].
Because the 3D convex hull is invariant to different view directions
and can be generated in the pre-processing stage if the feature stream-
lines are known already, the more expensive per-view operation can
be avoided. In our implementation, the CGAL library [1] is used to
extract the 2D/3D convex hull. B-spline is used to resample the 2D
convex hull and make it smoother. After the convex hull on the screen
is computed, an ellipse-shaped focus area is generated by CGAL.

To further speed up the computation, CUDA and the Thrust li-
brary [8] were used to perform the deformation computation. In our
implementation, each streamline vertex is assigned to a thread in GPU.
CUDA+OpenGL Interop is used to allow the CUDA program to get
the pointer of the vertex coordinates in the OpenGL vertex buffer ob-
ject(VBO) and change their locations during deformation.

During rendering, each bundle is assigned a unique color to distin-
guish the different features. Halo and lighting are added to the stream-
lines to provide the necessary depth cue.

8 PERFORMANCE

We measured the performance of our interactive streamline deforma-
tion system on a machine running Windows 7 with Intel Core i7 2600
CPU, 16 GB RAM, and an nVidia GeForce GTX 560 GPU that has
336 CUDA cores and 2GB of memory. Table 1 shows the results
of two test datasets, Plume and Isabel. Streamlines were first gener-
ated with random seeding for each dataset. The timing for generating
the streamline bundles described in Section 5.1 is listed as Streamline
bundling in the table. The distance computation took relatively more
time. But this is done in a preprocessing stage and thus does not affect
the rendering performance because the bundles are unchanged during
the visualization stage.

Besides streamline bundling, four different operations for preparing
the input to the deformation model described previously were tested
and the timing was collected: The Cut operation runs in the first defor-
mation iteration in the line model (Section 3.2), which cuts a stream-
line into multiple streamlines by a straight line. The Lens operation
runs in the interactive 3D lens mode (Section 4), which searches for
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Table 1: Performance test results.

Dataset Plume Isabel

Count Streamlines 921 609

Total vertices 317,814 522,436

Streamline bundling Segmentation 4.8 5.6

(seconds) Distance measure 55 142

Clustering 0.49 0.19

Operations for Cut 22 36

preparing deformation Lens 6 9

inputs (ms) Location 7 7

Grouping 8 13

Deformation (ms) Ellipse 0.67 1.08

Convex Polygon 13.8 25.1

Line 0.81 1.27

Frame Rate (FPS) Ellipse 536 347

Convex Polygon 58.3 35.4

Line 483 293

the streamlines that intersect the lens, and is done only when the lens
or the view is changed. The Location operation runs in the streamline
selection stage by the location mode (Section 5.2), which searches for
the streamlines that pass through the cubic region only after the cube
location is changed. The Grouping operation (in Section 5.3) groups
the focus streamlines based on their screen coordinates, which is called
after the selected streamlines or the scene changes. The results show
that these operations only take a few milliseconds, and they are only
executed when some settings are changed. Therefore, they do not af-
fect the overall performance of our algorithm much.

The deformation operation is performed at every frame, so its speed
is crucial for the interactivity of the system. We measured the defor-
mation computation time and the overall frame rates for the three mod-
els described in Section 3.2: the point model with the ellipse bound-
ing shape (Ellipse), the point model with the convex-polygon bound-
ing shape (Convex polygon), and the line model with the open blinds
bounding shape (Line). Note that the overall frame rate reflects the
speed of our algorithm in all stages, including the CUDA-based defor-
mation operation, data transfer, and coordinates transformation. The
point model with the ellipse focus takes the shortest deformation time
and has the highest frame rate, while the line model is slightly slower.
They are both suitable for real-time performance. The point model
with the convex polygon as its focus area is much slower for defor-
mation and has a comparatively lower frame rate. This is because
both the shapes of the ellipse and the open blinds have an analytical
representation, but the convex polygon is represented by a point set.
With the point set, we have to iterate though every point to compute
T in Equation 4. Although this model is comparatively slower, it is
still moderately interactive in our implementation running at at least
30 frame per second (FPS). Finally, we can also see that the Plume
dataset has a higher frame rate than the Isabel dataset. This is because
the deformation operates on each vertex and the Plume dataset has a
fewer number of vertices.

9 CONCLUSION AND FUTURE WORK

We have presented a streamline deformation technique to achieve
occlusion-free focus+context streamline visualization, by displacing
the occluding streamline vertices in screen space. Our deformation
model has the following advantages:

• Creates an occlusion-free view from arbitrary view directions,
• Preserves shapes of the deformed streamlines with minimum dis-

tortion,
• Provides smooth transition when distorting the deformed stream-

lines,
• And is well-suited for real-time GPU implementation.
In the paper we describe the deformation model and its two varia-

tions regarding the shape model used in deformation–the point model
and the line model. To allow the user to freely explore the flow field
without prior knowledge, our system provides an interactive 3D lens

to move away the streamlines in a user-specified screen area at a given
depth. Our system also allows the user to define the focus streamlines
by selecting streamline bundles or by finding the streamlines that pass
through a local region. In addition, our system can generate multi-
ple focus regions by grouping the selected streamlines based on their
screen locations. We develop an interactive streamline exploration sys-
tem based on our deformation model. Our deformation algorithm is
easy to parallelize and can achieve high performance using GPUs, and
thus can be used for interactive exploration of flow datasets.

One limitation of our deformation model is that some deformed
streamlines close to the center of the focus region may still get larger
distortion, so the original shapes of these streamlines cannot be well
preserved. Our future work is to apply a combination of deformation
and transparency to solve the occlusion problem. We can use trans-
parency on the streamlines whose shapes could not be well preserved
by the deformation. More interactive tools can be added to our ex-
ploration system to allow more flexible feature exploration in screen
space.
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