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Abstract � Supervised speech separation has achieved considerable success recently. Typically,

a deep neural network (DNN) is used to estimate an ideal time-frequency mask, and clean

speech is produced by feeding the mask-weighted output to a resynthesizer in a subsequent

step. So far, the success of DNN-based separation lies mainly in improving human speech

intelligibility. In this work, we propose a new neural network that directly reconstructs the

time-domain clean signal through an inverse fast Fourier transform layer. The joint training of

speech resynthesis and mask estimation yields signi�cantly improved objective quality while

maintaining the objective intelligibility performance. The proposed system signi�cantly out-

performs a recent non-negative matrix factorization based separation system in both objective

speech intelligibility and quality.
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1 Introduction

Monaural speech separation is a long-standing problem with many important applications,

such as robust automatic speech recognition and mobile speech communication. In low signal-

to-noise ratio (SNR) conditions, monaural separation is particularly challenging when facing

non-stationary noises. Compared to traditional speech enhancement [11], data-driven tech-

niques have shown substantial promise in these challenging acoustic conditions [15,17].

A successful new trend is supervised speech separation, as exempli�ed by its recent demon-

stration in improving speech intelligibility of both normal-hearing [9] and hearing-impaired

listeners [4] in noisy environment. In its simplest form, supervised separation learns a map-

ping from noisy mixtures to an ideal time-frequency (T-F) mask. The estimated ideal mask

is then used to weight the mixture in the T-F domain, and the resulting output along with

the mixture phase is passed into a separate resynthesizer to produce the time-domain speech

signal. Recently proposed deep neural network (DNN) based separation generalizes well to

various test conditions if properly trained [17, 20]. Once trained, separation operates in a

frame-by-frame fashion, making it amenable to real-time implementation.

To improve the quality of separated speech, this study proposes to directly reconstruct the

time-domain clean signal, which is the ultimate target of interest. Although touched upon

before [14, 16], using a standard feedforward network to learn the mapping to clean signal

does not seem to work well. To tackle this, we propose a new network that incorporates the

domain knowledge of speech resynthesis by adding an inverse fast Fourier transform (IFFT)

layer before the output layer. The speech resynthesis and mask estimation can now be jointly

trained in a single neural network. As a result, the mask is estimated (learned) in a way that

directly impacts the �nal time-domain signal reconstruction, leading to improved quality.

This paper is organized as follows. We brie�y review the supervised speech separation

framework in the next section. We introduce the proposed network architecture in Section 3,

and the experimental results are described in Section 4. The last section concludes this paper.

2 Supervised Speech Separation

Supervised speech separation employs data-driven, supervised learning for the separation task,

unlike traditional signal processing methods. First, acoustic features are extracted from the

noisy mixture. These features are fed into a learning machine, typically a deep neural network,

where training targets are provided by the ideal mask of interest.

The ideal binary mask (IBM) is typically used as the training target due to its simplicity

and large intelligibility improvements (e.g. [1,2,10]). The IBM is a binary matrix constructed

from premixed signals. We set the value of a T-F unit to 1 if the local SNR is greater than a
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Figure 1: Schematic diagram of the proposed system. As illustrated, the time-domain signal resynthesis
module is part of the network and jointly trained with mask estimation via the backpropagation algorithm.

local criterion (denoted as LC) and 0 otherwise. That is:

IBM(t, f) =

{
1, if SNR(t, f) > LC

0, otherwise,

where SNR(t, f) denotes the local SNR within the T-F unit at time t and frequency f .

Estimating the IBM has been shown to improve speech intelligibility [4,9], but not necessarily

speech quality [19]. Following common practice, we use a 64-channel Gammatone �lterbank

to derive the IBM, and set LC to be 5 dB less than the input SNR to preserve adequate

speech information.

Alternatively, our recent work [19] suggests to predict the ideal ratio mask (IRM), which

is shown to improve both objective intelligibility and quality. The IRM is de�ned as:

IRM(t, f) =

(
S2(t, f)

S2(t, f) +N2(t, f)

)β
,

where S2(t, f) and N2(t, f) denote the speech and noise energy in a particular T-F unit. β

is a tunable parameter to scale the mask. One can see that the IRM is closely related to the

frequency-domain Wiener �lter [11]. In this study, we use β = 1 as it achieves the best results

in terms of speech quality. The IRM is also derived using a 64-channel Gammatone �lterbank.

3 Proposed Network Architecture

Figure 1 illustrates the architecture of the proposed system, which is similar to a standard DNN

mask estimator with two key di�erences. First, the process of converting from the frequency

domain to time domain is incorporated in the network. This domain knowledge enables the
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reconstruction of the �nal time-domain signal in one pass and makes learning much easier.

Second, there is no prede�ned ideal mask for training. Instead, the last hidden layer is treated

as a masking layer and is automatically learned via the backpropagation algorithm. This

can be viewed as a form of task-dependent masking (see also [12]). For simplicity, masking

is carried out in the discrete Fourier transform (DFT) domain, so that resynthesis can be

conveniently implemented as an IFFT. In the following, we describe the forward pass and

backpropagation of the proposed network in detail.

3.1 Forward Pass

For the input at frame t, we denote ht as the corresponding network activations from the

last hidden layer, and yt the corresponding DFT-domain mixture magnitude. For simplicity,

we set the analysis FFT length L to the frame length. Let d = L/2, and yt is thus a d + 1

dimensional vector. We treat ht as the mask at frame t. Therefore, the masked magnitude,

or the estimated clean speech magnitude, is obtained as:

mt = ht ◦ yt, (1)

where ◦ denotes element-wise multiplication. Note that for Eq. (1) to be valid, the last hidden

layer ht must also be of dimension d + 1, whereas all other hidden layers do not have this

constraint. The estimated spectral magnitude along with the corresponding mixture phase

are fed into an IFFT layer, generating the time-domain waveform in frame t at the output

layer of the network. Speci�cally, the estimated clean speech ŝt is obtained as follows:

ŝt = IFFT
([

ct, flipud
(
conj

(
ct2:d
))]T)

, (2)

where ct is the complex spectrum, i.e.,

ct = mt ◦ eipt . (3)

Here, pt is the phase angle (in radians) at frame t, and i the imaginary unit. `flipud' denotes an

operation that �ips a vector upside down, and `conj' the complex conjugation. The subscript

m : n denotes an operation that slices a vector from index m to n inclusively. Essentially,

Eq. (2) �rst produces a conjugate symmetric version of ct, which is used as input for the

subsequent IFFT to generate real time-domain signal. To isolate the impact of phase, we use

mixture phase in this work. Estimated clean phase can surely be used and is expected to

further improve the results.

The standard mean squared error between the estimated and clean signal is used as the loss

function for the backpropagation training. In testing, we use the trained network to directly

predict the (windowed) clean waveform snippets in each frame, which are overlap-added to

produce the �nal time-domain reconstruction of the entire utterance.
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3.2 Backpropagation

The proposed network architecture is trainable via the standard backpropagation algorithm,

as the IFFT layer, i.e. Eq. (2), can be easily written in a set of matrix operations with �xed

weight matrices. This is described as follows.

To begin with, we �rst de�ne a permutation matrix

P(d−1)×(d+1) =
[
0(d−1)×1 R(d−1)×(d−1) 0(d−1)×1

]
,

where 0(d−1)×1 is an all zero column vector of dimension d − 1, and R(d−1)×(d−1) is the 90

degrees counterclockwise rotation of the identity matrix I(d−1)×(d−1). Then, the conjugate

symmetric complex spectrum can be expressed as[
mt ◦ eipt

P(d−1)×(d+1)

(
mt ◦ e−ipt

)] . (4)

By expressing the inverse DFT operation in matrix form and plugging in Eq. (1), we can

rewrite Eq. (2) as

ŝt = DL×L

[
ht ◦ yt ◦ eipt

P(d−1)×(d+1)

(
ht ◦ yt ◦ e−ipt

)] , (5)

where DL×L is the inverse DFT matrix of length L, i.e. Dnk = ei
2π
L
(n−1)(k−1)/L for n, k =

1, 2, · · · , L, denoting the matrix element in row n and column k.

The inverse DFT matrix and the permutation matrix are prede�ned, and can be interpreted

as �xed weight matrices of the network. Based on Eq. (5) and the loss function, one can easily

derive the error signals with respect to the last hidden layer ht. Consequently, the gradients

with respect to the tunable weights can be derived via the delta rule. Note that although

there are no tunable weights in the IFFT layer, it a�ects the gradients to the downstream

layers. As a result, the hidden mask ht is automatically learned in light of the loss function

of interest. In addition, it is known that even clean magnitude may not lead to clean speech

signal due to noisy phase, which is especially true for low SNR mixtures. Therefore, another

perspective is that the proposed network tries to learn an optimal masking function given the

noisy (or the supplied) phase, di�erentiating itself from typical separation systems that are

phase agnostic.

4 Experiments

4.1 Experimental Settings

All signals are sampled at the 16 kHz rate, and are framed by 20-ms windows and 10-ms frame

shifts. Therefore, the length of the time-domain signal snippet in each frame is 320 samples.
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We use 2000 randomly picked utterances from the TIMIT [8] training part as the training

utterances. We use four types of non-stationary noises as the training and test noises: a factory

noise, a babble noise, an engine noise, and an operation room noise (called �oproom�). Each

noise is about 4 minutes long, and the �rst half is used to mix with the training utterances

at -5 and 0 dB to create the training set. The TIMIT core test set, which consists of 192

utterances from unseen speakers, is used to mix with the second half of each noise to create

the respective test sets at -5, 0, and 5 dB SNR, where the 5 dB SNR is unseen. Dividing the

noises into two halves ensures that test noise segments are unseen. To further demonstrate

the e�ectiveness of our method, we train and test on the IEEE corpus [7] recorded by a male

speaker, where 600 IEEE utterances are used for training and 60 new ones for testing. We use

two new noises, i.e. a di�erent babble noise (called �babble2�) and a cafeteria noise, to create

the training and test mixtures as done for the TIMIT corpus. The new noises are about 10

minutes long each.

We call the proposed system IFFT-DNN. We �rst compare with two existing DNN-based

supervised speech separation systems, which predict the IBM (IBM-DNN) and the IRM (IRM-

DNN), respectively. We then compare with a baseline system DT-DNN that directly predicts

the clean signal using the standard DNN. All systems, except for DT-DNN, use a comple-

mentary feature set [18] combined with the Gammatone �lterbank energy as input features.

DT-DNN is trained on the raw noisy signal, which performs better than using the comple-

mentary feature set. The DNNs in all systems have three hidden layers, each having 1024

recti�ed linear units (ReLUs), and are trained using adaptive stochastic gradient descent [3]

with dropout regularization [5]. A special case is IFFT-DNN, where the last hidden layer has

161 linear units, as their activations are used to mask the mixture magnitude of the same

length. We use linear units because clean speech magnitude can be greater than its mixture

magnitude. Finally, to put the performance of IFFT-DNN in perspective, we compare with

a recent non-negative matrix factorization (NMF) based system ASNA-NMF [15], which uses

an active-set Newton algorithm and models a sliding window of 5 frames of DFT magnitudes.

ASNA-NMF is trained on the same training set as used for the other systems.

To evaluate the objective speech quality, we use the composite measure (OVRL) proposed

in [6], which shows a high correlation with subjective mean opinion scores. We evaluate the

objective speech intelligibility using the short-time objective intelligibility (STOI) measure

[13], which ranges from 0 to 1 and has been shown to be highly correlated with human

intelligibility scores. Both OVRL and STOI are obtained by comparing separated speech with

the corresponding clean speech.

4.2 Results

The separation results on the -5, 0 and 5 dB TIMIT test sets are listed in Table 1, 2, and 3,

respectively. In terms of objective speech quality, most systems improve over the unprocessed

6



OSU Dept. of Computer Science and Engineering Technical Report #11, 2014

H
id

de
n 

U
ni

t

Frame
20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

Figure 2: Visualization of the last hidden layer activations (masking layer) obtained from a TIMIT utterance
mixed with the factory noise at 5 dB.

Table 1: Performance comparisons on -5 dB TIMIT mixtures. Boldface indicates best result

System
Factory Babble Engine Oproom

OVRL STOI OVRL STOI OVRL STOI OVRL STOI

Mixture 1.62 0.54 1.39 0.55 1.41 0.57 1.44 0.59

IBM-DNN 1.66 0.66 1.35 0.63 1.14 0.78 1.40 0.77

IRM-DNN 1.62 0.67 1.61 0.62 1.61 0.78 1.73 0.77

IFFT-DNN 1.70 0.65 1.86 0.61 2.41 0.77 2.38 0.75

DT-DNN 1.41 0.50 1.65 0.44 1.76 0.55 1.76 0.55

ASNA-NMF 1.70 0.60 1.71 0.57 2.15 0.71 1.99 0.68

mixtures in -5 dB. Due to the use of low LC values and binary gains, IBM-DNN obtains

relatively worse quality results compared to the other DNN systems. IRM-DNN uses ratio

masking and signi�cantly outperforms IBM-DNN in OVRL. The proposed system, IFFT-

DNN, further improves upon IRM-DNN signi�cantly. For example, for the -5 dB engine

noise, IFFT-DNN outperforms IRM-DNN by 0.8 in OVRL. A closer look (results not shown)

indicate that IFFT-DNN in general has better noise suppression capability without further

distorting target speech. DT-DNN uses a standard DNN to predict the time-domain clean

signal. However, its performance is inferior to masking-based systems and IFFT-DNN. With-

out explicitly embedding the resynthesis process into the network, the parametrization of the

standard DNN does not seem amenable to e�cient learning on time-domain signals. Although

it is also a data-driven system, ASNA-NMF does not work well in low SNR conditions; In

particular, it is ine�ective in noise suppression, as indicated by the poor performance in noise

suppression (not shown), which in turn leads to low overall performance.

The performance trends in 0 and 5 dB SNR conditions are similar to those in -5 dB,

with IRM-DNN outperforming IBM-DNN and DT-DNN performing poorly. Similarly, IFFT-

DNN signi�cantly outperforms all the other DNN systems as well as ASNA-NMF. Figure 2

visualizes the learned mask (the last hidden layer activations) of a TIMIT utterance mixed
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Table 2: Performance comparisons on 0 dB TIMIT mixtures

System
Factory Babble Engine Oproom

OVRL STOI OVRL STOI OVRL STOI OVRL STOI

Mixture 2.05 0.65 1.81 0.67 1.79 0.69 1.93 0.70

IBM-DNN 2.12 0.78 1.59 0.76 1.15 0.85 1.34 0.83

IRM-DNN 2.22 0.78 2.14 0.76 2.10 0.85 2.23 0.83

IFFT-DNN 2.30 0.78 2.40 0.75 2.81 0.85 2.73 0.82

DT-DNN 1.64 0.56 1.83 0.52 1.93 0.60 1.93 0.60

ASNA-NMF 2.30 0.73 2.21 0.71 2.62 0.80 2.45 0.78

Table 3: Performance comparisons on 5 dB TIMIT mixtures

System
Factory Babble Engine Oproom

OVRL STOI OVRL STOI OVRL STOI OVRL STOI

Mixture 2.55 0.77 2.32 0.77 2.25 0.80 2.44 0.79

IBM-DNN 2.56 0.86 1.80 0.86 1.09 0.89 1.09 0.86

IRM-DNN 2.78 0.86 2.63 0.86 2.39 0.90 2.43 0.88

IFFT-DNN 2.82 0.86 2.83 0.85 3.15 0.91 3.11 0.87

DT-DNN 1.72 0.59 1.90 0.56 1.97 0.62 1.96 0.62

ASNA-NMF 2.79 0.82 2.67 0.82 3.04 0.88 2.88 0.85

with the factory noise at 5 dB SNR.

It is important that the improvement in speech quality does not come at the expense of

degraded speech intelligibility. In terms of STOI, we can see that IBM-DNN and IRM-DNN

perform similarly. At -5 dB, IFFT-DNN is slightly worse than IRM-DNN (about 2%), whereas

in 0 and 5 dB, IFFT-DNN achieves almost the same STOI results as IRM-DNN. DT-DNN

fails to improve objective intelligibility in all conditions. ASNA-NMF also fails to compete

with masking-based systems and IFFT-DNN, even in high SNR conditions.

To further evaluate our network, we train and test on a di�erent corpus with two di�erent

non-stationary noises. The averaged results on the IEEE corpus recorded by a male speaker

are shown in Table 4. Again, IFFT-DNN consistently outperforms IRM-DNN in OVRL, while

still achieving comparable STOI results. In terms of STOI, ASNA-NMF is substantially worse

than supervised speech separation systems in general.

5 Conclusions

We have proposed a novel supervised separation system aiming to improve the sound quality

of the separated speech. The key idea is to combine speech resynthesis and mask estimation

in a single neural network and have them jointly trained. The resulting system, IFFT-DNN,

takes advantage of both T-F masking and direct time-domain signal reconstruction. Results

in various test conditions indicate that IFFT-DNN signi�cantly improves objective speech

quality while achieving comparable intelligibility results compared to a very strong baseline

IRM-DNN. IFFT-DNN also signi�cantly outperforms a state-of-the-art NMF based separation

system in terms of both quality and intelligibility.

Further work will explore improvements such as using enhanced phase, employing better
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Table 4: Performance comparisons on the male IEEE corpus. Results averaged over -5, 0, and 5 dB mixtures

System
Babble2 Cafeteria

OVRL STOI OVRL STOI

Mixture 1.97 0.67 1.68 0.66

IRM-DNN 2.06 0.84 1.79 0.78

IFFT-DNN 2.53 0.82 2.38 0.78

ASNA-NMF 2.24 0.71 2.21 0.69

loss functions for time-domain signals, and adapting the resynthesis to auditory frequency

scales. Finally, we envision that the proposed architecture provides a means to implement

an end-to-end (i.e. waveform in, waveform out) speech separation system, where raw feature

extraction, T-F masking, and speech resynthesis are all trained in one pipeline.
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