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Abstract – Voice activity detection (VAD) is an important frontend for many applications,
such as speech communication and speech recognition. How to improve the performance of
VAD at low signal-to-noise ratios (SNRs) is a well-known challenge. Recently, machine learn-
ing based VADs have shown promising performance. Here we describe a new VAD method
based on boosted deep neural networks (bDNNs), that first generates multiple base predic-
tions on a single frame from only one DNN and then aggregates the base predictions for a
better prediction of the frame. Moreover, we employ a new acoustic feature, multi-resolution
cochleagram (MRCG), that concatenates the cochleagram features at multiple spectrotem-
poral resolutions and shows superior speech separation results over many acoustic features.
Experimental results show that the bDNN-based VAD with the MRCG feature outperforms
state-of-the-art VADs by a considerable margin. Our findings imply that boosting contextual
information is important for improving the performance of VAD at low SNRs. Furthermore,
the general ideas of boosting and multi-resolution may be useful to related speech processing
tasks.

Index Terms – Boosting, cochleagram, deep neural network, MRCG, voice activity detection.
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1 Introduction

Voice activity detection (VAD) is an important preprocessor for many speech processing sys-
tems. For example, it improves the efficiency of speech communication systems by detecting
and transmitting only speech signals. It helps speech recognition systems [6, 24, 45] by fil-
tering out silence and noise segments. Perhaps the most challenging problem of VAD is to
make it perform in low signal-to-noise ratio (SNR) environments. Early research focused on
acoustic features, including energy in the time domain, pitch detection, zero-crossing rate, and
several spectral energy based features such as energy-entropy [16], spectral correlation [22],
cepstrum [36], higher-order statistics [23, 27], and spectral divergence [30]. Later on, effort
shifted to statistical signal processing. These techniques make model assumptions on the
distributions of speech and background noise (usually in the spectral domain) respectively,
and then design statistical algorithms to dynamically estimate the model parameters. Typ-
ical model assumptions include the Gaussian distribution [20, 38], Laplace distribution [13],
Gamma distribution [3], or their combinations [3,29]. The most popular parameter estimation
method is the minimum mean square error estimation [12]. In addition, long-term contex-
tual information is shown to be useful in improving the performance [30, 32]. But statistical
model based methods have limitations. First, model assumptions may not fully capture data
distributions since the models usually have too few parameters. Second, with relatively few
parameters, they may not be flexible enough in fusing multiple acoustic features. Third, they
estimate parameters from limited observations, which may not fully utilize rich information
embodied in speech corpora.

Recently, supervised learning methods are becoming more popular, as they have the poten-
tial to overcome the limitations of statistical model based methods. Typical models for VAD
are grouped to two classes—nonparametric methods (the number of parameters grows with
the number of data points) and parametric methods (the number of parameters is predefined).
Nonparametric models include support vector machines [11,18,33,37], sparse coding [41], and
spectral clustering [25]. Parametric models include Gaussian models [35, 39, 44, 46], Gaussian
mixture models [25], recursive neural networks [17], and deep neural networks (DNNs) [47].

In this paper, we investigate supervised learning for VAD at low SNRs. The main contri-
butions of this paper are summarized as follows:

• We propose a new deep learning model for VAD, named boosted deep neural network
(bDNN). The model first generates multiple base predictions on each frame by boosting
the contextual information of the frame, and then aggregates the base predictions for
a stronger prediction. Results show that it can significantly outperform DNN-based
VAD [47] without increasing computational complexity.

• We employ a new acoustic feature for VAD, named multi-resolution cochleagram (MRCG)
[4]. This feature concatenates multiple cochleagram features calculated at different spec-
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tral and temporal resolutions. A recent study has demonstrated that it outperforms
many acoustic features for speech separation. Our results show that the MRCG feature
outperforms a concatenation of 11 commonly used acoustic features in [47] and is at least
as good as its own components given the same DNN model.

• The boosting idea in bDNN and the multi-resolution scheme in MRCG, we believe,
can be applied to other speech processing tasks, such as speech separation and speech
recognition.

Empirical results on the AURORA4 corpus [28] show that the bDNN-based VAD with the
MRCG feature outperforms 5 comparison methods by a considerable margin, including a
recent DNN-based VAD method [47].

The paper is organized as follows. In Section 2 , we briefly introduce related work. In
Section 3, we present the bDNN model. In Section 4, we introduce the MRCG feature. In
Section 5, we present systematic evaluations and comparisons. Finally, we conclude in Section
6.

2 Related Work

2.1 Deep Learning

DNNs [14, 34], a.k.a. multilayer perceptrons with more than one hidden layer, learn more
abstract representations from the original data with more layers of nonlinear transform of
data. Their power lies in the distributed representation of each layer and a hierarchical
structure of the layers. The advantage of a distributed representation over a non-distributed
or local one (e.g., Gaussian mixture model) is that the variable that can be represented locally
by N bits can be represented much more compactly by only log2N bits via a distributed
representation. The merit of the deep (i.e, hierarchical) models over shallow ones (i.e., the
models containing only one hidden layer) is that “functions that can be compactly represented
by a depth k architecture might require an exponential number of computational elements to
be represented by a depth k − 1 architecture.” [1].

A DNN is usually trained by the backpropagation algorithm [34]. Recent DNN development
started from a novel pretraining method [14] which alleviates the problems of local minima
and vanishing gradients. However, subsequent studies showed that, when the dataset was
large enough, DNN could be trained successfully without pretraining [40]. More recently,
many regularization methods have been proposed to deal with the overfitting problem of
DNN training, such as dropout and rectified linear (hidden) unit [5]. In this paper, we adopt
the contemporary DNN structure and training methods.
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2.2 Bootstrap Resampling

Bootstrap resampling is a fundamental technique of statistics [9,10]. The key idea of boosting
is to extract multiple subsets (called bootstrap samples) from the original data distribution,
so that when aggregating the results produced from the subsets, the variance of the results is
smaller than that produced from the original data only. Ensemble learning [2, 8], one of the
major branches of machine learning, started from boosting. It learns a strong classifier by
grouping the predictions of multiple weak classifiers. Its cornerstone is the meaningfulness of
weak classifiers and large diversity among the classifiers. The word “meaningfulness” implies
that weak classifiers have to be stronger than random guessing. The word “diversity” means
that when weak classifiers predict an identical pattern, their predictions are different from
each other in terms of errors.

Generally, there are four types of ensemble learning for enlarging the diversity [8]: (i)
manipulating training examples, (ii) manipulating input features, (iii) manipulating training
parameters, and (iv) manipulating output targets. Representative methods include stacked
generalization, bagging [2], Adaboost, and random forests. In this paper, we will adopt a
bagging-like scheme since Adaboost is not robust to noise.

3 Boosted DNN

In this section, we present the bDNN algorithm for the VAD problem. The key idea of bDNN
is to generate multiple different base predictions on a single frame, such that when the base
predictions are aggregated, the final prediction is boosted to be better than any of the base
predictions. Our method can be simply justified as follows. A given frame is viewed as a
component of multiple large observations. When we extract the base predictions of the given
frame from the predictions of the large observations, the base predictions are different from
each other since they are generated from different contextual information. Note that our
boosted method is a general framework but not limited to DNN-based VADs.

3.1 Training Phase

Suppose we have a manually-labeled training speech corpus that consists of V utterances,
denoted as X × Y = {{(xk, yk)}Kv

k=1}Vv=1, where xk ∈ Rd is the kth frame of the vth utterance
and yk ∈ {−1, 1} is the label of xk. If xk is a noisy speech frame, then yk = 1; if xk is a
noise-only frame, then yk = −1. Without loss of generality, we further represent the corpus
by X × Y = {(xm, ym)}Mm=1 where M =

∑T
t=1Kt.

We aim to train a DNN model for VAD, which consists of two steps. The first step
expands each speech frame x′m = [xT

m−W ,x
T
m−W+1, . . . ,xm, . . . ,x

T
m+W−1,x

T
m+W ]T and y′m =

[ym−W , ym−W+1, . . . , ym, . . . , ym+W−1, ym+W ]T , where W is a user defined half-window size.

4



OSU Dept. of Computer Science and Engineering Technical Report #08, 2014

The second step uses the new training corpus {(x′m,y′m)}Mm=1 to train a DNN model that has
(2W + 1)d input units and 2W + 1 output units.

3.2 Test Phase

Suppose we have an unlabeled test speech corpus {xn}Nn=1 and a trained DNN model. We aim
to predict the label of frame xn, which consists of three steps as shown in Fig. 1. The first
step expands xn to a large observation x′n as done in the training phase, so as to get a new
test corpus {x′n}Nn=1 (Fig. 1a). The second step gets the (2W + 1)-dimensional prediction of

x′n from the DNN, denoted as y′n =
[
y
(−W )
n−W , y

(−W+1)
n−W+1 , . . . , y

(0)
n , . . . , y

(W−1)
n+W−1, y

(W )
n+W

]T
(Fig. 1b).

The third step aggregates the results to predict the soft decision of xn, denoted as ŷn (Fig.
1c):

ŷn =

∑W
w=−W y

(w)
n

2W + 1
(1)

Finally, we make a hard decision by

ȳn =

 1 if ŷ ≥ η

−1 otherwise
(2)

where η ∈ [−1, 1] is a decision threshold tuned on a development set according to some
predefined performance measurement.

When the training corpus and the size of the sliding windowW are both large, one can pick
a subset of the channels within the window instead of all channels, based on our observation
that the window size has a larger impact on the performance than the total number of channels
within the window. In this paper, we pick the channels indexed by {−W,−W + u,−W +

2u, . . . ,−1 − u,−1, 0, 1, 1 + u, . . . ,W − 2u,W − u,W}, where u is a user defined integer
parameter.

3.3 DNN Model

We adopt contemporary DNN training methods, and use the area under the receiver operating
characteristic curve (AUC) as the performance metric for selecting the best DNN model in
the training process.

The template of deep models is described as follows:

x(L) = f(L)
(
. . . f(l)

(
. . . f(2)

(
f(1)

(
x(0)
))))

(3)

where l denotes the lth hidden layer from the bottom, and x(0) is the input feature vector.
Different from [47], we use the rectified linear unit for hidden layers, sigmoid function for
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DNN

a

b
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Figure 1: Test phase of bDNN. (a) Expanding xn to a new feature (included in the dashed rectangle, denoted
as x′n) given the half-window size W . (b) Predicting labels of x′n to yield a (2W + 1)-dimensional vector
(included in the dashed rectangle) by DNN. (c) Aggregating the prediction results by the given equation from
the soft output units drawn in the bold dashed rectangles of Fig. 1b.
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Algorithm 1 AUC calculation.
Input: Number of training data points n, manual label vector y = [y1, . . . , yn]

T , and predicted soft values
ŷ = [ŷ1, . . . , ŷn]

T

Initialization: a = 0, b = 0, swapped_pairs = 0
Output: AUC A
1: Sort ŷ in descending order, denoted as ŷ∗, and reorder y along with ŷ, denoted as y∗
2: for i = 1, . . . , n do
3: if y∗i > 0 then
4: swapped_pairs← swapped_pairs+ b
5: a← a+ 1
6: else
7: b← b+ 1
8: end if
9: end for

10: A = 1− swapped_pairs
ab

the output layer, and a dropout strategy to specify the DNN model [5]. These regulariza-
tion strategies aim to overcome the overfitting problem of DNN. In addition, we employ the
adaptive stochastic gradient descent [7] and a momentum term [40] to train the DNN. These
training schemes accelerate traditional gradient descent training and facilitate large-scale par-
allel computing. Note that no pretraining is used in our DNN training.

AUC can be calculated efficiently by Algorithm 1. The reasons why we use AUC as the
performance metric are as follows. First, AUC measures the receiver operating character-
istic (ROC) curve quantitatively. The ROC curve is considered as an overall metric of the
VAD performance rather than the simple detection accuracy, since the speech-to-nonspeech
ratio is usually imbalanced, and also one usually tunes the decision threshold of VAD for
specific applications. Second, AUC matches the metric of speech Hit rate minus false alarm
rate (HIT−FA) closely. HIT−FA is considered as a good metric for speech separation as it
correlates well with human speech intelligibility [21].

4 MRCG Feature

In this section, we introduce the MRCG feature which was first proposed in [4]. This feature
has shown its advantage over many acoustic features in a speech separation problem.

The key idea of MRCG is to incorporate both local information and global information
through multi-resolution extraction. The local information is produced by extracting cochlea-
gram features with a small frame length and a small smoothing window (i.e., high resolutions).
The global information is produced by extracting cochleagram features with a large frame
length or a large smoothing window (i.e., low resolutions). It has been shown that cochlea-
gram features with a low resolution, such as frame length = 200 ms, can detect patterns of
noisy speech better than that with only a high resolution, and features with high resolutions
complement those with low resolutions. Therefore, concatenating them together is better than
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Frame shift = 10 ms
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Figure 2: The MRCG feature. (a) Diagram of the process of extracting a 256-dimensional MRCG feature.
“(2W + 1)× (2W + 1) square window” means that the value of a given time-frequency unit is replaced by the
average value of its neighboring units that fall into the window centered at the given unit and extending in the
axes of time and frequency. (b) Expanding MRCG to a 768-dimensional feature that consists of the original
MRCG feature, its Delta feature and Delta-Delta feature. (c) Calculation of the 64-dimensional cochleagram
features in detail.

using them separately.
As illustrated in Fig. 2a, MRCG is a concatenation of 4 cochleagram features with different

window sizes and different frame lengths. The first and fourth cochleagram features are
generated from two 64-channel gammatone filterbanks with frame lengths set to 20 ms and
200 ms respectively. The second and third cochleagram features are calculated by smoothing
each time-frequency unit of the first cochleagram feature with two square windows that are
centered on the unit and have the sizes of 11× 11 and 23× 23. Because the windows on the
first and last few channels (or frames) of the two cochleagram features may overflow, we cut
off the overflowed parts of the windows. Note that the multi-resolution strategy is a common
technique not limited to the cochleagram feature [15,26].

After calculating the 256-dimensional MRCG feature, we further calculate its Deltas and
double Deltas, and then combine all three into a 768-dimensional feature (Fig. 2b). A Delta
feature is calculated by

∆xn =
(xn+1 − xn−1) + 2(xn+2 − xn−2)

10
(4)

where xk is the kth unit of MRCG in a given channel. The double-Delta feature is calculated
by applying equation (4) to the Delta feature.

The calculation of the 64-dimensional cochleagram feature in Fig. 2a is detailed in Fig.
2c. We first filter input noisy speech by the 64-channel gammatone filterbank, then calculate
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the energy of each time-frequency unit by
∑K

k=1 s
2
c,k given the frame length K, and finally

rescale the energy by log10(·), where sc,k represents the kth sample of a given frame in the cth
channel [43].

5 Evaluation Results

In this section, we report the results of the proposed method and analyze how different settings
of bDNN and MRCG affect the performance. The advantage of the boosted method over an
unboosted one is shown in Section 5.4. The advantage of MRCG over its components is shown
in Section 5.5.

5.1 Experimental Settings

5.1.1 Dataset

We used the clean speech corpus of AURORA4 [28]. The clean speech corpus consists of
7,138 training utterances and 330 test utterances. The sampling rate is 16 kHz. We randomly
selected 300 and 30 utterances from the training utterances as our training set and development
set respectively, and used all 330 test utterances for testing. We chose three noises from the
NOISEX-92 noise corpus—“babble”, “factory”, and “volvo”—to mix with the clean speech
corpus at three SNR levels: −5, 0, and 5 dB. As a result, we constructed 9 noisy speech
corpora for evaluation. Note that for each noisy corpora, the additive noises for training,
development, and test were cut from different intervals of a given noise. The manual labels
of each noisy speech corpus were the results of Sohn’s VAD [38] applied to the corresponding
clean speech corpus.

5.1.2 Evaluation Metrics

ROC curve was used as the main metric. Its corresponding AUC was also reported. In
addition, HIT−FA of the optimal operating point on the ROC curve was reported, where the
optimal operating point is defined as a decision threshold achieving the highest HIT−FA on
the development set. HIT−FA is defined as follows:

HIT− FA = Hit rate− false alarm rate

=
#correctly-predicted speech frames
#manually-labeled speech frames

−#wrongly-predicted noise frames
#manually-labeled noise frames

Because over 70% frames are speech, we did not use detection accuracy as the evaluation
metric, so as to prevent reporting misleading results caused by class imbalance.
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Table 1: AUC (%) comparison between the comparison VADs and proposed bDNN-based VAD. The numbers
in bold indicate the best results.

Noise type SNR Sohn Ramirez05 Ying SVM Zhang13 bDNN

Babble
−5 dB 70.69 75.90 64.63 81.05 82.84 89.05
0 dB 77.67 83.05 70.72 86.06 88.33 91.70
5 dB 84.53 87.85 78.70 90.49 91.61 93.60

Factory
−5 dB 58.17 58.37 62.56 78.63 81.81 87.42
0 dB 64.56 67.21 68.79 86.05 88.39 91.67
5 dB 72.92 76.82 75.83 89.10 91.72 93.37

Volvo
−5 dB 84.43 89.63 92.51 93.91 94.58 94.71
0 dB 88.25 90.44 93.42 93.43 94.80 95.04
5 dB 90.89 90.99 94.13 94.12 95.02 95.19

Table 2: HIT−FA (%) comparison between the comparison VADs and proposed bDNN-based VAD. The
numbers in bold indicate the best results.

Noise type SNR Sohn Ramirez05 Ying SVM Zhang13 bDNN

Babble
−5 dB 29.44 38.45 21.03 45.69 48.33 62.42
0 dB 40.64 52.09 29.76 56.31 60.01 69.29
5 dB 54.42 65.23 42.70 67.77 69.94 75.59

Factory
−5 dB 12.00 13.43 19.50 42.11 47.42 58.73
0 dB 21.04 25.63 28.42 56.93 62.00 69.95
5 dB 33.40 40.11 38.83 64.19 70.72 75.29

Volvo
−5 dB 55.39 70.61 77.99 80.15 81.47 81.30
0 dB 62.57 73.44 80.38 79.89 82.14 81.96
5 dB 66.28 74.58 81.25 81.20 82.54 82.14

5.1.3 Comparison Methods and Parameter Settings

We compared bDNN-based VAD with the following 5 VADs, where the first two are the classic
statistical model based ones and the last two are the more recent supervised learning based
ones:

• Sohn VAD [38]. It is regarded as the first statistical model based VAD method.

• Ramirez05 VAD [31]. It uses a sliding window to smooth the results of Sohn VAD. The
half-window size was set to 8 (frames) according to the reported results in [31].

• Ying VAD [44]. It uses a simplified sequential expectation-maximization algorithm to
update the parameters of two Gaussian models. The decision threshold was set to 0.45
in all environments, according to the suggestion in [44].

• Zhang13 VAD [47]. It is the first DNN-based VAD method, which most closely relates to
our proposed bDNN-based VAD. It uses the layerwise pretraining scheme to initialize the
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deep model. Its input is a combination of 11 different acoustic features. The parameter
settings and feature extraction method were exactly the same as in [47]. Because the
sampling rate of the data sets in the present paper is 16 kHz, the selected bands from the
full bands of discrete Fourier transform are different from those in [47] where the sampling
rate of the data sets was 8 kHz (see [42], pp. 4-26 for the indices of the bands). Finally,
the input feature of the DNN-based VAD has 428 dimensions. In [47], the numbers of
the hidden units of DNN were set to 53 and 7 for the two hidden layers, 130 epoches
were used to fine-tune the DNN, and the model that achieved the highest AUC on the
development set was chosen for evaluation purposes.

• SVM-based VAD. SVM has been used in the VAD study for a long time. SVM-based
VAD was first proposed in [11]. Later on, many SVM-based VADs with different acoustic
features have been proposed [18,33,37]. In this paper, we used the SVMperf toolbox [19]
and the same feature set as in Zhang13 VAD. Minimization of the classification error
was used as the optimization objective of SVMperf. The hyperparameter C was searched
through the exponential grid {212, 213, . . . , 250}. The model that had the highest AUC
on the development set was selected for evaluation.

The parameter setting of the boostDNN-based VAD was as follows. The numbers of hidden
units were set to 800 and 200 for the first and second hidden layer respectively. The number
of epoches was set to 130. The batch size was set to 512, the scaling factor for the adaptive
stochastic gradient descent was set to 0.0015, and the learning rate decreased linearly from
0.08 to 0.001. The momentum of the first 5 epoches was set to 0.5, and the momentum of
other epoches was adjusted to 0.9. The dropout rate of the hidden units was set to 0.2. The
half-window size W was set to 19, and the parameter u of the window was set to 9, i.e. only
7 channels within the window were selected.

5.2 Results

Tables 1 and 2 list the AUC and HIT−FA results of all 6 VAD methods. Figure 3 illustrates
the soft outputs of our proposed as well as all comparison methods for the babble noise at
−5 dB SNR. Figure 4 shows the ROC curve comparison between the bDNN-based VAD,
Ramirez05 VAD, and Zhang13 VAD (our main comparison method) in 9 noise environments.
From the tables and figures, we observe that (i) the proposed method overall outperforms all
5 others, particularly when the background is very noisy; (ii) the proposed method clearly
ranks the best for the two more difficult noises of babble and factory; for the volvo noise, its
performance is nearly identical to that of Zhang13 VAD. Additionally, we find that AUC and
HIT−FA match quite well.

To separate the contributions of bDNN and MRCG to this improvement for babble and
factory noises, we ran 4 experiments using either DNN or bDNN as the model with either the
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Figure 3: Illustration of the proposed and comparison methods in the babble noise environment with SNR =
−5 dB. The soft outputs of all methods have been normalized so as to be shown clearly in the range [0, 1].
The straight lines are the optimal decision thresholds (on the entire test corpus) in terms of HIT−FA, and
the notched lines show the hard decisions on the soft outputs.
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Figure 4: ROC curve comparison between the proposed method and some representative VADs in 9 noise
enviroments.
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Figure 5: ROC curve analysis of window size effects. W and u are two parameters of the window. Note that
the parameter settings ensure that the prediction of each frame is aggregated from 7 base predictions, so that
the bDNNs with different windows are compared with the same computational complexity.

Table 3: AUC (%) analysis of the relative contributions of bDNN and MRCG. “COMB” denotes a serial
combination of 11 acoustic features.

Noise SNR
DNN+ DNN+ bDNN bDNN
COMB MRCG +COMB +MRCG

Babble
−5 dB 82.76 85.44 87.36 89.05
0 dB 88.78 89.97 91.35 91.70
5 dB 92.07 92.87 93.36 93.60

Factory
−5 dB 81.77 83.77 85.68 87.42
0 dB 88.97 90.32 90.20 91.67
5 dB 92.16 92.66 92.83 93.37

combination (COMB) of 11 acoustic features in Zhang13 VAD [47] or MRCG as the input
feature, where the model “DNN” used the same DNN source code as that of bDNN with W
set to 0, see Fig. 3. Tables 3 and 4 list the AUC and HIT−FA comparisons between these 4
combinations. From the tables, we observe that (i) MRCG performs better than COMB, and
bDNN better than DNN; (ii) both MRCG and bDNN contribute to the overall performance
improvement.

Additionally, after comparing Zhang13 VAD in Tables 1 and 2 with the “DNN+COMB”
method in Tables 3 and 4, we see that the DNN model introduced in Section 3.3 works as well
as the pretrained DNN model in Zhang13 VAD [47].
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Table 4: HIT−FA (%) analysis of the relative contributions of bDNN and MRCG. “COMB” denotes a serial
combination of 11 acoustic features.

Noise SNR
DNN+ DNN+ bDNN bDNN
COMB MRCG +COMB +MRCG

Babble
−5 dB 48.57 54.54 58.59 62.42
0 dB 61.11 65.81 68.41 69.29
5 dB 71.37 74.40 74.80 75.59

Factory
−5 dB 47.49 51.24 56.23 58.73
0 dB 64.10 67.07 66.63 69.95
5 dB 73.28 73.83 73.72 75.29

5.3 Window Size Effects

We evaluated the bDNN-based VAD with different windows whose parameters (W,u) were
selected from {(3, 1), (5, 2), (9, 4), (13, 6), (19, 9)} in the babble and factory noises at −5 dB
SNR. The results in Fig. 5 show that the ROC curve is improved steadily when the window
size is gradually enlarged. Note that although different windows were used, only 7 channels
within each window were selected, that is, the bDNNs maintained the same computational
complexity.

5.4 Effects of Boosting

To investigate how the boosted method is better than no boosting, we compared bDNN with
a DNN model that used the same input as bDNN (i.e., x′n) but aimed to predict the label of
only the central frame of the input (i.e., yn) in terms of AUC (Fig. 6) and HIT−FA (Fig. 7)
in the two difficult environments. Results show that (i) bDNN significantly outperforms the
unboosted DNN, and its superiority becomes more and more apparent when the window is
gradually enlarged; (ii) the unboosted DNN can also benefit from the contextual information
when comparing Figs. 6 and 7 with the corresponding results of the “DNN+MRCG” method
in Tables 3 and 4, but this performance gain is limited, particularly when W is large. Note
that the boosted method had the same computational complexity with the unboosted one.

5.5 Multi-resolution Effects

Figure 8 gives a visual comparison of the 4 components (denoted as CG1, CG2, CG3, and CG4
respectively) of the MRCG feature in the clean environment and the babble noise environment
with SNR = −5 dB. From the figure, it is hard to tell which component is better than the
others. Therefore, it would be better to use them together in the training process, letting the
classifier utilize the complementary merits of the components.

Figure 9 shows the ROC curve comparison between the MRCG feature and its four compo-
nents in the two difficult noise environments with parameters (W,u) set to (0, 0) and (19, 9),
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Figure 6: AUC analysis of the advantage of the boosted algorithm in bDNN-based VAD over the unboosted
counterpart that uses the same input x′n as bDNN but uses the original output yn as the training target
instead of y′n. (a) Comparison in the babble noise environment with SNR = −5 dB. (b) Comparison in the
factory noise environment with SNR = −5 dB. Note that (W,u) are two parameters of the window of bDNN.
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where W = 0 means that bDNN reduces to DNN. From the figure, we observe that (i) MRCG
is at least as good as the best of its 4 components in all cases, which demonstrates the effec-
tiveness of the multi-resolution technique; (ii) CG2 yields a better ROC curve than the other
3 components; (iii) the gaps between the ROC curves are reduced when W is enlarged.

6 Concluding Remarks

In this paper, we have proposed a supervised VAD method, named bDNN-based VAD, us-
ing a newly introduced acoustic feature—MRCG. Specifically, bDNN first produces multiple
base predictions on a single frame by boosting the contextual information encoded in neigh-
boring frames and then aggregates the base predictions for a stronger one. MRCG consists
of cochleagram features at multiple spectrotemporal resolutions. Experimental results have
shown that the proposed method outperforms the state-of-the-art VADs by a considerable
margin at low SNRs. Our further analysis shows that the contextual information encoded by
MRCG and bDNN both contributes to the improvement. Moreover, the window size of bDNN
affects the performance significantly, and the boosted algorithm is significantly better than
the unboosted version in which a DNN receives the input from a correspondingly large win-
dow. Our investigation demonstrates that MRCG, originally proposed for speech separation,
is effective for VAD as well. We believe that the boosting and multi-resolution ideas are not
limited to the DNN model and cochleagram. In the future, we are particularly interested in
further exploring the contextual information to help generalize the bDNN-based VAD to test
environments different from the training environments.
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