
Technical report OSU-CISRC-1/14-TR03

Automatic Generation of Coherence Instructions
for Software-Managed Multiprocessor Caches

Sanket Tavarageri
Department of Computer Science and

Engineering
The Ohio State University

tavarageri.1@osu.edu

Wooil Kim
Department of Computer Science

University of Illinois at
Urbana-Champaign
kim844@illinois.edu

Josep Torrellas
Department of Computer Science

University of Illinois at
Urbana-Champaign
torrella@illinois.edu

P Sadayappan
Department of Computer Science and Engineering

The Ohio State University
sadayappan.1@osu.edu

Abstract
The advent of multi-core processors with a large number of cores
and heterogeneous architecture poses challenges for achieving scal-
able cache coherence. Several recent research efforts have focused
on simplifying or abandoning hardware cache coherence protocols
However, this adds a significant burden on the programmer, unless
automated compiler support is developed.

In this paper, we develop compiler support for parallel systems
that delegate the task of maintaining cache coherence to software.
Algorithms to automatically insert software cache coherence in-
structions into parallel applications are presented. This frees the
programmer from having to manually insert coherence primitives,
which can be tedious and is error-prone. Experimental evaluation
over a number of benchmarks demonstrates that effective compiler
techniques can make software cache coherence competitive with
hardware coherence schemes both in terms of energy and effective-
ness in preserving cache data locality.

1. Introduction
Continuous transistor scaling has enabled increasing amounts of
logic and memory on a chip. The resulting higher computational
density has been used to design highly-capable many-core compute
accelerators. These platforms are programmed with highly-parallel
applications, which are partitioned into many threads running in
parallel on the different cores.

Unlike general-purpose parallel processors, these compute ac-
celerators do not necessarily have hardware-coherent caches. For
example, commercial Graphics Processing Units (GPUs) do not
have full cache coherence [1, 2]. There are several reasons behind
this lack of hardware cache coherence.

First, hardware cache coherence comes with a non-trivial imple-
mentation cost. It is difficult to design and verify cache coherence
protocols completely [3]. Furthermore, coherence structures such
as the directory storage, typically consume a considerable amount
of chip area. In many compute accelerators, such chip area is best
applied to increase the computational capabilities.

Secondly, the programs that run on accelerators have intrinsi-
cally less need for full hardware cache coherence. This is because
these programs are usually written in epoch-based form. They have
little data sharing among cores within an epoch, while most com-

munication occurs across epoch boundaries. Consequently, the co-
herence requirements of the workloads can be largely enforced at
epoch boundaries.

There has been significant interest in trying to understand how
to best support cache coherence in accelerator architectures. At
one extreme, GPU architectures do not have any hardware cache
coherence. The Intel Single Chip Cloud processor [17, 21] does
not provide hardware cache coherence, but instead defines a new
type of memory to facilitate communication between cores. Other
designs provide limited cache coherence for programmability, but
with lower hardware overhead. For example, Runnemede from the
DARPA UHPC program [5] provides scratchpads and software-
managed incoherent caches, shifting the responsibility of coher-
ence to the software. The Rigel accelerator architecture has support
for a hybrid hardware-software cache coherence [19].

At the other extreme, the Intel Xeon Phi accelerator has fully
coherent caches, largely motivated from keeping the task of pro-
gramming as close as possible to existing models. Thus we have a
range of current trends, because of the different demands and con-
straints. At one end, we have fully non-coherent caches in GPUs,
which makes the hardware more easily scalable but forces a restric-
tive programming model and places a greater burden on applica-
tion developers. At the other end, the Xeon Phi has sacrificed some
hardware scalability in order to make the programming model easy
for users by providing fully coherent caches. Software controlled
caches could provide the best of both worlds if compilers could
shoulder the burden: provide users the same epoch-based parallel
programming model like OpenMP that systems like the Xeon Phi
provide, but allowing a simpler and more scalable hardware design
like non-coherent GPUs.

In this paper, we present some compiler advances that make
software coherent systems more attractive. We divide problem do-
mains into applications with regular memory accesses and irregular
ones. For regular memory-access programs, we develop algorithms
to precisely mark variables for invalidation in a core’s private cache
— because they have become stale due to other cores’ writes. We
also develop algorithms to accurately determine data that have to
be written back from the private caches to shared caches because
other cores need to access the data in future epochs.

For iterative irregular applications we present inspector-based
schemes that exactly demarcate data for coherence. Other irreg-

1 2014/1/29

ular parallel applications are handled via conservative methods
that write back and invalidate data across synchronization points.
These schemes do not preserve cache locality across synchroniza-
tion points, but still enable data reuse in the cache by keeping read-
only data if possible.

Compared to prior work on compiler-directed cache coherence
[7, 9, 10], the compiler support developed in this paper is more
general. It is applicable to a larger class of programs, and the
compiler analysis is more precise, as it takes into account the task-
to-processor assignments.

The contributions of this paper are:

• Compiler algorithms to automatically instrument parallel appli-
cations with cache management instructions that write back and
invalidate cached data.
• For affine computations, algorithms to precisely identify data

for cache coherence using the Polyhedral-model [14];
• Efficient techniques using the inspector-executor paradigm to

ensure coherence for recurrent iterative irregular computations.
• An experimental demonstration using several programs that the

compiler-based techniques we develop are competitive with
hardware coherence schemes in terms of performance and en-
ergy consumption, at a lower hardware cost.

2. Overview
A computer system with software managed cache coherence does
not implement cache coherence protocols in hardware. It is neces-
sary to explicitly insert coherence instructions in a parallel program
to ensure correct execution. The software orchestrates cache coher-
ence using the following coherence primitives.

• Writeback: The address of a variable is specified in the instruc-
tion and if the addressed location exists in the private cache and
has been modified, then it is written to a shared later level cache
or main memory.
• Invalidate: The instruction causes any cached copy of the vari-

able in the private cache to be discarded (self-invalidation) so
that the next read to the variable fetches data from shared later
level cache.

The above coherence operations provide a mechanism for two
processors to communicate with each other: if processor A has to
send an updated value of a shared variable X to processor B, then
processor A issues a writeback instruction on X, and processor B
later invalidates X so that a subsequent read to X fetches the latest
value from the shared cache.

Fig. 1 shows the API for the invalidate and writeback instruc-
tions. These API functions use arguments at the granularity of
word, double-word, or quad-word. The invalidate range and write-
back range functions have a start address and number of bytes as
parameters.

In this paper, we address the question of how to automatically
generate cache coherence instructions for execution on software

i n v a l i d a t e w o r d (void ∗ add r) ;
i n v a l i d a t e d w o r d (void ∗ add r) ;
i n v a l i d a t e q w o r d (void ∗ add r) ;
i n v a l i d a t e r a n g e (void ∗ addr , i n t num bytes) ;

w r i t e b a c k w o r d (void ∗ add r) ;
w r i t e b a c k d w o r d (void ∗ add r) ;
w r i t e b a c k q w o r d (void ∗ add r) ;
w r i t e b a c k r a n g e (void ∗ addr , i n t num bytes) ;

Figure 1: Coherence API list

1 f o r (t = 0 ; t <= t s t e p s −1; t ++) {
2 #pragma omp p a r a l l e l f o r
3 f o r (i = 2 ; i <= n−2; i ++) {
4 S1 : B[i] = 0 . 3 3 3 3 3∗ (A[i −1]+A[i]+A[i + 1]) ;
5 }
6 #pragma omp p a r a l l e l f o r
7 f o r (i = 2 ; i <= n−2; i ++) {
8 S2 : A[i]=B[i] ;
9 }

10 }

Figure 2: 1-d Jacobi stencil

1 f o r (t = 0 ; t <= t s t e p s −1; t ++) {
2 #pragma omp p a r a l l e l f o r
3 f o r (i = 2 ; i <= n−2; i ++) {
4 i n v a l i d a t e d w o r d (&A[i −1]) ;
5 i n v a l i d a t e d w o r d (&A[i]) ;
6 i n v a l i d a t e d w o r d (&A[i + 1]) ;
7 S1 : B[i] = 0 . 3 3 3 3 3∗ (A[i −1]+A[i]+A[i + 1]) ;
8 writeback dword (&B[i]) ;
9 }

10 #pragma omp p a r a l l e l f o r
11 f o r (i = 2 ; i <= n−2; i ++) {
12 i n v a l i d a t e d w o r d (&B[i]) ;
13 S2 : A[i]=B[i] ;
14 writeback dword (&A[i]) ;
15 }
16 }

Figure 3: 1-d Jacobi stencil for SCC (unoptimized)

managed caches. The variables that potentially hold stale data
- invalidate set - have to be identified in order that copies of
those variables in the private cache are discarded; the data that are
produced at a processor, but might be consumed at other processors
- writeback set - need to be characterized so that those data are
written to the shared cache and are available to other processors for
future reads.

In this section, we use an example to provide an overview of the
analyses performed and optimizations applied by the algorithms
developed in the paper. Figure 2 shows a 1d-jacobi stencil code.
In an iteration of the stencil computation, elements of array B are
updated using three neighboring elements of array A in parallel
(line 4). Then, all values of array B are copied to array A in parallel
(line 8). In the next iteration, the new values of array A are used to
update elements of array B. This process is repeated tsteps times
(loop at line 1).

The parallelism in the computation is realized using OpenMP
work-sharing constructs: the loops with iterators i are declared
parallel (line 3 and 7), and different iterations of those loops may
be assigned to different processors to execute them in parallel.
The value written to B[i] by first statement (S1) is read by the
second statement (S2). Since a different processor may execute the
statement producing B[i] than those that consume B[i], B[i] has to be
written-back to shared cache after S1 and is invalidated before S2.

Similarly, array element A[i] is written at S2 and has uses in three
iterations of the first loop at S1. The reference A[i] must therefore be
written-back after S2, and invalidated before S1. The code obtained
thus for Software Cache Coherence (SCC) is shown in Figure 3.

However, there are opportunities to improve performance of the
shown code on a software cache coherence system:

1. If iterations of the parallel loops in Figure 2 are mapped to pro-
cessors such that an iteration with a certain value of i is assigned
to the same processor in the first and second loops (line 3 and
line 7), then B[i] is produced and consumed at the same proces-

2 2014/1/29

1 f o r (t = 0 ; t <= t s t e p s −1; t ++) {
2 #pragma omp p a r a l l e l p r i v a t e (myid , i1 , i 2) {
3 myid = o m p g e t t h r e a d n u m () ;
4 f o r (i 1 =myid ; i1<=f l o o r ((n−2) / 1 6) ; i 1 +=8) {
5 i f (t >= 1) {
6 i n v a l i d a t e d w o r d (&A[16∗ i1 −1]) ;
7 i n v a l i d a t e d w o r d (&A[16∗ i 1 + 1 6]) ;
8 }
9

10 f o r (i 2 =max (i 1 ∗1 6 , 2) ; i2<=min (i 1 ∗16+15 , n−2); i 2 ++){
11 S1 : B[i 2] = 0 . 3 3 3 3 3∗ (A[i2 −1]+A[i 2]+A[i 2 + 1]) ;
12 }
13
14 i f (t == t s t e p s −1)
15 wri teback range (&B[i 1 ∗1 6] , s i z e o f (double) ∗ 1 6) ;
16 }
17 }
18
19 #pragma omp p a r a l l e l p r i v a t e (myid , i1 , i 2) {
20 myid = o m p g e t t h r e a d n u m () ;
21 f o r (i 1 =myid ; i1<=f l o o r ((n−2) / 1 6) ; i 1 +=8) {
22 f o r (i 2 =max (i 1 ∗1 6 , 2) ; i2<=min (i 1 ∗16+15 , n−2); i 2 +=1){
23 S2 : A[i 2]=B[i 2] ;
24 }
25
26 i f (t <= t s t e p s −2) {
27 writeback dword (&A[16∗ i 1]) ;
28 writeback dword (&A[16∗ i 1 + 1 5]) ;
29 }
30 e l s e i f (t == t s t e p s −1) {
31 wri teback range (&A[i 1 ∗1 6] , s i z e o f (double) ∗ 1 6) ;
32 }
33 }
34 }
35 }

Figure 4: 1-d Jacobi stencil for execution on an 8-processor SCC
system

sor. Therefore, writing back of B[i] at S1, and invalidating of
it at S2 can be avoided, resulting in lower overhead and better
cache locality (read misses to array B in the second loop will be
avoided).
Thus, analysis to compute invalidate and writeback sets that
considers the iteration-to-processor mapping can avoid many
potentially conservative coherence operations.

2. Further, if iterations are mapped to processors in a block-cyclic
manner, fewer invalidations and write-backs will be required.
Consider for example that the iterations of the parallel loops are
scheduled to processors in a block-cyclic manner with a chunk-
size of 16. In that scenario, a processor writes to a consecutive
set of words at S2 (line 8 in Figure 2) — from A[k+1] to A[k+16]
(for some ‘k’) and the same processor in the next iteration
reads elements A[k] to A[k+17] at S1 (due to line 4). Therefore,
only A[k], and A[k+17] have to be invalidated. Equally, other
processors would only reference A[k+1] and A[k+16], and hence,
only those two array cells have to be written-back.

With the above considerations, one can proceed as follows.
1) By explicitly mapping iterations of the two parallel loops to
processors through the use of myid and by pinning threads to cores,
we can reduce the number of coherence operations;
2) The parallel iterations are distributed among processors in a
block-cyclic manner.

The resulting code is shown in Figure 4. The very last write to a
variable by any processor is also written-back so that results of the
computation are available at the shared cache.

The algorithms that we develop in the paper automatically pro-
duce the code in Figure 4 by performing a) an exact data de-
pendence analysis (Section 4.1), b) iteration-to-processor mapping
aware code generation (Section 4.2).

3. Background
3.1 Execution Model
Release Consistency: The execution of parallel programs consists
of epochs (intervals between global synchronization points). In an
epoch, data that were written potentially by other cores in previous
epochs and that a core may need to read in the epoch are inval-
idated. Before the end of the epoch, all the data that a core has
written in the epoch and that may be needed by other processors in
future epochs are written-back to the shared level cache.

Before an epoch completes, all prior memory operations, in-
cluding ordinary load/store instructions and coherence instructions,
are completed. Then the next epoch can start, and the following
memory operations can be initiated. Further, ordering constraints
between memory instructions are respected: The order of a store
to address i and the following writeback for address i should be
preserved in the instruction pipeline of the processor and caches.
Similarly, the order of invalidation to address j and a following
load from address j should be preserved in the pipeline and caches
to guarantee fetching of the value from the shared cache.
Coherence Operations at Cache line granularity: Coherence
operations are carried out at the granularity of cache lines — all
the lines that overlap with specified addresses are invalidated or
written-back. If the specified data are not present in cache, then
coherence instructions have no effect.

In addition, writeback instructions write back only dirty words
of the line. In doing so, writeback instructions avoid the incorrect-
ness issue that may arise from false sharing: if two processors are
writing to variables that get mapped to the same cache line, and
whole cache lines (and not just the dirty words) are written-back,
then one processor’s dirty words may be overwritten with another
processor’s clean words. Therefore, per-word dirty bits are used to
keep track of words of a cache line that are modified.

3.2 Notation
The code shown in Fig. 5 is used as a working example to illustrate
the notation and the compiler algorithm in the next section.
Sets: A set s is defined as:

s = {[x1, . . . ,xm] : c1∧·· ·∧ cn}
where each xi is a tuple variable and each c j is a constraint.

The iteration spaces of statements can be represented as sets.
For example, the iteration space of statement S1 in the code shown
in Fig. 5 can be specified as the set IS1 :

IS1 = {S1[t1, t2, t3] : (0 ≤ t1 ≤ tsteps− 1)∧ (0 ≤ t2 ≤ n− 1)∧
(1≤ t3 ≤ n−1)}
Relations: A relation r is defined as:

r = {[x1, . . . ,xm] 7→ [y1, . . . ,yn] : c1∧·· ·∧ cp}

f o r (t 1 =0; t1<=t s t e p s −1; t 1 ++) {
#pragma omp p a r a l l e l f o r p r i v a t e (t 3)

f o r (t 2 =0; t2<=n−1; t 2 ++) {
f o r (t 3 =1; t3<=n−1; t 3 ++) {

S1 : B[t 2] [t 3] = B[t 2] [t 3 +1] + 1 ;
}

}
}

Figure 5: A loop nest

3 2014/1/29

where each xi is an input tuple variable, each y j is an output tuple
variable and each ck is a constraint.

Array accesses appearing in the code may be modeled as re-
lations from iteration spaces to access functions of the array ref-
erences. The two accesses to array ‘B’ in Fig. 5, B[t2][t3] and
B[t2][t3+1], are represented as the following relations:

rS1
write ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3)}

rS1
read ={S1[t1, t2, t3] 7→ B[t ′2, t

′
3] : (t ′2 = t2)∧ (t ′3 = t3 +1)}

The Apply Operation: The apply operation on a relation r and a
set s produces a set s′ denoted by, s′ = r(s) and is mathematically
defined as:

(~x ∈ s′)⇐⇒ (∃~y s.t.~y ∈ s∧ (~y 7→~x) ∈ r)

The set of array elements accessed by an array reference in a
loop (data-footprint) may be derived by applying access function
relations on the iteration space sets. For the array accesses in the
example code shown in Fig. 5, data-footprints of the two accesses
are: rS1

write(I
S1),rS1

read(I
S1).

The Inverse Operation: The inverse operation r = r−1
k operates

on a relation rk to produce a new relation r such that r has the
same constraints as rk but with the input and output tuple variables
swapped. (~x 7→~y ∈ r)⇐⇒ (~y 7→~x ∈ rk).

3.3 Polyhedral Dependences
In the Polyhedral model [14, 29], for affine computations, depen-
dence analysis [13] can precisely compute flow (Read After Write
- RAW) and output (Write After Write - WAW) dependences be-
tween dynamic instances of statements. The dependences are ex-
pressed as maps from source iterations to target iterations involved
in the dependence.

The flow dependence determined by polyhedral dependence
analysis (for example, using ISL [27]) for the code in Fig. 5 is:

D f low = {S1[t1, t2, t3] 7→ S1[t1 +1, t2, t3−1] :

(0≤ t1 ≤ tsteps−2)∧ (0≤ t2 ≤ n−1)∧ (2≤ t3 ≤ n−1)}
The relation characterizes the flow dependence that exists

between the write reference B[t2][t3] and the read reference
B[t2][t3+1].

An analysis tool like ISL can also be used to emit information
regarding live-in data: data that are read in the loop but are not
produced by any statement instances in the scope of analysis. A list
containing maps from an iteration point that reads live-in data to
the live-in array elements that it reads is computed. For the running
example, the live-in maps are:

Dlive−in =

{S1[0, t2, t3] 7→ B[t2, t3 +1] : 0≤ t2 ≤ n−1∧1≤ t3 ≤ n−2;
S1[t1, t2,n−1] 7→ B[t2,n] : 0≤ t1 ≤ tsteps−1∧0≤ t2 ≤ n−1 }

The two maps capture live-in data read for read reference
B[t2][t3+1]: a) at the first iteration of the outermost t1 loop, all
read elements are live-in b) for later iterations, only the nth element
in each row of matrix B is live-in, since it is never written to by the
write reference B[t2][t3].

4. Compiler Optimization for Regular Codes
The iteration space of an epoch in a parallel loop is modeled by
considering iterator values of the parallel loop and its surrounding
loops as parameters. In the parallel loop in Fig. 5, the t2 loop is
parallel and an iteration of t2 constitutes a parallel task executed
in an epoch. Its iteration space is modeled by considering values of

iterators t1 and t2 as parameters - tp and tq respectively:
IS1
current = {S1[t1, t2, t3] : (t1 = tp)∧ (t2 = tq)∧ (1≤ t3 ≤ n−1)}.

4.1 Computation of Invalidate and Writeback Sets
Invalidate Set: The invalidate set for a parallel task consists of
data that are consumed in the parallel task but produced elsewhere.
Thus, the invalidate set is the data consumed by those iterations of
the parallel task that are targets of some flow dependence (RAW)
whose source iterations are not in the same parallel task. The live-
in data (first reads to any variable in the loop) are also invalidated
and hence forms a part of the invalidate set.

Algorithm 1 shows how the invalidate set for a parallel task
is computed. It is computed by forming the union of invalidate
data sets corresponding to all statements within the parallel loop by
iterating over each statement. For each statement Si, first the source
iterations of the dependence - Isource - whose target iterations are
in the current slice for that statement - ISi

current - are determined
by applying the inverse relation of the flow dependence. From
this set, any of the source iterations that lie in the current slice -⋃

Sj∈stmts IS j
current , are removed from Isource because the source and

target iterations are run on the same processor and no coherence
instruction is needed. The array elements written by iterations of
Isource are placed in the set of data elements for which invalidation
coherence instructions must be issued to guarantee coherence. To
this set is added the live-in list corresponding to data elements that
come in live from outside the analyzed region.

Algorithm 1 Compute Invalidate Set

Input: Flow Dependences : D f low, Live-in read maps :

Dlive in, Current Iteration Slices: Icurrent , Write maps:

rwrite

Output: Statement and Invalidate set pairs: DSi
invalidate

1: for all statements - Si do
2: DSi

invalidate← φ

3: Isource←D−1
f low(I

Si
current)\ (

⋃
Sj∈stmts IS j

current)

4: Din f low←
⋃

Sj∈stmts rS j
write(Isource)

5: Dlive in data←Dlive in(ISi
current)

6: DSi
invalidate← (Din f low∪Dlive in data)

7: end for

Example: The application of the algorithm to the running ex-
ample results in the following invalidate set: DS1

invalidate = {[tq, i1] :
2≤ i1 ≤ n}. The array elements read in the parallel task are marked
for invalidation.

Writeback Set: The writeback set consists of all data that are
produced by a parallel task and consumed outside of the parallel
task. Thus we need to identify iterations of the parallel task that are
sources of a flow dependence whose targets lie elsewhere. Once
we have identified such source iterations, we then determine the
array elements written by them. The last write to a variable also
belongs to the writeback set and last writes are found by using
output dependence (WAW) information: iterations which are not
sources of any output dependence must be last writers to the array
elements that they write to.

Algoirthm 2 shows how we compute the writeback set for a
parallel task that possibly has multiple statements in it. To find
the writeback set corresponding to a statement Si, first all target
iterations (Itarget) of all dependences are identified whose source

4 2014/1/29

iterations lie in ISi
current . Those target iterations that are within the

same parallel task -
⋃

Sj∈stmts IS j
current are removed from Itarget (line

3). Then the inverse dataflow relation is applied to this set and
the intersection to the current iteration slice is computed (line 4)
to identify the source iterations (Iproducer) in the slice that write
values needed outside this slice. These values must be part of the
writeback set.

Further, if a write by an iteration is the last write to a certain
variable, it must also be written back since it represents a live-
out value from the loop. The iterations that are not sources of
any output dependencies produce live-out values. Such iterations
are determined by forming the set difference between ISi

current and
domain of output dependences - dom Dout put .

Algorithm 2 Compute Writeback Set

Input: Flow Dependences : D f low, Output Dependences :

Dout put , Current Iteration Slices: Icurrent , Write maps:

rwrite

Output: Statement and Writeback set pairs: DSi
writeback

1: for all statements - Si do
2: DSi

writeback← φ

3: Itarget ←D f low(ISi
current)\ (

⋃
Sj∈stmts IS j

current)

4: Iproducer←D−1
f low(Itarget)∩ ISi

current

5: Dout f low← rSi
write(Iproducer)

6: Ilive out ← ISi
current \dom Dout put

7: Dlive out data← rSi
write(Ilive out)

8: DSi
writeback← (Dout f low∪Dlive out data)

9: end for

Example: The algorithm produces the following writeback set
for the example in Fig. 5: DS1

writeback = {[tq, i1] : (tp ≤ tsteps− 2∧
2≤ i1 ≤ n−1)∨ (tp = tsteps−1∧1≤ i1 ≤ n−1)}.

For 0 to tsteps-2 iterations of the outermost t1 loop, only ele-
ments B[t2][2:n-1] need to be written back as they will be read in
the next iteration of t1 loop. Array cell B[t2][1] does not need to be
written back because it is overwritten in a later t1 iteration and its
value is not read. But the very last write to B[t2][1], i.e., when t1 =
tsteps-1 has to be written back as it is a live-out value of the loop.

Code Generation The invalidate and writeback sets are translated
to corresponding cache coherence instructions by generating a loop
to traverse elements of the sets using a polyhedral code generator
— ISL [27]. The invalidations and writebacks are combined into
coherence range functions whenever elements of a set are contigu-
ous in memory: when the inner-most dimension of the array is the
fastest varying dimension of the loop.

4.2 Optimization
Analysis Cognizant of Iteration to Processor Mapping The tech-
niques described until now do not assume any particular map-
ping of iterations to processors. However, if a mapping of pro-
cessors to iterations is known, many invalidations and write-backs
could possibly be avoided. For example, in the code shown in
Fig. 5, the flow dependence (mentioned in §3.3) is: S1[t1, t2, t3] 7→
S1[t1+1, t2, t3−1]. If parallel iterations of the ‘t2’ loop are mapped
to processors such that an iteration with a particular ‘t2’ value al-
ways gets mapped to the same processor, the source and target iter-
ations of the flow dependence get executed on the same processor,

f o r (t 1 =0; t1<=t s t e p s −1; t 1 ++)
#pragma omp p a r a l l e l p r i v a t e (myid , t2 , t 3) {

myid = o m p g e t t h r e a d n u m () ;
f o r (t 2 =myid ; t2<=n−1; t 2 +=8) {

i f (t 1 == 0) {
i n v a l i d a t e r a n g e (&B[t 2] [2] , s i z e o f (double) ∗ (n−2)) ;
}
i n v a l i d a t e d w o r d (&B[t 2] [n]) ;
f o r (t 3 =1; t3<=n−1; t 3 ++) {

S1 : B[t 2] [t 3] = B[t 2] [t 3 +1] + 1 ;
}
i f (t 1 == t s t e p s −1) {

wri teback range (&B[t 2] [1] , s i z e o f (double) ∗ (n−1)) ;
}
}
}

Figure 6: Optimized loop nest for SCC

making invalidations and write-backs due to the dependence un-
necessary.

In order to incorporate this optimization, Algorithm 1 and 2 are
modified to take iteration to processor mapping into account. Line
3 of Algorithm 1 is now changed to:
Isource←D−1

f low(I
Si
current)\ (

⋃
Sj∈stmts IS j

current ∪ Isame proc)
and line 3 of Algorithm 2 is changed to:
Itarget ←D f low(ISi

current)\ (
⋃

Sj∈stmts IS j
current ∪ Isame proc),

where Isame proc is the set of iterations that is executed on the same
processor as the processor on which Icurrent is executed.

For the working example, let us say that the OpenMP schedul-
ing clauses specify that iterations are cyclically mapped onto pro-
cessors and the number of processors used is 8. Then, we en-
code that information into the following iteration to processor map:
ri2p = {S1[t1, t2, t3] 7→ [t ′2] : t ′2 = t2 mod 8}. The parallel region
code is all the iterations that are mapped to a parametric processor
‘myid’: Imy proc = r−1

i2p(myid). The iteration set IS1
current is a subset

of Imy proc with the values of the t1 and t2 loop iterators parameter-
ized.

Using the modified algorithms, the cache coherence code gen-
erated for the working example is presented in Fig. 6. In the opti-
mized code, only the live-in data is invalidated: elements B[t2][2
to n] at time-step t1 = 0, only a single element – B[t2][n] at later
time-steps, since other elements are written to by the same proces-
sor ensuring that the updated values are present in the processor’s
private cache. Only the live-out data is written back at the last time-
step: t1 = tsteps−1.

Iteration to Processor Mapping A cyclic distribution of itera-
tions to processors yields a better load balance especially for tri-
angular iteration spaces; a block distribution of iterations to pro-
cessors on the other hand, maps consecutive iterations to the same
processor and hence reduces the amount of invalidations if flow
dependences exist mainly between consecutive iterations. Further,
if successive iterations write to consecutive locations in memory, a
block distribution of iterations may enable a thread to collect write-
backs together and perform coherence operations on a set of con-
secutive array elements.

Therefore, for triangular iteration spaces, a block-cyclic distri-
bution of iterations among processors is employed, for others a
block distribution is performed.

5. Compiler Optimization for Irregular Codes
5.1 Basic Approach
The tasks that are executed in an epoch (interval between synchro-
nization points) by construction do not have any dependences be-

5 2014/1/29

tween them (otherwise, the dependences would induce serialization
of tasks and hence, the tasks would have to be executed in different
epochs). Therefore, all data accessed within an epoch can be safely
cached and cache coherence is not violated.

i n v a l i d a t e a l l () ;
w r i t e b a c k a l l () ;

Figure 7: Coherence API for conservative handling

For irregular applications that have non-affine references and
hence, are not amenable to the analysis presented in the previous
section, software cache coherence is achieved conservatively: at
the beginning of an epoch, the entire private cache is invalidated
and at the end of the epoch, all data that are written in the epoch
(dirty words) are written to the shared cache. The coherence API
functions shown in Fig. 7 are inserted in the parallel program at
epoch boundaries to conservatively manage software coherence.

The basic approach outlined above preserves intra-epoch cache
data locality, but cannot exploit any temporal locality that exists
across epoch boundaries.

5.2 Inspector-Executors
Many scientific applications use sparse and irregular computations
and are often iterative in nature and furthermore, the data access
pattern remains the same across iterations. (Examples include pro-
grams for solving partial differential equations, irregular stencils,
the conjugate gradient method for solving systems of linear equa-
tions which uses sparse matrix-vector multiplications, atmospheric
simulations that use semi-regular grids).

whi le (conve rged == f a l s e)
{

#pragma omp p a r a l l e l f o r
f o r (i =0 ; i<n ; i ++) {

r e a d A[B[i]] ; /∗ data−d e p e n d e n t a c c e s s ∗ /
}

#pragma omp p a r a l l e l f o r
f o r (i =0 ; i<n ; i ++) {

w r i t e A[C[i]] ; /∗ data−d e p e n d e n t a c c e s s ∗ /
}
/∗ S e t t i n g o f converged v a r i a b l e n o t shown ∗ /
}

Figure 8: An iterative loop with irregular data references

For such codes, we propose the use of inspectors to gather infor-
mation on irregular data accesses so that coherence operations are
applied only where necessary. The inspectors that are inserted in the
parallel codes are themselves parallel and are lock-free. The cost
of inspectors is amortized by the ensuing selective invalidations of
data and thus fewer unnecessary L1 cache misses over many itera-
tions of the iterative computation.

Fig. 8 shows an iterative code that has data-dependent refer-
ences to a one-dimensional array, viz., A[B[i]] and A[C[i]]. We first
illustrate the inspector approach for the simple example. The ideas
are more generally applicable in the presence of multiple arrays and
multi-dimensional arrays.

The inspector-code determines if a) the write performed at a
thread has readers at other threads: if that is the case, the variable
has to be written-back to shared cache so that other threads will
be able to obtain the updated value of the variable. b) the variable
being read at a thread was written by another thread: if yes, the
variable has to be invalidated at the private cache so that the fresh
value is got from shared cache.

Fig. 9 presents the inspector-inserted parallel code correspond-
ing to the iterative loop shown in Fig. 8 for execution on software

1 /∗ I n s p e c t o r code b e g i n s ∗ /
2 #pragma omp p a r a l l e l f o r
3 f o r (i =0 ; i<n ; i ++) {
4 A t h r e a d [i] = −1;
5 A c o n f l i c t [i] = 0 ;
6 writeback word (& A t h r e a d [i]) ;
7 writeback word (& A c o n f l i c t [i]) ;
8 }
9

10 / / Phase 1 : Record w r i t e r t h r e a d i d s
11 #pragma omp p a r a l l e l f o r
12 f o r (i =0 ; i<n ; i ++) {
13 A t h r e a d [C[i]] = myid ;
14 writeback word (& A t h r e a d [C[i]]) ;
15 }
16
17 / / Phase 2 : Mark c o n f l i c t e d i f
18 / / w r i t e r and r e a d e r t h r e a d s are n o t t h e same
19 #pragma omp p a r a l l e l f o r
20 f o r (i =0 ; i<n ; i ++) {
21 i n v a l i d a t e w o r d (& A t h r e a d [B[i]]) ;
22 i f (A t h r e a d [B[i]] != −1 && A t h r e a d [B[i]] != myid) {
23 A c o n f l i c t [B[i]] = 1 ;
24 writeback word (& A c o n f l i c t [B[i]]) ;
25 }
26 }
27 /∗ I n s p e c t o r code ends ∗ /
28
29 #pragma omp p a r a l l e l
30 { i n v a l i d a t e a l l () ; }
31
32 whi le (conve rged == f a l s e)
33 {
34 #pragma omp p a r a l l e l f o r
35 f o r (i =0 ; i<n ; i ++) {
36 i f (A t h r e a d [B[i]] != −1 && A t h r e a d [B[i]] != myid)
37 i n v a l i d a t e w o r d (&A[B[i]]) ;
38
39 r e a d A[B[i]] ;
40 }
41
42 #pragma omp p a r a l l e l f o r
43 f o r (i =0 ; i<n ; i ++) {
44 w r i t e A[C[i]] ;
45
46 i f (A c o n f l i c t [C[i]] == 1)
47 writeback word (&A[C[i]]) ;
48 }
49 /∗ S e t t i n g o f converged v a r i a b l e n o t shown ∗ /
50 }
51
52 #pragma omp p a r a l l e l
53 { w r i t e b a c k a l l () ; }

Figure 9: An iterative loop with irregular data references for SCC
system

managed caches. Two shadow arrays — A thread and A conflict for
array A that has data-dependent accesses are initialized (lines 4, 5).
In the first phase, A thread records the ids of the threads that write
to array cells (line 13). In the second phase, if an array cell is read
by a thread different from the writer thread, the corresponding cell
in A conflict array is set to 1 (line 23). Since the computation loops
are parallel, the inspection is also carried out in parallel. Conse-
quently, accesses to arrays A thread and A conflict are guarded with
coherence instructions. If there are multiple readers for an array cell
then more than one thread may set the respective cell of A conflict
to 1 in phase two and multiple threads will write-back the same
value, namely 1 to shared cache (in line 24). Since the same value
is being written, any ordering of writes by different threads works.

Later in the computation loops, a thread invalidates a variable
(line 37) before reading it if the variable has a writer (as opposed

6 2014/1/29

to read-only data) and that writer is a different thread. A thread
after writing to a variable, writes it back (line 47) if the variable is
marked conflicted.

5.3 Exclusion of Read-Only Data from Coherence

1 /∗ Pro logue b e g i n s ∗ /
2 w r i t e b a c k a l l () ;
3 #pragma omp p a r a l l e l
4 { i n v a l i d a t e a l l () ; }
5 /∗ Pro logue ends ∗ /
6 whi le (c o n d i t i o n)
7 {
8 #pragma omp p a r a l l e l
9 {

10 /∗ r e g u l a r / i r r e g u l a r code ∗ /
11 }
12 }
13
14 /∗ E p i l o g u e b e g i n s ∗ /
15 #pragma omp p a r a l l e l
16 { w r i t e b a c k a l l () ; }
17 i n v a l i d a t e a l l () ;
18 /∗ E p i l o g u e ends ∗ /

Figure 10: An iterative loop

For irregular codes whose data access patterns potentially
change with each iteration, we adopt a conservative approach that
yet excludes read-only data from coherence enforcement and thus,
is more accurate than a full invalidation and writeback approach
outlined earlier.

We consider parallel regions — parallel loops along with sur-
rounding looping structures and perform analysis of the parallel
region as a stand-alone unit. The read-only data of the parallel re-
gion need not be invalidated/written-back. Only those variables that
are both written and read in the parallel region are invalidated and
written-back at epoch boundaries.

For this scheme to work however, the following conditions have
to be met:

1. None of the processors should have cached stale values of
read-only data of the parallel region. (This could happen for
example when, a program has a parallel region P followed by
a sequential segment Q and later a parallel region R . And,
variable x is read-only in P and R , but is modified in Q).

2. Since, in the parallel region coherence is enforced only on data
that are both read and written, for written-but-not-read data co-
herence operations should be introduced following the parallel
region to ensure that future accesses to them get updated values.

To meet condition 1), a prologue is introduced that writes back
all dirty words from the master thread and then does a full invali-
dation of caches at all threads. Condition 2) is fulfilled by writing-
back all dirty words from all threads and doing a full-invalidation
by the master thread in an epilogue. The code shown in Fig. 10 uses
the outlined approach.

Algorithm 3 presents the overall parallel-region analysis tech-
nique.

6. Experimental Evaluation
We evaluate the performance of compiler-generated coherence in-
structions for execution of parallel programs on software managed
caches. The main goal of the compiler support developed in the pa-
per is to insert coherence instructions — invalidate and writeback
functions only where necessary. The conservative invalidations (of
non-stale data) result in read misses which lead to degraded perfor-
mance relative to a hardware coherence scheme. Therefore, to as-
sess efficacy of the compiler techniques, we compare read misses in

Table 1: Benchmarks

Benchmark Description
gemm Matrix-multiply : C = α.A.B+β.C
gemver Vector Multiplication and Matrix Addition

jacobi-1d 1-D Jacobi stencil computation
jacobi-2d 2-D Jacobi stencil computation

LU LU decomposition
trisolv Triangular solver

CG Conjugate Gradient method
backprop Pattern recognition using unstructured grid
hotspot Thermal simulation using structured grid
kmeans Clustering algorithm used in data-mining

pathfinder Dynamic Programming for grid traversal
srad Image Processing using structured grid

Table 2: Simulator parameters

Processor chip 8-core multicore chip
Issue width; ROB size 4-issue; 176 entries

Private L1 cache 32KB Write-back, 4-way,
2 cycle hit latency

Shared L2 cache 1MB Write-back, 8-way,
multi-banked

11 cycle round-trip time
Cache line size 32 bytes

Cache coherence protocol Snooping-based MESI protocol
Main Memory 300 cycle round-trip time

L1 caches, and execution time on software and hardware managed
caches. (The number of misses at the shared cache is unaffected
and will be the same for software and hardware cache coherence.)

Conservative coherence operations in software scheme increase
accesses to the shared cache and also, cause increased traffic on
the system bus. The hardware cache coherence protocol uses con-
trol messages to maintain coherence, which a software scheme
does not. Therefore, if the software coherence mechanism results
in comparable cache misses as a hardware protocol then, the soft-
ware coherence also reduces network traffic and cache energy. We
therefore measure the number of words transferred on the system
bus and cache energy by software and hardware coherence systems.

Algorithm 3 Generate Coherence Instructions using Parallel Re-
gion Analysis

Input: AST of Parallel region: P
Output: AST of Parallel region for SCC: PSCC

1: Prologue ← API to write-back all dirty words from master
thread; API to invalidate entire cache of all threads

2: Read Set ← Arrays and scalars that are read in P
3: Write Set ← Arrays and scalars that are written in P
4: Coherence Set ← Read Set ∩Write Set
5: for all epoch code e ∈ P do
6: Invalidate Sete← Read Sete∩Coherence Set
7: Writeback Sete←Write Sete∩Coherence Set
8: Insert API for Invalidate Sete and Writeback Sete
9: end for

10: E pilogue←API to write-back all dirty words from all threads;
API to invalidate entire cache of master thread

11: PSCC ← Append {Prologue,P ,E pilogue}

7 2014/1/29

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
L

1
 R

e
a

d
 M

is
s
e

s
L1 Data Cache Read Misses

.13 .26 .11 .09 .08 .13 .18 .12 .03 .01 .02 .06 .10

HCC

HCC−opt

SCC−basic

SCC−opt

Figure 11: L1 data cache read misses (lower, the better). The L1 read
miss ratios for HCC are also shown.

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

#
C

lo
c
k
 C

y
c
le

s

Performance

HCC

HCC−opt
SCC−basic

SCC−opt

Figure 12: Execution time (lower, the better)

6.1 Benchmarks
The benchmark programs listed in Table 1 are used for the exper-
iments. The benchmark codes are from Rodinia [6] and PolyBech
[25] benchmark suites. The Rodinia suite provides parallel pro-
grams from various application domains. The backprop, hotspot,
kmeans, pathfinder, srad applications are taken from Rodinia suite,
and they contain affine as well as irregular data references. The
PolyBench benchmark suite is a collection of widely used linear
algebra, and stencil codes. The benchmark programs — gemm,
gemver, jacobi-1d, jacobi-2d, LU, trisolv are taken from PolyBench
suite. The codes are parallelized using a polyhedral compiler –
PoCC [24]. All array references in the PolyBench programs are
affine.

6.2 Set-up
The snooping-bus MESI protocol hardware coherence (referred
to as HCC in the following text), and software cache coherence
(referred to as SCC) have been implemented in an architectural
multi-processor simulator — SESC [23]. Details of the simulator
setup are described in Table 2.

We compare performance and energy of the following four
coherence schemes:

1. HCC: Parallel programs are executed using MESI hardware
coherence.

2. SCC-basic: The coherence instructions are inserted without
iteration-to-processor aware analysis for affine references and
without the use of inspector-executor or read-only data exclu-
sion scheme for irregular accesses. That is, coherence instruc-
tions are generated with methods described in Sections 4.1 and
5.1 only without further optimizations. The resulting codes are
run on software managed caches.

3. SCC-opt: The coherence management is optimized using com-
piler optimizations presented, and the resulting programs are
executed on software managed caches.

4. HCC-opt: To study if any optimizations applied to SCC codes
(such as explicit mapping of iterations to processors) can also
benefit the benchmarks for hardware coherence, SCC-opt pro-
grams are adapted to run on HCC systems: coherence opera-
tions and any inspectors inserted are removed from SCC-opt
codes and these variants are run on the HCC system.

The performances of only parallel parts of benchmarks are mea-
sured — sequential initialization and finalization codes are ex-
cluded from measurements because the performance of sequential

code is expected to be the same on SCC and HCC systems. Threads
are pinned to cores for both schemes.

6.3 Performance Results
Fig. 11 plots the read misses in L1 cache; Fig. 12 shows the
execution time. The number of L1 read misses and execution cycles
are normalized with respect to HCC statistics (the number of misses
and execution cycles of HCC is considered 1). The L1 read miss
ratios (fraction of L1 reads that are misses) for HCC are also
indicated in the graph.

On average (geometric mean) across benchmarks, HCC-opt has
the same number of cache misses as HCC; SCC-basic suffers 98%
more misses and SCC-opt experiences only a 3% increase (avg.
column in the graph). The geometric mean of normalized execution
time for the three variants — HCC-opt, SCC-basic, and SCC-opt
are, 0.97, 1.48, and 0.97 respectively. We observe that SCC-opt
greatly improves performance over SCC-basic and brings down
cache misses comparable to those of HCC. Further, performance
of HCC-opt is very similar to that of HCC.

The gemm and trisolv benchmarks exhibit the so-called commu-
nication free parallelism: the outer loop in these codes is parallel.
Therefore, there is no communication between processors induced
by data dependences. All code variants of gemm and trisolv have
virtually the same number of cache misses and execution cycles.

In applications that have irregular references, namely backprop,
CG, hotspot, kmeans, pathfinder, srad, the parallel region bound-
aries are guarded with full-invalidation and full-writeback instruc-
tions (described in 5.3) The affine accesses in the parallel regions
are optimized; irregular accesses are handled using inspectors or
invalidation and write-back of entire arrays that are both written
and read in the parallel region (read-only arrays and scalars are ex-
cluded).

For backprop and pathfinder, full invalidation of cache at par-
allel region boundaries results in some loss of data locality which
results in increased L1 cache read misses.

The CG and srad benchmarks have iterative loops and irregular
accesses whose indexing structures do not change across iterations.
Therefore, for those two benchmarks, inspector codes are inserted
for deriving coherence operations. The inspectors contribute to a
certain number of L1 read misses. The reduced cache misses in
SCC-opt of srad compared to its HCC counterpart is an artifact
of the interaction that exists between cache coherence and cache
replacement policy (LRU): false-sharing in HCC can cause soon-
to-be-reused data to be evicted, which favors SCC. The migratory
writes may sometimes cause invalidations of not-to-be-reused data
and thus, making way for other to-be-reused data and this benefits

8 2014/1/29

gemm gemver jacobi1djacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
#

w
o

rd
s
 o

n
 t

h
e

 b
u

s
Network Traffic

1.1 3.2 4.2 2.1 2.3 1.2 2.6 1.2 1.1 0.2 0.4 1.6 1.4

HCC

HCC−opt
SCC−basic

SCC−opt

Figure 13: Traffic on the system bus (lower, the better). Average num-
ber of words per cycle for HCC is also shown.

gemm gemver jacobi1d jacobi2d LU trisolv backprop CG hotspot kmeanspathfinder srad avg.
0

0.2

0.4

0.6

0.8

1

E
n

e
rg

y
 (

in
 n

J
)

Cache Energy

HCC
SCC−opt

L1 cache

L2 cache

Figure 14: L1 and L2 Cache Energy (lower, the better). The first bar
shows HCC energy and second bar SCC-opt energy

HCC. Conversely, the gemver is an example of hardware cache
coherence working to HCC advantage, where the number of misses
for HCC is lower compared to SCC-opt.

The running time (depicted in Fig. 12) shows a strong corre-
lation between L1 cache read misses and performance. In HCC,
the snooping overhead plays a significant role in determining ex-
ecution time: In our implementation, we assign 1 cycle to a read-
/write snooping request. In SCC, each coherence instruction incurs
a two-cycle overhead. In addition to these overheads, there may be
additional overheads depending upon the response to a snooping
request in HCC (e.g., a read request may return an updated value
from another processor) and the number of cache lines specified
in the coherence instruction in SCC — each cache line incurs a 2-
cycle delay. Because of removal of hardware cache coherence, we
observe a 3% performance gain for SCC-opt over HCC on average.

Discussion: The performance results obtained for HCC and
SCC schemes are sensitive to architectural choices made in the
simulator implementation. And, we have opted for architectural
choices that favor HCC even though on a real system they may be
impractical or too costly. E.g., we have allotted 1-cycle delay for a
snooping request and on a real system it might take multiple cycles.
The implemented HCC protocol in the simulator concurrently sends
a snoop request to other cores, and also a memory request to L2
cache. Alternately, the L1 cache can also be designed to send
a memory request to L2 cache after a snoop miss, but this will
increase the delay when there is a snoop miss.

6.4 Energy Results
Bus data transfers: Fig. 13 shows the traffic (number of words
transferred) on the system bus for different schemes. All values
are normalized with respect to HCC. The average number of words
transferred per cycle (obtained by dividing total number of words
with number of execution cycles) for HCC is also shown. For hard-
ware coherence scheme, the traffic on the bus includes snoopy-bus
coherence related exchange of messages, transfers between private
L1 caches and shared L2 cache triggered by cache misses at L1 and
replacement of cache lines at L1. For SCC, this includes data trans-
fers between L1 caches and L2 cache prompted either by L1 misses
and evictions, or invalidation and writeback coherence instructions.
The HCC normalized data transfers on the bus for HCC-opt, SCC-
basic, and SCC-opt are 0.99, 1.46, and 0.99 respectively, on average
(geo-mean).

In backprop and srad, SCC-opt does a fewer write-backs to L2
cache compared to HCC; the L1 cache misses are lower for SCC-
opt in the case of srad. Consequently, SCC-opt incurs a fewer data

transfers in backprop and srad. Conservative writebacks in kmeans
increases the traffic on the bus for SCC-opt compared to HCC.

L1 and L2 cache energy: The cache SRAM is a major con-
sumer of energy in a processor. We compare cache energy con-
sumption for HCC and SCC-opt schemes based on the number of
accesses to tag SRAMs and data SRAMs. Using the SESC simula-
tor, event counts for all relevant activities in the L1 and L2 caches
are collected to account for all tag and data accesses to SRAMS.
CACTI [28] is used to obtain the energy per access for tag and data
for each cache level. The L1 cache employs dual ported SRAM to
service snoop requests quickly. For SCC also we used the same dual
ported SRAM for a fair comparison (per-access cost is a function
of, inter alia, number of ports). The L1 cache accesses tag and data
together for local processor requests while for snooping requests it
accesses data SRAM only after tag hit. The L2 cache is configured
to be in sequential access mode — it starts to access data SRAM
after tag matching. We did not consider main memory energy be-
cause main memory accesses would be the same for both HCC and
SCC schemes.

Fig. 14 plots relative energy consumption in caches for hard-
ware and software cache coherence approaches: energy expendi-
ture by HCC is considered 1 and energy dissipation by SCC-opt is
scaled with respect to HCC. The break-down of energy expended in
L1 and L2 caches is indicated. On average (arithmetic mean) SCC-
opt energy consumption in caches is 5% less than that of HCC.

Most of the savings in SCC-opt come from two sources: elimi-
nation of snooping requests in L1 cache, and reduction in the num-
ber of writeback words by partial line transfers (only dirty words
are written back to shared L2 cache in a software managed cache
as opposed to entire cache lines which are the granularity of com-
munication for HCC). We also observe that energy spent in all L1
caches together is around 86%, while the rest — 14% is expended
in L2 cache.

7. Related Work
Some prior studies [7, 9, 10] have developed compiler analysis
techniques to generate cache coherence instructions for software
managed caches. The work in this paper distinguishes itself from
prior efforts both by being more general as well as more precise, as
we elaborate below.

Cheong et al. [7] use data flow analysis to classify every refer-
ence to shared memory either as a memory-read or a cache-read. A
read reference is marked as a memory-read if the compiler deter-
mines that the cache resident copy of the data might have become
stale, otherwise the reference is marked as cache-read. A limitation
of that work is that the data flow analysis is carried out at the granu-

9 2014/1/29

larity of arrays, which will result in invalidations for an entire array
even if two processors are accessing distinct parts of it.

Choi et al. [9] propose to improve inter-task locality in software
managed caches by using additional hardware support: the current
epoch number is maintained at runtime using an epoch counter and
each cache word is associated with a time-tag which records the
epoch number in which the cache copy is created. Then they de-
velop the so-called epoch flow graph technique to establish condi-
tions under which it can be guaranteed that the cached copy of a
variable is not stale. The analysis here too treats an entire array as
a single variable.

Darnell and his colleagues [10] perform array subscript analy-
sis to gather more accurate data dependence information and then
aggregate cache coherence operations on a number of array ele-
ments to form vector operations. The method however can handle
only simple array subscripts: only loop iterators are allowed as sub-
scripts.

O’Boyle et al. [22] develop techniques to identify data for Dis-
tributed Invalidation (DI) for affine loops that are run on distributed
shared memory architectures. The DI scheme uses a directory to
maintain coherence, and where possible it seeks to eliminate in-
validation messages from the directory to remote copies and asso-
ciated acknowledgments. Their analysis to minimize invalidation
messages has similarities to our analysis for minimize invalida-
tions. But the coherence equations in DI place some restrictions
on the kinds of affine loops that can be analyzed: for example, con-
ditional execution within the loop is disallowed, and increments of
loop iterators must be unity. The approach presented in this paper
efficiently handles arbitrary affine loops including those whose it-
erator values are lexicographically decreasing, that have a non-unit
trip-count, or have a modulus operator etc., and conditionals are
permitted. The DI work does not involve writebacks, which how-
ever are a part of our software cache coherence model, and we de-
velop techniques to optimize writebacks as well. We also optimize
irregular codes using an inspector-executor approach, while such
codes are not optimized in the DI scheme.

Inspector-executor approaches have been used in the context of
parallelization [11, 16, 26, 30] run-time reorderings [12, 15], but to
our knowledge have not previously been developed for optimizing
for cache coherence.

Kaxiras et al. [18] seek to improve scalability of directory co-
herence by creating tear-off copies: the read-only data are cached
in the private cache of a core, but are not registered in the directory.
And, at the first synchronization event, non-registered copies are
self-invalidated without generating invalidation traffic.

Kontothanassis et al. [20] present a software cache coherence
protocol with page granularity in large scale machines. Our ap-
proach differs from their work in that fine-grained sharing in on-
chip multi-core processors is accurately handled with compile-time
analyses. Ashby et al. [4] propose a software cache coherence
scheme that uses a bloom filter to avoid unnecessary invalidations,
but their work does not develop any compiler support. DeNovo [8]
simplifies complicated hardware cache coherence protocols by en-
forcing a disciplined parallel programming model. The compiler
support proposed in this work can complement the DeNovo project
in automatically identifying self-invalidation regions.

8. Conclusion
The complexity of developing efficient hardware coherence pro-
tocols for emerging manycore heterogeneous systems makes soft-
ware controlled coherence schemes attractive. However, a signif-
icant challenge for software controlled cache coherence is that of
generation of efficient coherence instructions.

The automatic coherence management and optimization ap-
proaches developed in the paper advance compiler technology

towards making software cache coherence a viable solution on
shared-memory multiprocessor systems. Simulation results demon-
strate the effectiveness of the compiler algorithms in achieving per-
formance and cache-energy comparable to that of a hardware cache
coherence scheme.

References
[1] AMD Accelerated Parallel Processing OpenCL Programming Guide,

2012.
[2] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler

GK110, 2012.
[3] D. Abts, S. Scott, and D. J. Lilja. So many states, so little time:

Verifying memory coherence in the cray x1. In IPDPS, 2003.
[4] T. J. Ashby, P. Dı́az, and M. Cintra. Software-based cache coherence

with hardware-assisted selective self-invalidations using bloom filters.
IEEE Transactions on Computers, 60(4), 2011.

[5] N. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dun-
ning, J. Fryman, I. Ganev, R. Golliver, R. Knauerhase, R. Lethin,
B. Meister, A. Mishra, W. Pinfold, J. Teller, J. Torrellas, N. Vasilache,
G. Venkatesh, and J. Xu. Runnemede: An architecture for ubiquitous
high-performance computing. In HPCA, 2013.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. In IEEE International Symposium on Workload Characterization,
2009.

[7] H. Cheong and A. V. Vaidenbaum. A cache coherence scheme with
fast selective invalidation. ISCA, 1988.

[8] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. Denovo: Rethinking
the memory hierarchy for disciplined parallelism. PACT, 2011.

[9] L. Choi and P.-C. Yew. A compiler-directed cache coherence scheme
with improved intertask locality. In Supercomputing, 1994.

[10] E. Darnell, J. M. Mellor-Crummey, and K. Kennedy. Automatic
software cache coherence through vectorization. In International
Conference on Supercomputing, 1992.

[11] R. Das, P. Havlak, J. Saltz, and K. Kennedy. Index array flattening
through program transformation. In SC, 1995.

[12] C. Ding and K. Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
PLDI, 1999.

[13] P. Feautrier. Dataflow analysis of array and scalar references. IJPP,
20(1), 1991.

[14] P. Feautrier. Some efficient solutions to the affine scheduling problem:
I. one-dimensional time. IJPP, 21(5):313–348, 1992.

[15] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific
codes. IEEE Transactions on Parallel and Distributed Systems, 2006.

[16] A. Hartono, M. M. Baskaran, J. Ramanujam, and P. Sadayappan.
Dyntile: Parametric tiled loop generation for parallel execution on
multicore processors. In IPDPS, 2010.

[17] J. Howard and et.al. A 48-core ia-32 message-passing processor with
dvfs in 45nm cmos. In Solid-State Circuits Conference, 2010.

[18] S. Kaxiras and G. Keramidas. Sarc coherence: Scaling directory cache
coherence in performance and power. Micro, IEEE, 30(5), 2010.

[19] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel.
Cohesion: A hybrid memory model for accelerators. ISCA, 2010.

[20] L. Kontothanassis and M. Scott. Software cache coherence for large
scale multiprocessors. In HPCA, 1995.

[21] T. G. Mattson and et.al. The 48-core scc processor: The programmer’s
view. SC, 2010.

[22] M. O’Boyle, R. Ford, and E. Stohr. Towards general and exact dis-
tributed invalidation. Journal of Parallel and Distributed Computing,
63(11), 2003.

[23] P. M. Ortego and P. Sack. Sesc: Superescalar simulator. In Euro micro
conference on real time systems, 2004.

10 2014/1/29

[24] PoCC: the Polyhedral Compiler Collection. http://sourceforge.
net/projects/pocc/.

[25] PolyBench: The Polyhedral Benchmark suite. http:
//sourceforge.net/projects/polybench/.

[26] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Roun-
tev, and P. Sadayappan. Code generation for parallel execution of a
class of irregular loops on distributed memory systems. In SC, 2012.

[27] S. Verdoolaege. isl: An integer set library for the polyhedral model.
Mathematical Software–ICMS 2010, pages 299–302, 2010.

[28] S. J. E. Wilton and N. P. Jouppi. Cacti: An enhanced cache access and
cycle time model. IEEE Journal of Solid-State Circuits, 31, 1996.

[29] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In
PLDI 1991.

[30] X. Zhuang, A. E. Eichenberger, Y. Luo, and K. O’Brien. Exploiting
parallelism with dependence-aware scheduling. In PACT, 2009.

11 2014/1/29

