
Technical report OSU-CISRC-1/14-TR02

Compiler-Assisted Detection of Transient Memory Errors

Sanket Tavarageri
Department of Computer Science and

Engineering
The Ohio State University

tavarageri.1@osu.edu

Sriram Krishnamoorthy
High Performance Computing Group

Pacific Northwest National Laboratory
sriram@pnnl.gov

P Sadayappan
Department of Computer Science and

Engineering
The Ohio State University
sadayappan.1@osu.edu

Abstract
The probability of bit flips in hardware memory systems is pro-
jected to increase significantly as memory systems continue to scale
in size and complexity. Effective hardware-based error detection
and correction requires that the complete data path, involving all
parts of the memory system, be protected with sufficient redun-
dancy. First, this may be costly to employ on commodity computing
platforms and second, even on high-end systems, protection against
multi-bit errors may be lacking. Therefore, augmenting hardware
error detection schemes with software techniques is of consider-
able interest.

In this paper, we consider software-level mechanisms to com-
prehensively detect transient memory faults. We develop novel
compile-time algorithms to instrument application programs with
checksum computation codes so as to detect memory errors. Unlike
prior approaches that employ checksums on computational and ar-
chitectural state, our scheme verifies every data access and works
by tracking variables as they are produced and consumed. Experi-
mental evaluation demonstrates that the proposed comprehensive
error detection solution is viable as a completely software-only
scheme. We also demonstrate that with limited hardware support,
overheads of error detection can be further reduced.

1. Introduction
Trends in technology scaling have increased the likelihood of
transient faults in various hardware components due to particle
strikes [3, 5, 28, 31] and environmental factors [22, 41]. The si-
multaneous drive to reduce power consumption has led to the use
of lower voltage levels and smaller noise margins, which further
increase a system’s susceptibility to transient faults. Such transient
faults in the memory subsystem result in bit flips that are potentially
undetectable and lead to silent data corruption.

Hardware approaches to detecting and correcting bit flips in the
memory system employ error correcting codes on various compo-
nents of the data path. These codes are checked on every data access
and updated on every modification. Comprehensive error detection
requires every component of the data path – reorder buffers, caches,
memory lines, buses, etc. – to support sufficient redundancy or par-
ity to detect the errors anticipated during execution. Such a design
requires pre-allocation of of hardware resources, incurring dynamic
power and latency costs to support the worst case fault scenario to
be tolerated. Commodity computing platforms with less-protected
memory subsystems might nevertheless have to contend with faults
for certain critical computation phases. Even custom computing
platforms more cognizant of soft errors might not provide the same
level of protection in all components of the memory subsystem. For
example, L1 caches in BlueGene/L [19] and GPU memory on pre-
Fermi Nvidia GPUs [23] and pre-Tahiti AMD GPUs with parities.
Multi-bit errors can often evade hardware detection mechanisms

and lead to silent data corruption. In addition to multiple bit flips in
stored data, an error in the addressing logic in the memory subsys-
tem, including in address generation, might result in an incorrect
address and be perceived as a multi-bit error. More importantly, the
fault scenarios encountered in practice might not always match the
fault models and projections assumed in the design phase.

In this paper, we consider software-level approaches to com-
prehensive detection of multi-bit errors in the memory subsystem.
Such approaches can complement hardware schemes to further im-
prove system resilience. Redundant execution of memory opera-
tions which duplicates all variables of interest and operations on
them can be used to detect such errors in the memory sub-system.
However, this basic approach significantly increases memory space
and bandwidth requirements. We study the feasibility of detecting
errors by employing error detection codes for the definition and
every use of variables. This approach has the potential to compre-
hensively detect errors due to faults in any architectural state in the
memory subsystem.

We present a compiler-assisted approach to augmenting the def-
initions and uses in a given program with checksums to detect
memory errors. We present optimizations that minimize the over-
head for common classes of computations – affine loops and itera-
tive computations that could be irregular. Experimental evaluation
demonstrates that the performance costs are low enough for the ap-
proach to be practical and that we achieve excellent fault coverage
for the checksum operator considered. We also demonstrate that
the overheads can be reduced further with hardware support in the
processor (without affecting or altering the memory subsystem) to
compute the checksums.

The primary contributions of this paper are:

• an algorithm to detect memory errors by augmenting definitions
and uses of values with checksum computation operations;
• compile-time optimizations to make this approach more effi-

cient in two common classes of computations;
• a discussion and evaluation of the checksum operator in terms

of performance and fault coverage;
• novel proposals to increase fault coverage via use of multiple

checksums; and
• experimental demonstration of the low overheads and feasibil-

ity of the approach.

2. Error Detection using Checksums
Typical approaches to protecting data elements in hardware and
software group data elements and employ a checksum for each
group. These checksums are typically checked on every access.
Algorithm-based fault tolerance approaches employ checksums for
matrices which are maintained as part of the algorithm execution.

1 2014/1/27

All these schemes attempt to associate checksums with data ele-
ments. This requires additional operations to maintain the check-
sum for every operation on the data element. In architectural check-
summing instantiations, this requires every storage element to be
sufficiently protected by checksums.

In this paper, we present software approach to checksums on
the definition and use of variables. Consider the code listing in Fig-
ure 1(a). The first statement adds two constants – 10 and 20, and
stores the result in variable temp. The second and third statements
use the value stored in temp to perform their computations. Be-
tween the definition of temp and its subsequent uses, temp is sus-
ceptible to memory errors. We seek to verify that the value stored
in temp at the time of its definition is indeed what is used in all sub-
sequent uses. The checksum approach is illustrated in Figure 1(b).
The definition of temp contributes to a definition checksum. Each
use of temp contributes to a use checksum. In addition, the number
of uses of the variable temp is tracked. At program termination, or
at any post-dominator of all definitions and uses tracked, we verify
that the definition checksum scaled by the tracked number of uses
equals the use checksum.

Such a def-use based checksum provides comprehensive cov-
erage and can detect faults irrespective of the architectural charac-
teristics of the memory subsystem. However, use of such a check-
sum scheme in practice requires several challenges to be overcome.
Scaling the definition checksums with the use counts for each vari-
able requires checksums for each value to be individually stored.
This dramatically increases memory space and bandwidth over-
heads. Maintaining the use count information itself can introduce
significant overheads. In addition, the checksum computation in-
troduces an arithmetic operation for every definition and use, i.e.,
for every load and store instruction.

In the rest of the paper we address the following challenges:

• How can the number of uses for a given definition be efficiently
determined?
• How can the checksums be encoded to minimize the memory

costs?
• How can the checksum operators be chosen minimize the com-

putation costs and maximize fault coverage?
• What is the overhead associated with these schemes?

As system architectures evolve, greater amounts of compute
resources are available as compared to memory resources. We
therefore also consider the possibility of hardware support in the
processor to assist in the checksum computation.

Fault Model. We consider undetected and uncorrected errors in
the memory subsystem. This includes (a) undetected multi-bit errors
in main memory, caches, write queues, etc.; (b) errors in address
generation that result in incorrect data location being operated
upon. This implies that an error caused by a fault can be transient
or persistent. We focus on incorrect memory operations that go
undetected and could potentially lead to silent data corruption.
Note that reading data from incorrect locations can cause several
bits to differ from the expected value. The control flow variables
such as loop indices are assumed to be protected through other
means (duplication, invariant assertions, special hardware, etc.) We
assume that the processor’s subsystems other than memory are
resilient to faults. This includes registers, ALUs, pipeline latches,
and other logic. A consumed value is assumed resilient once it
enters the processor, and conversely a produced value is assumed
correct until it is written out by a store instruction. We therefore
focus on the detecting errors in a variable between the time it is
written and later read.

temp = 10 + 20;

sum1 = temp + 30;

sum2 = temp + 40;

a) Original code

temp = 10 + 20;
contrib_def_chksum(temp);

contrib_use_chksum(temp);
inc_use_count(&temp);
sum1 = temp + 30;

contrib_use_chksum(temp);
inc_use_count(&temp);
sum2 = temp + 40;

/*verify def_checksum
scaled by the use counts
matches the use_checksum*/

b) Error detection checksum
(EDC) augmented code

Figure 1: Illustration of insertion of error detection codes

3. Compile-time Determination of Use Counts for
Affine References

In this section, we describe the mathematical notation used and
provide background information on polyhedral dependences.

3.1 Notation
We use the same notation as used by Verdoolaege [37] for the
definition of sets, relations, apply, and inverse operations.

Sets A set s is defined as:

s = {[x1, . . . ,xm] : c1∧·· ·∧ cn}
where each xi is a tuple variable and each c j is a constraint.

The iteration spaces of the statements can be represented as sets.
For example, the iteration space of statement S1 in the code shown
in Fig. 2 can be specified as the set IS1 : IS1 = {S1[j] : (0 ≤ j ≤
n−1)}

And, the iteration space of statement S2 is represented as set -
IS2 : IS2 = {S2[j, i] : (0≤ j ≤ n−1)∧ (j+1≤ i≤ n−1)}.

Relations A relation r is defined as:

r = {[x1, . . . ,xm] 7→ [y1, . . . ,yn] : c1∧·· ·∧ cp}
where each xi is an input tuple variable, each y j is an output tuple
variable and each ck is a constraint.

The read and write references of the loops are specified as
relations from iteration points to array indexes. E.g., the write
reference - A[j][j] of statement 1 (S1) of the code shown in Fig.
2 is characterized as: rS1

write = {S1[j] 7→ A[j, j]}.
Data dependences appearing in the program are also expressed

as relations between statements. For example, the flow (Read After
Write - RAW) dependence between write reference A[j][j] of state-
ment 1 (S1) and read reference A[j][j] of statement 2 (S2) of the
example code is represented by the following relation:
d f low = {S1[j] 7→ S2[j, i] : (0≤ j ≤ n−1)∧ (j+1≤ i≤ n−1)}

f o r (j = 0 ; j <= n−1; j ++) {
S1 : A[j] [j] = s q r t (A[j] [j]) ;
f o r (i = j +1 ; i <= n−1; i ++) {

S2 : A[i] [j] = A[i] [j] / A[j] [j] ;
}

}

Figure 2: An example affine code snippet

2 2014/1/27

The Apply Operation The apply operation on a relation r and a
set s produces a set s′ denoted by, s′ = r(s) and is mathematically
defined as:

(~x ∈ s′)⇐⇒ (∃~y s.t.~y ∈ s∧ (~y 7→~x) ∈ r)

For a given source iteration of a dependence, its target iterations
can be found by applying the dependence relation on the given
source iteration. E.g., let us say, the source iteration of interest is:
source iteration = {S1[10]}, i.e., the dynamic instance of S1 when
the value of loop iterator j is 10. Its target iterations due to the above
flow dependence - d f low - can be found as follows:
d f low(source iteration) = {S2[10, i] : 11≤ i≤ n−1}.
Schedules The order of execution of statements in a given pro-
gram is encoded using 2d+1 schedules [10], where ‘d’ is the maxi-
mum number of loops surrounding any statement. A schedule maps
iterators of a statement to a combination of iterators and scalar val-
ues that specify a global ordering of statements within the program.
The abstract syntax tree (AST) of the given program is used to de-
duce schedules.

The schedules for statements S1 and S2 for the working exam-
ple are shown below.

{ S1[j] 7→ [0, j,0,0,0];
S2[j, i] 7→ [0, j,1, i,0]}

3.2 Polyhedral Dependences
In the polyhedral model [9] for affine computations, dependence
analysis [8] can precisely compute flow (Read After Write - RAW)
and output (Write After Write - WAW) dependences between dy-
namic instances of statements. The dependences are expressed as
relations from a source iteration to its target iterations involved in
the dependence.

Polyhedral dependence analysis (for example, using ISL [18])
for the code in Fig. 2 generates flow and output dependences.
The flow dependence is shown below (same as the one presented
earlier).

D f low ={S1[j] 7→ S2[j, i] : (0≤ j ≤ n−1)∧ (j+1≤ i≤ n−1)}
It characterizes the flow dependence that exists between the

write reference – A[j][j] of S1 and the read reference – A[j][j] of
S2: the value written by S1 at a particular iteration of j loop is used
by S2 in the same iteration of j loop, and in all iterations of i loop.

For our analysis, we consider exact dependences (and, exclude
transitive dependences). That is, iterations involved in a depen-
dence are such that, if the target iteration of a flow dependence
reads from a memory cell ‘X’, then, the corresponding source iter-
ation is the last-writer to the memory cell ‘X’ (and, not any of the
prior writers).

3.3 Compiler Algorithm for Affine References
In this section, we develop compiler algorithms to compute use
counts for affine references. Affine references are those that are
affine functions of loop iterators and program parameters. Affine
computations form an important class of programs: the compute-
intensive loops in many scientific codes (computational fluid dy-
namics, adaptive mesh refinement, numerical analysis etc.) are
affine. According to a study [2], over 99% of loops in 7 out of the
12 programs of the SpecFP2000 and Perfect Club benchmarks are
affine loops.

3.3.1 Computing Contributions to de f Checksum
Algorithm 1 describes how we determine the number of uses of

a definition – use count. For each statement that produces a value
(the definition statement), we find the number of its consumers.

Algorithm 1 Compute Flow Dependence def checksum Contribu-
tion
Input: Flow Dependences : D f low
Output: Statement and use-count pairs: ρ

1: for all Statements - Si do
2: Ii← Iteration Space ofSi
3: Iparam

i ← Parameterize all iterators of Ii
4: T argetsparam

i ←D f low(I
param
i)

5: use countparam← |T argetsparam
i |

6: Add {Si,use countparam} to ρ

7: end for
8: return ρ

The iterators of the surrounding loops of the statement under con-
sideration are parameterized (line 3) - Iparam

i - so that we are now
referring to a single parameterized iteration of the statement. Then,
in the flow dependences which map source iterations to their target
iterations, Iparam

i is substituted as the source iteration and its target
iterations are found (line 4). The cardinality of the target iteration
set provides the use count of the statement (line 5). The algorithm
returns a collection of such statement and use count pairs.

Example: The use count for statement S1 of the example code
shown in Fig. 2 is computed as follows.

Iparam
1 = {S1[j] : j = jp} where jp is a parameter

T argetsparam
i = D f low(I

param
i) = {S2[jp, i] : (0≤ jp≤ n−1)

∧ (jp+1≤ i≤ n−1)}
|T argetsparam

i |= {n−1− jp : (0≤ jp≤ n−2)}
where D f low is the flow dependence discussed in §3.2 for the
example code. The value written by write reference - A[j][j] of S1
is used by read reference - A[j][j] of S2 in n-1-j following iterations
(as the lower-bound of loop ‘i’ is j+1, and the upper-bound is n-1,
which correspond to n-1-j iterations). Thus, the use count of S1 is
n-1-j as determined by the algorithm. Further, it can be noticed that
the use count output above applies to iterations of ‘j’ loop up to n-2
and the last iteration - when ‘j’ is n-1, is excluded. This is because,
the last iteration has no target iterations of S2 : when j=n-1, the
lower-bound of ‘i’ loop becomes n which is greater than its upper-
bound - n-1, and hence, instance of S2 is not executed at j=n-1.

f o r (j = 0 ; j <= n−1; j ++) {
add to chksm (u s e c s , A[j] [j] , 1) ;
S1 : A[j] [j] = s q r t (A[j] [j]) ;
i f (j <= n−2)

add to chksm (d e f c s ,A[j] [j] , n−1− j) ;
f o r (i = j +1 ; i <= n−1; i ++) {

add to chksm (u s e c s ,A[i] [j] , 1) ;
add to chksm (u s e c s ,A[j] [j] , 1) ;
S2 : A[i] [j] = A[i] [j] / A[j] [j] ;

}
}

Figure 3: Example affine code snippet with checksum augmenta-
tion

The checksum-inserted version of the example code is shown
in Fig. 3. Given that the use counts are known at the point of each
definition, the scaling factors can be incorporated at the definition
point. This enables the use a single scalar each for the definition and
use checksums. The add to chksm macro definition takes three pa-
rameters: first, the checksum to add to (def/use checksum), second,
the value to add, and third, the number of times the value is to be
added.

3 2014/1/27

3.3.2 Optimization: Index Set Splitting
In the checksum-computation inserted code shown in Fig. 3, fol-
lowing statement S1, the error detection code that adds the value
written by statement S1 – A[j][j] to the de f checksum has a branch-
ing structure: only for iterations of ‘j’ loop up to n-2, A[j][j] is
added to de f checksum n-1-j times.

f o r (j = 0 ; j <= n−2; j ++) { /∗ i n d e x s p l i t j ∗ /
add to chksm (u s e c s , A[j] [j] , 1) ;
S1 : A[j] [j] = s q r t (A[j] [j]) ;
add to chksm (d e f c s ,A[j] [j] , n−1− j) ;

f o r (i = j +1 ; i <= n−1; i ++) {
add to chksm (u s e c s ,A[i] [j] , 1) ;
add to chksm (u s e c s ,A[j] [j] , 1) ;
S2 : A[i] [j] = A[i] [j] / A[j] [j] ;

}
}
j = n−1; /∗ i n d e x s p l i t j ∗ /
add to chksm (u s e c s ,A[j] [j] , 1) ;
A[j] [j] = s q r t (A[j] [j]) ;

Figure 4: Example affine code with index-set splitting optimization

To minimize performance penalty due to such control over-
heads, iteration space of ‘j’ loop may be split so that in each of
the split iteration spaces, A[j][j] has the same use count and thus,
the need to evaluate ‘if’ conditionals in each iteration of ‘j’ loop
is avoided. The loop-partitioned code thus formed is shown in Fig.
4. The last iteration of ‘j’ loop – when j = n-1 is peeled from the
rest of the iterations. We also note that in the peeled iteration, S2
does not appear because at j=n-1, the lower-bound of ‘i’ loop - j+1
becomes n and is greater than its upper-bound which is n-1, and
hence no instance of S2 gets executed at j=n-1.

Algorithm 2 Split Iteration Spaces

Input: Iteration Spaces : Iin
S j

, Index Sets : δSi , Schedules : θ

Output: Loop Nest : L
1: for all Iteration Spaces : Iin

S j
do

2: for all Index Sets - δSi do
3: if Under θ, (Iteratorscommon = Iterators of δSi ∩ Itera-

tors of IS j) 6= φ then
4: Iout

S j
← Split indexes of Iin

S j
s.t

(R ange of Iteratorscommon ∈ Iin
S j
) ⊆

(R ange of Iteratorscommon ∈ δSi)
5: end if
6: end for
7: end for
8: Iout

S j
← Iout

S j
∪ (Iin

S j
\ Iout

S j
)

9: L ← Generate Code to traverse Iout
S j

with schedule θ

10: return L

Algorithm 2 describes the general procedure for splitting itera-
tion spaces so that use count of a statement in a split iteration space
remains the same for all iterations in that space. Inputs to the algo-
rithm are iteration spaces of all statements - Iin

S j
, index sets - δSi

(such as 0 ≤ j ≤ n− 2, j = n− 1 in the above example), and the
schedule that defines the order of execution of the iteration spaces.
The index sets – δSi act as the criteria according to which the itera-
tion spaces are to be split.

For each iteration space, it is checked if a particular index set
can cause the iteration space to be severed: if there are any common
iterators between the index-set, and the iteration space then the
index-set potentially splits the iteration space (line 3). E.g., for the

example code, any split of loop ‘j’ affects iteration spaces of both
S1, and S2. However, if only ‘i’ loop is to be broken up, then its
loop splitting does not affect iteration space of S1 as ‘i’ is not a
surrounding loop for S1. Then, for the common iterators found,
iteration space is split so that range of values an iterator assumes
is a sub-range of values the same iterator assumes in the index-set
(line 4). This results in partitioning of the iteration space of that
statement and, ensures that no partition is a (strict) superset of the
index-set. The resultant smaller iteration spaces constitute Iout

S j
.

If any iteration points are not yet a part of Iout
S j

, then they are
added to Iout

S j
so that all the iteration points contained in Iin

S j
are

included in Iout
S j

as well (line 8). Finally, the loop-nest code is
generated by traversing through Iout

S j
according to the schedule θ

(line 9). The output of the algorithm is the index-split loop-nest.

4. Inspectors for Dynamic Start-time Use Count
Determination

Hitherto, regular loops are examined whose iteration spaces, and
array accesses can be characterized and properties about them dis-
cerned at compile-time. Irregular codes in contrast require a com-
bination of static and dynamic approaches to establish properties
about them.

4.1 Basic Approach

write temp;

if(x[10]) {

read temp;
}

if(z[5]) {

read temp;
}

a) Original code

write temp;
def_checksum += temp;
e_def_checksum += temp;

if(x[10]) {
temp_use_count++;
use_checksum += temp;
read temp;
}

if(z[5]) {
temp_use_count++;
use_checksum += temp;
read temp;
}

//Epilogue
def_checksum +=
temp*(temp_use_count-1);
e_use_checksum += temp;

assert(def_checksum
==use_checksum);

assert(e_def_checksum
==e_use_checksum);

b) EDC added code

Figure 5: Code snippet illustrating the general EDC scheme

Consider the code shown in Figure 5 a), that we use to illustrate
the challenges and solution approach for irregular codes. The vari-
able temp is defined, and then its uses are subject to x[10] and z[5]
being non-zero. Therefore, depending on their values, temp may be
used once, twice, or not used at all. We proceed as follows. At the
def-site, temp is added to de f checksum. At the use-site, temp is
added to use checksum, and a counter (temp use count) is incre-
mented to keep track of the total number of times the variable gets
used. Finally to match the checksums, value of temp is added to

4 2014/1/27

de f checksum, (temp use count− 1) number of times (because it
is added once already to the de f checksum at the def-site). If there
were no memory errors, then the two checksums match. Note that
subtracting from the use checksum might subtract out the erroneous
values and leave them being undetected.

Doing only the above, it turns out, is not sufficient to catch all
memory errors: we describe the issue with a concrete example. Let
both the conditionals in the code shown be evaluated to true, and
thus there be a total of two uses of temp. Let us further assume
the first read was correct. At this point, de f checksum = temp,
and use checksum = temp. Before the second read, let us suppose
that a memory error occurred, and temp got changed to temp′. At
second read, it gets added to use checksum, and use checksum is
now equal to temp + temp′. And, at epilogue, temp′ gets added
to de f checksum (as temp use count would be 2), which makes
de f checksum = temp + temp′, same as the present value of
use checksum, and the memory corruption goes undetected.

The problem with merely adding the current value of a vari-
able to the de f checksum in the epilogue is that the corrupted
value might get added to both checksums and thus escape de-
tection. We fix the problem by defining auxiliary checksums —
e de f checksum and e use checksum. e de f checksum is com-
puted at the def-site as before, but e use checksum is computed
only after the last use of the variable (and, not at each use-site). The
error detection code generated using the scheme described is shown
in Figure 5 b). We note that the problem explained above now gets
fixed: e de f checksum = temp, but e use checksum = temp′, and
the memory error gets exposed.

The reason the modified scheme with additional checksums
works is, at the end, when the value of the variable is added
to de f checksum to match the number of its uses, the auxiliary
checksum confirms that the value that gets added to de f checksum
is what was defined, and not a potentially corrupted value.

4.2 Optimizations for Iterative Codes
Figure 6 shows an example of a code requiring dynamic support:
accesses to array p new at S1 are data-dependent. Further, number
of iterations of the loop is dynamically determined. We describe
how we generate EDC for the example focusing on two arrays –
p new, and cols – followed by description of a general scheme.

whi le (conve rged == f a l s e) {
f o r (j 1 =0; j 1<n ; j 1 ++) {

S1 : temp1 += p new [c o l s [j 1]] ;
}
f o r (j 2 =0; j 2<n ; j 2 ++) {

S2 : temp2 += p new [j 2] ;
}
f o r (j 3 =0; j 3<n ; j 3 ++) {

S3 : p new [j 3] = temp3 ;
}

/∗ c o n v e r g e n c e check n o t shown ∗ /
}

Figure 6: Example code requiring dynamic use count determination

The following set of observations is made about reads (uses)
and writes (definitions) to array p new:

• The reads to p new at S1 are indexed by cols array entries.
However, no element of array cols is written to in the while
loop. Therefore, the same set of array elements of p new is read
in every iteration of the while loop.
• The elements of p new read at S2 are amenable to compile-

time analysis as the array index expressions and loop bounds of
enclosed loop indexed by j 2 are affine.

• The new definition of array p new at S3 is used a fixed num-
ber of times (even though not known at compile-time) before
being overwritten in the next iteration of the while loop, if the
algorithm has not converged.

We use an inspector to examine the cells of array p new that will
be read because of data-dependent accesses at S1. Since these reads
are loop-invariant, the inspector is hoisted above the while loop to
reduce the overhead of running the inspector. The parts of the code
that are affine are subjected to static analysis techniques developed
in previous sections, and the information from the inspector and
static analysis are combined to generate the checksum calculation
code.

The reads to array cols are affine; however, the number of
iterations of the while loop is not known apriori. The number of
accesses to a cell of array cols will be the number of accesses to it in
an iteration of the loop (which can be determined by compile-time
techniques) multiplied by the number of iterations. To determine
the number of iterations of the loop, we introduce a new variable to
count the number of dynamic executions of the loop. For such read
references, the number of accesses is a function of the dynamic loop
count. We observe that this count is not known at the time of the
value’s definition. In such cases, we adopt the following method. At
the definition site, the defined value is added to de f checksum, and
e de f checksum (auxiliary checksum used for correctness) once,
and at all read locations, it is added to use checksum once. Post loop
execution, in the epilogue code, the value is added to de f checksum
one less than loop-count times, and once to e use checksum to
balance contributions to the def, and use checksums. This approach
protects all uses of the defined value.

/ / I n s p e c t o r
f o r (j 1 =0; j 1<n ; j 1 ++) {

count p new [c o l s [j 1]] + + ;
}
i t e r = 0 ;
whi le (conve rged == f a l s e) {

i t e r ++;
f o r (j 1 =0; j 1<n ; j 1 ++) {

add to chksm (u s e c s , c o l s [j 1] , 1) ;
add to chksm (u s e c s ,

p new [c o l s [j 1]] , 1) ;
S1 : temp1 += p new [c o l s [j 1]] ;

}
f o r (j 2 =0; j 2<n ; j 2 ++) {

add to chksm (u s e c s , p new [j 2] , 1) ;
S2 : temp2 += p new [j 2] ;

}
f o r (j 3 =0; j 3<n ; j 3 ++) {

S3 : p new [j 3] = temp3 ;
add to chksm (d e f c s , p new [j 3] ,

count p new [j 3] + 1) ;
}
/∗ c o n v e r g e n c e check n o t shown ∗ /

}

/ / E p i l o g u e
f o r (i =0 ; i<n ; i ++) {

add to chksm (d e f c s , c o l s [i] , i t e r −1);
add to chksm (e u s e c s , c o l s [i] , 1) ;
add to chksm (u s e c s , p new [i] ,

count p new [i] + 1) ;
}

Figure 7: Example code with inspector to determine use counts and
generalized EDC scheme

Figure 7 shows the EDC-inserted version of the example in
Figure 6. The inspector code counts the number of accesses to
data-dependent references of array p new. The loop is instrumented
with de f checksum, and use checksum computation operations,

5 2014/1/27

and variable iter keeps count of the number of iterations of the
while loop. In the epilogue code, the values of array cols are added
to de f checksum iter− 1 times. The values of p new are added to
use checksum in the epilogue as well to account for the fact that the
new definition of p new in the last iteration of the while loop goes
unused.

5. Overall Compiler Algorithm for Transient
Error Detection

The approach is based on using one global checksum to track all
definitions (assignments) of values to data elements and another
global checksum to track all uses of the elements; a mismatch
between the two checksums indicates the occurrence of one or more
data corruption errors.

Algorithm 3 Insert Error Detection Codes

Input: The abstract syntax tree of a program: AST
Output: The AST of equivalent resilient program: AST ′

1: Live− in← Gather live-in values and associated use counts in
the AST

2: Prologue ← Generate operations adding Live − in to
de f checksum, and to auxiliary e de f checksum

3: for all Use Site ∈ AST do
4: Insert code to add read operands to use checksum
5: if the read is in an irregular access then
6: Insert code to increment the value of use count
7: end if
8: end for
9: for all De f Site ∈ AST do

10: if use count is known then
11: Insert code to add the defined value to de f checksum,

use count times
12: else
13: Insert code to add the previous value to de f checksum,

use count−1 times
14: Insert code to add the previous value to e use checksum

once
15: Insert code to add the new value to de f checksum, and

e de f checksum
16: Insert code to set use count to 0
17: end if
18: end for
19: Ad justment Pending De f s ← Gather variables in the AST

whose use count was not known
20: for all Var ∈ Ad justment Pending De f s do
21: Insert code in E pilogue to add Var to de f checksum,

use count−1 times
22: Insert code in E pilogue to add Var to e use checksum once
23: end for
24: Veri f ier← Add code to assert equality of def, and use check-

sums
25: AST ′ ← Append {Prologue,AST,E pilogue,Veri f ier}

Algorithm 3 presents the general approach to generating Er-
ror Detection Codes (EDCs). At each use-site, the read values
are added to use checksum; and use-counts are incremented if the
reads are in irregular accesses. At a def-site, if information on the
number of the uses can be pre-determined (Section 3 describes
a static analysis to compute this information for affine array ref-
erences), then the produced value is added to de f checksum as
many times as it will be used. If the number of uses for a def-
inition of a value cannot be determined a priori, a different ap-
proach is used to manage the checksums: the newly defined value
is added once to de f checksum, and once to an auxiliary checksum

e de f checksum, to be adjusted in the epilogue code. A use-count
is also maintained and initialized to zero. But, before the new value
is written, checksum adjustments are made for the previous value
of that variable about to be overwritten: the old value is added to
de f checksum, use count − 1 times, and is also added to update
e use checksum (Section 4 develops optimizations for such mem-
ory references.) At the end of the program, the verifier code that
compares de f , and use checksums is introduced to detect any mem-
ory errors that might have occurred to any variables during execu-
tion of the program.

Checksum Function Any commutative and associative check-
sum operator can be chosen for error detection. We use integer
modulo addition as the checksum function in this work. (If an
operand is a floating-point number/character, its bit representation
is viewed as an integer of the appropriate size before invoking the
checksum operation.) Another candidate checksum operator that
has associative and commutative properties is XOR. However, ad-
dition is known to be superior to XOR in terms of fault coverage
[21].

An inherent property of checksums is that they can trigger false
negatives: errors canceling each other out and resulting in a correct
checksum value. The add operator with a finite bit-width also po-
tentially suffers from wrap-around cancellation errors. However, in
Section 6, we show that probability of such false negatives is ex-
tremely low and errors are detected with high confidence. Further,
in Section 6.1.2, we show that by using multiple checksums, false
negatives can be virtually eliminated.

Theorem 5.1. The checksum computation codes inserted by Algo-
rithm 3 correctly detect all memory errors with a high probability
provided checksums are register-resident.

Proof. We want to prove that checksums flag an error – de f and
use checksums do not match if for any variable, the value assigned
to the variable at its definition-site is different from the values
carried by the variable at any of its subsequent use-sites. And, we
want to show that various checksum adjustments are correct and
do not trigger false positives – checksums match if there are no
memory errors.

We first consider the case where there is a single variable in
the program and then extend the analysis to show that the scheme
works for multiple variables.

Single variable scenario: Let the value assigned to the variable
at def-site be v and it be used n times. Now we can have two
cases: 1) number of uses of the variable – use count is known at
compile-time or 2) uses occur in data-dependent paths of the AST
and use count is not known at compile time.

Case 1 — known use count: When use count is known (to be
n) at compile-time, value v is multiplied by n and is added to
de f checksum. Therefore, de f checksum= n×v. We analyze what
happens to checksums for different values of n and in the presence
of errors.

i) n = 0 : de f checksum = 0 and use checksum = 0. Since
number of uses is zero, data errors do not happen.

ii) n = 1 : At the use-site, if the value read is v, the two check-
sums match, otherwise the error is caught.

iii) n > 1 : Let the values read during n reads be: v1,v2, . . . ,vn.
The checksum values will be: de f checksum = n× v, and
use checksum = v1 + v2 + · · ·+ vn. If there were no memory errors
then each vi will be equal to v and the two checksums match.

If any of the reads is wrong, then with a high probability
de f checksum 6= use checksum and the error is detected. A false
negative can happen when n× v = v1 + v2 + · · ·+ vn even though
some vi’s are different from v.

6 2014/1/27

Table 1: Percentage of Undetected Errors with ADD checksum

One Checksum Two Checksums
#bit-flips N All 0 bits All 1 bits Random bits All 0 bits All 1 bits Random bits

2
102 0.025% 0.025% 0.790% 0.011% 0.011% 0.024%
104 0.014% 0.014% 0.755% 0% 0% 0.017%
106 0.014% 0.014% 0.763% 0% 0% 0.022%

3
102 0.002% 0.002% 0.020% 0% 0% 0%
104 0.002% 0.002% 0.030% 0% 0% 0%
106 0.002% 0.002% 0.020% 0% 0% 0%

4
102 0% 0% 0.015% 0% 0% 0%
104 0% 0% 0.020% 0% 0% 0%
106 0% 0% 0.014% 0% 0% 0%

5
102 0% 0% 0.001% 0% 0% 0%
104 0% 0% 0.002% 0% 0% 0%
106 0% 0% 0.003% 0% 0% 0%

6
102 0% 0% 0% 0% 0% 0%
104 0% 0% 0% 0% 0% 0%
106 0% 0% 0% 0% 0% 0%

Case 2 — unknown use count: At the def-site, value v is used to
initialize def checksums: de f checksum= v and e de f checksum=
v.

i) n = 0 : Since there are no uses, use checksum = 0 and
use count = 0. At the epilogue code or just before the variable
is overwritten, value v is added to de f checksum use count − 1
times which is −1 times. Therefore, de f checksum = v− v = 0.
Also, v is added to auxiliary checksum: e use checksum = v.
Thus, de f checksum = use checksum = 0 and e de f checksum =
e use checksum = v unless there are memory errors.

ii) n = 1 : When there is only one use, de f checksum is not
adjusted since use count−1 = 0. Memory errors are detected with
certainty when n = 1.

iii) n > 1 : Let the values read during n reads be: v1,v2, . . . ,vn.
Therefore, use checksum = v1 + v2 + · · ·+ vn. At the time of ad-
justing of de f checksum, the value of the variable be vn+1. Hence,
finally de f checksum = v+(n− 1)× vn+1 and e use checksum =
vn+1.

If there are no errors, then the checksums match: de f checksum=
use checksum = n×v and e de f checksum = e use checksum = v.
When there is an error, it is caught if either v+(n− 1)× vn+1 6=
v1 + v2 + · · ·+ vn or if v 6= vn+1.

Use of e checksums prevents an important class of errors going
undetected: If after 1st use, v changes to v′ and the error persists,
then de f checksum = use checksum = v + (n− 1)× v′. But, be-
cause auxiliary checksums are being used, they correctly flag the
error: e de f checksum = v and e use checksum = v′ and they do
not match.

Multiple variables: Because the checksum operator is commu-
tative and associative, an analysis similar to the one above estab-
lishes that the checksum values match if there are no errors and
they do not match with a high probability in the presence of mem-
ory errors.

6. Experimental Evaluation
6.1 Fault Coverage
A characteristic of the use of checksums for error detection is
that errors in multiple values contributing to a checksum could
cancel one another and thus, produce a seemingly correct checksum
even though there were bit-flips in the data. In the following set

of experiments, we quantify the percentage of errors that escape
detection.

One-bit errors are always caught – only multi-bit errors can
potentially go undetected. Therefore, we inject multi-bit errors
into an array of 64-bit integers, and the percentage of cases in
which checksums are successful in catching the faults is monitored.
Over 100,000 trials, the following steps are repeated: The data are
initialized, and initial 64-bit checksum is computed. Then, either
two, three, four, five, or six bits over all bits of the array are
uniformly randomly selected and values of those bits are flipped.
A 64-bit checksum is again computed and is compared with the
initial checksum. If there is a mismatch in the checksum values,
then the injected error has been correctly caught, otherwise error
has escaped detection. The percentage instances when errors are
not caught over 100,000 trials is reported. (For small array sizes,
we gathered data for even higher number of trials – up to 1 million
trials. The percentage of undetected errors obtained were very
similar to what we report here for 100,000 trials.)

6.1.1 Effectiveness of Checksums
Table 1 shows the percentage of cases in which a multi-bit error
(2, 3, 4, 5, 6 bit-flips) is not caught for different array sizes –
102,104,106 under the column header “One Checksum”. Experi-
ments are carried out over three kinds of data: all bits of the array
elements are 0’s; all bits are 1’s; bits are randomly initialized.

The 2-bit errors experience the highest percentage of undetected
errors, and the number of undetected errors approach zero as the
number of bits that are flipped increases. The reason for this is that,
when multiple bits (greater than 2) are flipped, even though a pair
of errors in different values line-up to cancel each other out, other
bit-flips may not exactly line-up and thus, the error is still caught
with a high probability.

Among different types of data values, percentage of undetected
errors is highest for random values. When bits of all array elements
are initialized to either 0’s, or 1’s, if bits at the same bit-position in
two array elements flip, the carry bit is also changed, and the error
will be caught unless the bit in the next bit-position is also flipped.
In contrast, random data are likely to have an equal number of 0’s
and 1’s, and when a 0 becomes 1, and 1 becomes 0 at the same bit-
position in two values, it will not change the carry bit, and thus the
error can go undetected with a higher probability.

7 2014/1/27

Table 2: Benchmarks

Benchmark Description Problem Size
ADI Alternating Direction Implicit solver TSteps = 500, N = 3,000
CG Conjugate Gradient TSteps = 1500, NZ = 513,072

cholesky Cholesky decomposition N = 3,000
dsyrk Symmetric rank-k update N = 3,000

jacobi1d 1-D Jacobi stencil computation TSteps = 100,000, N = 400,000
LU LU decomposition N = 3,000

moldyn Molecular dynamics TSteps = 100,000, N = 400,000
seidel 2-D Seidel stencil TSteps = 500, N = 3,000
strsm Triangular matrix equations solver N = 3,000
trisolv Triangular system of linear equations solver N = 3,000

ADI CG cholesky dsyrk jacobi1d LU moldyn seidel strsm trisolv mean

1

1.33

1.63

2

2.5

N
o
rm

a
liz

e
d
 r

u
n
n
in

g
 t

im
e

Performance of Resilient Codes

Original
Resilient
Resilient−Index−Split

Figure 8: Performance of resilient codes with one checksum –
software-only solution. y-axis employs a linear scale with selective
tick marks to highlight the costs.

ADI CG cholesky dsyrk jacobi1d LU moldyn seidel strsm trisolv mean

1
1.07
1.15

1.5

N
o
rm

a
liz

e
d
 r

u
n
n
in

g
 t

im
e

Estimated Performance of Resilient Codes with Hardware Support

Original

Resilient−Index−Split: One Checksum

Resilient−Index−Split: Two Checksums

Figure 9: Estimated performance of resilient codes with a special
function unit to compute checksums. y-axis employs a linear scale with
selective tick marks to highlight the costs.

Further, we observe that the performance of checksums is
largely independent of the number of values that go into form-
ing the checksum. In over 99% of cases, errors are successfully
detected.

6.1.2 Use of Multiple Checksums
The odds of error detection can be further improved and protec-
tion against data corruption fortified with the use of multiple check-
sums: the first checksum is a direct sum of array values as before,
but other checksums are obtained by adding permutations of array
values.

We evaluate the fault coverage when using two checksums: two
64-bit checksums are computed from initial data, errors are injected
and checksums are recomputed. If there is a mismatch between
either pair of checksum values, error has been detected. While
forming the second checksum, each array element is left-rotated by
an amount determined by 5 bits of the address of that array element,
viz., 4th to 8th least significant bits. (The address of a 64-bit integer,
which occupies 8 bytes, will likely to be a multiple of 8. Hence, the
first three least significant bits – 1st to 3rd are likely to be always
zeros). Thus, each value that goes into computation of the second
checksum is left-rotated by an amount between 0 and 31 (25− 1)
bits depending on its address.

Therefore, with a high probability the corrupted array values are
rotated by different amounts, which prevents the lined-up erroneous
bits in one checksum from lining up to cancel one another out after
rotation in the other checksum also. The percentages of undetected
errors using the two checksum scheme are shown in Table 1 under
the column header “Two Checksums”. Only a very small percent-

age of 2-bit errors are undetected, and all 3-, 4-, 5-, 6- bit errors are
detected.

6.2 Performance Overheads
Benchmarks: Table 2 lists the benchmark programs and problem
sizes used to measure performance overheads of resilient codes.
All array references in ADI, cholesky, dsyrk, jacobi-1d, LU, seidel,
strmm, trisolv are statically analyzable, whereas a subset of array
references in CG, and moldyn are irregular and for those references,
dynamic analysis techniques are applied.

Machine Configuration, and Compiler: Experiments are per-
formed on Intel Xeon E5630 processors, running at 2.53GHz with
32KB L1 cache. The programs are compiled using Intel icc 13.1.3
compiler, with -O3 optimization flag. Each executable is run five
times, and the average running time of those five runs is used in
reporting the results.

6.2.1 One Checksum, Software-Only Solution
Figure 8 shows performance of resilient programs that have check-
sum computation codes embedded in them relative to performance
of original non-resilient versions. The geometric mean of perfor-
mance overheads of resilient codes across all benchmarks is 63.0%.
When index-splitting optimization presented in §3.3.2 is applied,
performance overheads are reduced to 33.4% on average (geomet-
ric mean).

The index-splitting transformation partitions a loop so that
statements in a loop have the same use count, and hence, re-
moves any conditional statements introduced in the loop because
the use count of a definition changes based on values of a loop
iterator. Index-splitting thus reduces control overheads and im-
proves performance. Further, index-splitting enables vectorization

8 2014/1/27

if the compiler was not able to vectorize a loop because conditional
statements were present in the loop. E.g., original LU code is vec-
torized – its running time is 11.1 seconds, however its resilient ver-
sion is not vectorized, and its running time is 30.3 seconds. When
index-splitting transformation is applied to the resilient code, the
icc compiler successfully vectorizes it, and the resulting running
time is 13.2 seconds.

The highest overhead is observed for moldyn benchmark. While
moldyn is an iterative code, the inspector for one of the arrays used
cannot be hoisted out as loop-invariant properties are not preserved.
Therefore, counters are used to keep track of the number of uses
of array elements: at a use site, the use-count for the array-cell
is incremented, and at a write site, the old value is used to adjust
checksums, and new value is added to def-checksum.

The CG benchmark is an iterative method that includes sparse
matrix-vector multiplications. Even though it has irregular ac-
cesses, each iteration of the computation has the same data access
pattern. Hence, the inspector code for running through irregular
accesses is hoisted out of the iterative loop for CG. The overheads
are therefore smaller for CG compared to moldyn, which also has
irregular accesses.

6.2.2 One Checksum, Two Checksums with Hardware
Support

Checksum computation when multiple checksums are employed, is
a costly operation without assistance from hardware: at a definition
site, the newly produced value is multiplied by its use count, and
the resulting value is added to the first checksum – it involves a
multiplication and an addition operation. Constructing the second
checksum requires extraction of certain bits from the address of a
variable, permutation of the value and then finally, a multiplication
by the use count, and addition to the checksum value.

Therefore, we propose addition of a special function unit (SFU)
to hardware to compute checksums. We evaluate effect of addition
of checksum SFU on performance by substituting checksum oper-
ations with some other instructions that model how checksum in-
structions proceed in the instruction pipeline except at the Execute
stage, viz., Fetch, Decode, and Write-back stages.

We assume that the number of cycles the checksum SFU takes
to add a value to a checksum is no greater than the number of cycles
to perform an addition operation, and hence, estimate performance
of resilient codes with hardware support by substituting a checksum
computation instruction with an instruction that adds a constant
value to the checksum. Thus, resilient codes that use one check-
sum will have in lieu of checksum computations, instructions that
increment checksums; resilient codes that employ two checksums
will have twice as many such checksum-incrementing instructions.
With this set-up, we compile the programs with icc compiler, and
execute them on Intel Xeon processors.

Figure 9 plots the estimated performance overheads of resilient
codes on systems that have the proposed checksum SFUs. The
geometric mean of performance overheads across benchmarks of
resilient codes that use one checksum is 7.1%, and that use two
checksums is 15.4%. Performance of resilient versions of those
benchmarks whose references can be analyzed completely stati-
cally is very close to performance of non-resilient original codes.
Addition of the checksum SFU takes away most of the overheads
of resilient codes. The benchmarks that have irregular accesses,
namely CG and moldyn also benefit from hardware support; the
cost of inspectors inserted in them for dynamic analysis however
does not change and therefore, CG and moldyn have slightly higher
overheads compared to other benchmarks.

7. Related Work
Fault Tolerance Approaches to tackling soft errors have been
considered at various levels of the hardware-software environment
and typically involve redundancy coupled with periodic valida-
tion. At the lowest level, hardware checkers such as self-checking
logic [24] and hardware duplication [1] provide the most general
coverage, but can be expensive in terms of chip area, performance,
and power, and not widely available on all systems of interest.

More general schemes on commodity hardware resort to dif-
ferent forms of execution redundancy and periodic validation,
possibly aided with micro-architecture support. This includes ap-
proaches for simultaneous multithreading [13] and chip multipro-
cessors [33] that employ redundantly executing threads whose
results are periodically compared. Process-level redundancy [36]
involves duplicating the inputs and entire execution on distinct
processes whose outputs are then compared. These schemes incur
significant overheads or require specialized hardware to frequently
validate the ongoing computation.

Software-level redundancy techniques that are agnostic of ap-
plication structure duplicate instructions within a single thread of
execution and introduce additional checking instructions for vali-
dation. Such an approach could check the computation [26] or con-
trol flow [25], while duplicating all application state. SWIFT [32]
checks the computation and control state without duplicating ap-
plication state and assumes that memory is made fault-tolerant to
other means such as ECC. The approach presented in this paper
can complement SWIFT by decoupling correctness checks for the
memory subsystem from that for control and computation.

An alternative to redundancy-based techniques, symptom-based
detection techniques employ low-cost detectors that observe vio-
lation of application visible properties, such as loop trip counts
and invariants [15] as the outcome of underlying hardware faults.
These solutions can be software-only [12, 38] or combine hard-
ware support [29] in the design of low-cost symptom-based de-
tectors. These incur lower overheads as compared to redundancy-
based techniques while potentially trading off fault coverage. Hari
et al. [16] observe the trade-off between fault detection latency – the
delay in detecting a fault – and the detection overhead in symptom-
based detectors. These techniques focus on detection of errors in
computation or control flow instructions. Our work focuses on the
design of symptom-based detectors for multi-bit memory errors.

Schroeder et al. [34] observed that the likelihood of repeated
failures in DRAM increases after a first failure has occurred. Multi-
bit memory errors have been observed in SRAM soft error evalua-
tion experiments [20, 27]. Yoon et al. [39, 40] designed approaches
to virtualize ECC for main memory so as to increase its flexibility
and offload expensive ECC error correction for last-level caches to
DRAM. Gold et al. [11] observe that multi-bit error detection and
correction in L1 caches is more expensive in terms of performance,
power, and area even for reasonable sizes.

Shirvani et al. [35] designed approaches to provide checksum
protection by periodically scrubbing memory, rather than check
every read and write operation, which lowers fault coverage as
compared to our approach. Checksum approaches for various
data structures such as trees have been considered by exploiting
structure-specific properties [6]. Algorithm-based fault tolerance
for linear algebra relies on distributivity of floating point multipli-
cation over addition to make specific array operations resilient [17].
Chen at al. [7] optimize the management of checksums for such
algorithm-based fault tolerance schemes. Blum et al. [4] presented
checkers that can validate operations on data structures stored in
unreliable memory using the minimal amount of reliable memory
required. Our approach does not rely on any assumptions about
floating point arithmetic and is not restricted to specific algorithms
or data structures.

9 2014/1/27

Maxino [21] evaluates error detection effectiveness of different
checksum algorithms, namely, XOR, two’s complement addition,
one’s complement addition, Fletcher checksum, Adler checksum,
and Cyclic Redundancy Codes.

Compile-time Analysis and Transformation Griebl et al. [14]
use the index-set splitting approach to form regular dependence
structures so that effective loop transformations can be applied.
As there can be a large number of ways of splitting loops, they
address the problem of how to efficiently find index sets that do
yield good loop transformations. The index-set splitting procedure
developed in this work, on the other hand, addresses the problem
of systematically achieving separation of iteration spaces according
to a given criterion (the criterion for us is achieving the same use-
counts for writes in a split index set). Inspector-executor strategies
have been used to perform start-time optimizations for that can
exploit data structure and dependence properties not known at
compile-time [30].

8. Conclusion
The decreasing transistor sizes, use of lower voltage levels, and
smaller noise margins have increased the probability of multi-
bit errors in the memory subsystem. Therefore, it is of increased
interest to design efficient solutions to address this problem in
software as hardware does not typically have embedded multi-
bit error detection and correction mechanisms. Towards that end,
we developed novel compiler techniques to instrument application
programs with error detection codes that at runtime protect every
memory reference. The experimental evaluation demonstrates that
the proposed solutions have low overheads and are practical.

References
[1] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr,

and D. K. Rubin. The STAR (self-testing and repairing) computer:
An investigation of the theory and practice of fault-tolerant computer
design. IEEE Transactions on Computers, 1971.

[2] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting
polyhedral loop transformations to work. In LCPC, 2003.

[3] R. Baumann. Soft errors in advanced computer systems. Design &
Test of Computers, IEEE, 22(3):258–266, 2005.

[4] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking
the correctness of memories. Algorithmica, 12(2-3):225–244, 1994.

[5] S. Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. Micro, IEEE,
25(6):10–16, 2005.

[6] J. D. Bright, G. F. Sullivan, and G. M. Masson. Checking the integrity
of trees. In Fault-Tolerant Computing, 1995.

[7] G. Chen, M. Kandemir, and M. Karakoy. A data-centric approach to
checksum reuse for array-intensive applications. In DSN, 2005.

[8] P. Feautrier. Dataflow analysis of array and scalar references. IJPP,
20(1), 1991.

[9] P. Feautrier. Some efficient solutions to the affine scheduling problem:
I. one-dimensional time. IJPP, 21(5):313–348, 1992.

[10] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. Intl. J. of Parallel
Programming, 34(3), 2006.

[11] B. T. Gold, M. Ferdman, B. Falsafi, and K. Mai. Mitigating multi-bit
soft errors in L1 caches using last-store prediction. In Proceedings
of the Workshop on Architectural Support for Gigascale Integration,
2007.

[12] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante.
Soft-error detection using control flow assertions. In Defect and Fault
Tolerance in VLSI Systems, 2003.

[13] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz. Transient-
fault recovery for chip multiprocessors. In Computer Architecture,
2003.

[14] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. Interna-
tional Journal of Parallel Programming, 28(6):607–631, 2000.

[15] S. K. S. Hari, S. V. Adve, and H. Naeimi. Low-cost program-level
detectors for reducing silent data corruptions. In DSN, 2012.

[16] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran. Relyzer:
exploiting application-level fault equivalence to analyze application
resiliency to transient faults. In ACM SIGARCH Computer Architec-
ture News, 2012.

[17] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for
matrix operations. IEEE Transactions on Computers, 1984.

[18] ISL: Integer Set Library, 2013. http://garage.kotnet.org/

˜skimo/isl/.
[19] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo.

BlueGene/L failure analysis and prediction models. In DSN, 2006.
[20] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Characterization

of multi-bit soft error events in advanced SRAMs. In IEDM, 2003.
[21] T. C. Maxino. The effectiveness of checksums for embedded net-

works. Master’s thesis, Carnegie Mellon University, 2006.
[22] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and

S. A. Wender. Predicting the number of fatal soft errors in los alamos
national laboratory’s ASC Q supercomputer. Device and Materials
Reliability, 2005.

[23] J. Nickolls and W. J. Dally. The GPU computing era. Micro, 2010.
[24] M. Nicolaidis. Efficient implementations of self-checking adders and

ALUs. In FTCS, 1993.
[25] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-flow checking by

software signatures. Reliability, 2002.
[26] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by

duplicated instructions in super-scalar processors. Reliability, 2002.
[27] K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara. SRAM immu-

nity to cosmic-ray-induced multierrors based on analysis of an induced
parasitic bipolar effect. Solid-State Circuits, 2004.

[28] T. Osada and M. Godwin. International technology roadmap for
semiconductors. 1999.

[29] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. K.
Iyer. Dynamic derivation of application-specific error detectors and
their implementation in hardware. In EDCC, 2006.

[30] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation
techniques for data partitioning and communication schedule reuse.
In Supercomputing’93. Proceedings, pages 361–370. IEEE, 1993.

[31] H. Quinn and P. Graham. Terrestrial-based radiation upsets: A cau-
tionary tale. In FCCM, 2005.

[32] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software implemented fault tolerance. In CGO, 2005.

[33] E. Rotenberg. AR-SMT: A microarchitectural approach to fault toler-
ance in microprocessors. In Fault-Tolerant Computing, 1999.

[34] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
a large-scale field study. In Measurement and modeling of computer
systems, 2009.

[35] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey. Software-
implemented EDAC protection against SEUs. Reliability, 2000.

[36] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors.
Using process-level redundancy to exploit multiple cores for transient
fault tolerance. In Dependable Systems and Networks, 2007.

[37] S. Verdoolaege. isl: An integer set library for the polyhedral model.
Mathematical Software–ICMS 2010, pages 299–302, 2010.

[38] N. J. Wang and S. J. Patel. ReStore: Symptom-based soft error
detection in microprocessors. Dependable and Secure Computing,
2006.

[39] D. H. Yoon and M. Erez. Flexible cache error protection using an ECC
FIFO. In SC, 2009.

10 2014/1/27

[40] D. H. Yoon and M. Erez. Memory mapped ecc: low-cost error protec-
tion for last level caches. In ISCA, 2009.

[41] J. Ziegler and et al. IBM experiments in soft fails in computer
electronics (1978–1994). IBM Journal of Research and Development,
1996.

11 2014/1/27

