
Constructing Isosurfaces with Sharp Features
from Scalar Data - Tech Report

Arindam Bhattacharya and Rephael Wenger

January 13, 2014

Abstract

Previous algorithms for constructing isosurfaces with sharp features required
gradients or surface normals to be provided as input to the algorithm. We present
an algorithm for constructing isosurfaces with sharp features from scalar data on
a regular grid. Our algorithm has two parts: (1) an algorithm to construct reliable
gradients from scalar data; (2) an algorithm to construct isosurfaces with sharp
features from scalar data combined with gradient data. We give experimental re-
sults on industrial CT scans. Our algorithm produces isosurface meshes with sharp
edges and corners reliably represented by mesh edges and vertices. Our algorithm
also produces reliable representations and good visualizations of sharp features in
the isosurface.

1 Introduction
X-ray computed tomography (CT) scanners produce regular grids of scalar values rep-
resenting material densities of scanned objects. These scalar values can be viewed as
samples of some scalar field f : R3 → R. An isosurface with isovalue σ is a surface
which approximates the level set f−1(σ). The isosurface separates grid vertices with
scalar values less than σ from grid vertices with scalar values greater than σ . If the
scanned object has material density s different than the density s′ of its surroundings,
then an isosurface with isovalue σ between s and s′ will represent the boundary sur-
face Σ of the object. We are interested in reconstructing isosurfaces which represent
boundary surfaces Σ with sharp edges and corners. In particular, we are interested in
reconstructing isosurfaces from industrial CT scans of machine parts whose boundaries
Σ have such sharp edges and corners.

Assume that a surface Σ is piecewise smooth, i.e. Σ is composed of a finite set of
smooth surface patches whose boundaries are finite sets of smooth curves. Every point
q in the interior of a smooth surface patch has a tangent plane and two opposing normal
directions. Non-smooth points of Σ are points on the boundary of the surface patches
where there is a discontinuity in the surface normals. Tangent planes and normal direc-
tions are not defined at non-smooth points.

An edge of Σ is a curve of non-smooth points on the intersection of the boundaries
of two surface patches. A sharp edge of Σ is an edge with dihedral angle (defined in

1

Section 2) bounded away from 180 degrees. A corner of Σ is a non-smooth point which
is the intersection of three or more sharp edges or does not lie on any sharp edge. A
sharp corner of Σ is a corner with solid angle bounded away from 2π . Sharp edges and
corners are more generally called sharp features.

Isosurfaces are represented by piecewise linear or piecewise smooth meshes, usu-
ally composed of triangles or quadrilaterals. This underlying mesh should model the
sharp features of the surface Σ. A sharp edge of Σ should be represented by a single,
connected sequence of mesh edges with similar dihedral angle. A sharp corner of Σ

should be represented by a single isosurface vertex with similar solid angle. On the
other hand, mesh edges and vertices representing smooth, low curvature portions of Σ

should have dihedral angles near 180 degrees and solid angles near 2π .
Instead of scanned data, one could start with an explicit function f : R3→ R, sam-

ple the values of f (v) on regular grid vertices v, and then reconstruct an isosurface
representing f−1(σ) for isovalue σ . If f−1(σ) is piecewise smooth, then the isosur-
face mesh should model the sharp edges and corners of Σ= f−1(σ) as described above.
Given an explicit function f , one can compute surface normals at intersection points of
f−1(σ) and regular grid edges or compute gradients of f at grid vertices.

Previous algorithms to construct isosurfaces with sharp features relied upon exact
surface normals being provided to the algorithm [3, 10, 12, 15, 16, 18, 27, 23, 28]. In
recent work Bhattacharya et al. [1], gave a robust algorithm to construct isosurfaces
with sharp features from gradient grid data where gradients are provided at each grid
vertex. In this paper, we extend that work to scalar data where no surface normal or
gradient information is provided. (See Figure 1.)

Our algorithm has two parts:

1. Construct reliable gradients from a regular grid of scalar values.

2. Construct an isosurface with sharp features from gradient data.

If the level set f−1(σ) of a scalar field f : R3→R has sharp features, then there are
discontinuities in the gradients of f at the sharp features. Constructing the gradients
near those discontinuities is difficult. Formulas for approximating gradients such as the
central difference formula [5] or higher order approximations [2, 13, 19] assume the
gradient is continuous at the given location. Anisotropic diffusion [4, 6, 24, 25, 26] re-
moves noise in low curvature regions of the scalar field without affecting high curvature
regions, but it does not produce correct gradients near gradient discontinuities.

Instead of attempting to produce correct gradients at all grid vertices, our algorithm
identifies correct gradients and uses only those gradients to predict locations of isosur-
face vertices. Gradients are marked correct if they agree with nearby gradients and if
they correctly predict the scalar values at nearby grid points.

To construct the isosurface from gradient data, we use the MERGESHARP algo-
rithm from [1]. However, the MERGESHARP algorithm as described in [1] only looks
at gradients from grid cube c or adjacent cubes to predict the location of the isosur-
face vertex generated by c. When constructing gradients from industrial CT data, the
vertices of c and its neighbors may have few or no gradients which are marked cor-
rect. In Section 5, we modify MERGESHARP to selectively look at gradients in a larger
neighborhood of c.

2

Figure 1: Approaches to feature reconstruction. (a) Dual contouring [15] and its vari-
ations require surface normals at the intersection of grid edges and isosurface vertices.
(b) Algorithm MERGESHARP requires gradients at grid vertices. (c) Algorithm RELI-
ABLEGRAD computes gradients for use by MERGESHARP allowing the reconstruction
of isosurfaces with sharp features from only scalar data. RELIABLEGRAD does not
compute gradients at vertices adjacent to sharp features. Thus, MERGESHARP must be
modified to compute isosurface vertices from gradients in an extended neighborhood
around a cube.

3

We present the results of our algorithm both on synthetic data and industrial CT
data. To the best of our knowledge, this is the first presentation of isosurface with
sharp features produced from industrial CT data.

Our algorithm represents sharp edges by mesh edges with dihedral angles below a
threshold. The sharp edges can be quickly identified and visualized by displaying mesh
edges with dihedral angles below that threshold, either together with the isosurface or
separately.

Our paper contains four major contributions:

1. We give an algorithm for identifying correct gradients computed from scalar grid
data;

2. We modify our MERGESHARP algorithm to selectively look for gradients in
large neighborhoods around grid cubes;

3. We show that applying correct gradient identification and the modified MERGE-
SHARP to industrial CT data produces isosurfaces with sharp features;

4. We apply our algorithm to identify and visualize sharp edges on an isosurface.

2 Definitions
For each smooth point q, let ηq be the normal at q which points in the direction of
increasing f . Let Bε

p be the ball of radius ε centered at point p and let ∂ψ be the
boundary of a surface patch ψ . The dihedral angle between two smooth surface patches
ψ1 and ψ2 at point p ∈ ∂ψ1∩∂ψ2 is limε→0 inf{∠(ηq1 ,−ηq2) : q1 ∈ ψ1∩Bε

p and q2 ∈
ψ2∩Bε

p}. Note that the normal ηq2 is reversed. The dihedral angle of an edge γ of Σ

between ψ1 and ψ2 is the maximum dihedral angle over all points p ∈ ∂ψ1∩∂ψ2.

3 Related Work
The most well known isosurface construction algorithm is MARCHING CUBES algo-
rithm by Lorensen and Cline [17]. The algorithm places isosurface vertices on grid
edges. Because isosurface vertices are restricted to grid edges, the MARCHING CUBES
isosurface cannot represent sharp edges or corners.

Dual contouring is an isosurface construction technique which places isosurface
vertices inside grid cubes intersected by the isosurface. For each grid edge intersected
by the isosurface, dual contouring constructs a quadrilateral whose vertices lie in the
four grid cubes containing the grid edge.

Gibson [8, 9] gave the first dual contouring algorithm for isosurface construction.
Her algorithm placed only one isosurface vertex in a grid cube. Nielson’s DUAL
MARCHING CUBES algorithm [20] permits multiple isosurface vertices inside a grid
cube. Each isosurface vertex lies on a different isosurface patch in the grid cube.

Kobbelt et al. [16] modified the MARCHING CUBES algorithm [17] to produce
isosurfaces with sharp features. Input to their algorithm is a grid of directed distances

4

to an implicit surface. They constructed surface normals from this grid of directed
distances and used the surface normals to position isosurface vertices on sharp features.

Ju. et al. [15, 22] constructed isosurfaces with sharp features using dual contour-
ing [8, 9]. Input to their algorithm is a scalar grid combined with the set of surface
normals at the intersection of the surface and the regular grid edges. They coined the
term “hermite data” to describe such input. Ju [14] wrote a program Polymender for
fixing meshing errors in polygonal meshes. Polymender contains an implementation
of the dual contouring algorithm from [15].

Varadhan et al. [27] and Zhang et al. [28] gave dual contouring algorithms which
produce isosurfaces which may intersect a grid edge multiple times. These algorithms
model thinner features than the dual contouring algorithm by Ju et. al.

Algorithms by Ho et al. [12] and Ashida and Badler [3] construct a polygonal curve
representing the intersection of the surface and a grid cube. They connect the curve
to an isosurface vertex inside the grid cube, placing the isosurface vertex on sharp
features.

Schaefer and Warren [23] and Manson and Schaefer [18] use a different approach
to constructing isosurfaces with sharp features. They construct polygonal or tetrahedral
grids whose vertices and edges lie on sharp isosurface features. They then extract the
isosurface from these grids using MARCHING CUBES. The resulting isosurface mesh
contains many triangles with angles near 180◦.

All the above algorithms require a directed distance field or exact surface normals
as part of the input.

In [1], we gave in algorithm called MERGESHARP for constructing isosurfaces with
sharp features from gradient data. The algorithm is briefly described in Section 5. Input
to our algorithm is gradient grid data, scalar values and gradient vectors at each vertex
of a regular grid. Our algorithm is much more robust than the previous algorithms, and
can handle noise in the gradient vectors and missing gradient vectors.

Salman et al. [21] and Dey et al. [7] reconstructed piecewise smooth surfaces with
sharp features from point cloud data by separately placing mesh vertices on the sharp
features and vertices inside the smooth patches. They place “protecting ball” around
mesh vertices on sharp features so that no vertices inside the smooth patches are placed
near the sharp features. Algorithm MERGESHARP does something similar, merging
grid cubes around sharp features so that isosurface vertices on sharp features are “iso-
lated” away from other vertices.

Formulas for improving the numerical accuracy of gradient computations from
scalar data are given in [2, 13, 19]. These formulas assume the gradient vector field is
smooth and do not work when there are discontinuities in the vector field. They also
do not work when there is noise in the input scalar data.

Anisotropic diffusion is a technique by which the filtering of surface normals or
field gradients changes based on local curvature. Gradients or normals in low curvature
regions are moved to agree with their neighbors. Gradients or normals in high curvature
regions are moved only slightly. Anisotropic diffusion for mesh smoothing is described
in [4, 6, 24, 25]. Tasziden et. al. [26] used anisotropic diffusion to preserve features in
isosurface reconstruction.

Features in papers on anisotropic diffusion are high curvature regions, not regions
with normal or gradient discontinuities (infinite curvature.) Anisotropic diffusion ap-

5

(a) Central difference gradients. (b) Correct gradients

Figure 2: Gradient computation around a sharp surface edge. (a) The central difference
formula produces incorrect gradients near the sharp edge. (b) Gradients which are not
near the sharp

plied to surfaces or gradient fields with discontinuities will filter noise from smooth
regions, but it will not improve estimations at discontinuities or assist in identifying
such discontinuities.

4 Determining Correct Gradients
The first part of our reconstruction algorithm computes correct gradients from a regular
grid of scalar values. We assume that the scalar values represent the values at the grid
vertices of a piecewise smooth scalar field f . A scalar field f : R3 → R is piecewise
smooth if R3 can be partitioned into a finite set of piecewise smooth regions, such that
f has derivatives of all orders on each region. Gradients are computed at some, but not
all, of the grid vertices. In particular, gradients are not computed at grid vertices on or
adjacent to points where the scalar field is not smooth.

To compute a gradient in a piecewise smooth scalar field, we need all the scalar
values used in the computation to be from a single smooth portion of the scalar field.
Thus, we want to use a small basis for our gradient computation and not extend our
gradient computation over many grid vertices. We use the central difference formula

∂ f (x)/∂ (xd)≈ (f (x+ud)− f (x−ud))/(2|ud |), (1)

where x is the location of a grid vertex and ud is the vector to the adjacent vertex
in direction d. Figure 2a shows the result of computing gradient using the central
difference formula.

If spacing between grid vertices is the same in all directions, then the grid can be
rescaled so that ud is a unit vector in all directions. However, CT scans often have
non-uniform spacing, with the z or slice direction different from the x and y directions.
In that case, ux and uy will have different magnitudes from uz.

6

(a)

(b) (c)

(d) (e)

Figure 3: Results from scalar predictor test. Each yellow vertex is the center of a
5×5×5 subgrid. Cyan vertices are farther than 0.5 units from plane πv. Green vertices
are at most 0.5 units from plane πv and at most 0.4 units from plane π̃v,v′ . Red vertices
are at most 0.5 units from πv but farther than 0.4 units from π̃v,v′ . (b) shows a 5×5×5
subgrid around green vertex in (a). Fig (c) shows only the vertices from Fig (b) which
are near the plane πv.(d) shows vertices from subgrid around red vertex in Fig (a).
Finally, (e) shows vertices from subgrid around blue vertex in (a).

7

ANGLETEST(Grid, v)
1 numAgree← 0;
2 if (MAGNITUDE(gv)≤ 0.001) then return (false);
3 foreach grid vertex v′ adjacent to v do
4 if (MAGNITUDE(gv)≥ 0.001) then
5 if (ANGLE(gv,gv′)≤ 20) then
6 numAgree← numAgree+1;
7 end
8 end
9 end

10 if (numAgree≥ 4) then return (true);
11 else return (false);

Algorithm 1: Algorithm ANGLETEST

SCALARTEST(Grid, v)
1 R← 5×5×5 subgrid centered at v;
2 τ ← the afine transformation mapping Grid to the uniform grid with edge

length one;
3 πv← plane {x : (x− τ(v)) · τ(gv) = 0};
4 foreach grid vertex v′ in R do
5 if (DISTANCE(τ(v′),πv)≤ 0.5) then
6 π̃v,v′ ← plane {x : sv +(x− τ(v)) · τ(gv) = sv′};
7 errorDist← DISTANCE(τ(v′), π̃v,v′);
8 if (errorDist > 0.4) then return (false);
9 end

10 end
11 return (true);

Algorithm 2: Algorithm SCALARTEST

The central difference formula estimates the gradient at a vertex v from six neigh-
boring vertices of v which share a grid edge with v. If v and its six neighbors lie in
the same smooth region of f , then errors in the gradient approximation computed by
Equation 1 depend upon the curvature of f in the region and errors in the scalar values
at the grid vertices. Assuming that f has low curvature in the given region and scalar
value errors are small, the central difference formula will be a good approximation of
the gradient. By low curvature, we mean that the difference between the gradient di-
rection and magnitude at v and any of its six neighbors is small (less than 10 degrees
variation.) Scalar value errors are small if they are a small fraction of the gradient (less
than 10 percent.) If v and its six neighbors do not all lie in the same smooth region of f ,
then the central difference formula may be a very poor approximation of the gradient.
We wish to identify such gradients and mark them as incorrect.

We use two tests to determine if a gradient g is correct, an angle test (Algorithm 1)
and a scalar predictor test (Algorithm 2). For the angle test, we compare g with its

8

six immediate neighbors, gradients at vertex locations x+ ud and x− ud . If the angle
between the two gradients is less than 20 degrees, then we say that the two gradients
agree. If a gradient agrees with four out of its six neighbors, then it passes the angle
test. We consider gradients whose magnitude is less than 0.001 to effectively be zero
gradients and ignore them.

Figure 4: Algorithm RELIABLE-
GRAD.

Comparing a gradient with only its immedi-
ate neighbors can give false positives, where mul-
tiple incorrect gradients agree. It can also give
false negatives, since not only must a gradient be
correct, but four of its six neighbors must also be
correct. Therefore, we also use a scalar predictor
test.

Each gradient vector g, its vertex position p
and the scalar value sp at p determines a scalar
field

fp,g(x) = sp +(x− p) ·g. (2)

The level sets fp,g(s)−1 of that field are planes
in R3. Let q be the position of some vertex in
the scalar grid with scalar value sq. The plane
f−1
p,g(sq) represents locations of points with scalar

value sq as predicted by gradient vector g. For
uniform grids with grid edge length one, the pre-
diction error is the distance from q to f−1

p,g(sq).
For non-uniform grids or uniform grids with

grid edge length other than one, the distance from
q to f−1

p (sq) depends upon the edge lengths. To
eliminate this dependence, we apply an affine
transformation τ mapping the grid to a uniform grid with edge length one. The predic-
tion error is the distance from τ(q) to f−1

τ(p),τ(g)(sq).
We apply the scalar predictor test not just to immediate neighbors of the grid vertex

at position p, but to vertices which are in a 5×5×5 subgrid of vertices centered at p.
However, we only wish to apply the scalar predictor test at grid vertices which are near
the isosurface. Thus we compute the plane f−1

τ(p),τ(g)(sp) through τ(p) and apply the
scalar predictor test to vertices in the 5×5×5 subgrid which are within distance 0.5 of
this plane. Note that at least one endpoint of every grid edge intersected by this plane
is within distance 0.5 of the plane.

Figure 3a shows a 5×5×5 subgrid around a grid vertex v (yellow). The gradient
gv at v defines a plane πv through v orthogonal to gv. Subgrid vertices which are farther
than 0.5 units from plane πv are colored cyan.

The gradient gv and scalar value sv define a scalar field fv (Equation 2). Each
subgrid vertex v′ with scalar value sv′ defines a plane π̃v,v′ = f−1

v (sv′). A vertex v′

which is within 0.5 units of πv but at distance more than 0.4 from π̃v,v′ is colored red. A
vertex v′ which is within 0.5 units of πv and 0.4 units of π̃v,v′ is colored green. If there
are no red vertices, then the central yellow vertex is marked correct.

The yellow vertex in Figure 3b is the same as the yellow vertex in Figure 3a. The

9

yellow vertex is near a surface edge but about two units away from that edge. The
gradient at the yellow vertex correctly predicts gradients to its right but not to its left.
The yellow vertex in Figure 3c is on a smooth part of the surface. It correctly predicts
all gradients in its vicinity. The yellow vertex in Figure 3d is almost on the surface
edge. It does not correctly predict gradients on its right or its left.

Figure 2b displays the gradients from Figure 2a which passed the angle test and the
scalar test. Figure 5 (c) shows gradients which passed both tests near a sharp surface
corner.

The angle test compares a gradient with the gradient of its immediate neighbors.
Since gradients at neighboring vertices are computed using scalar values of their neigh-
bors, the angle test depends on the same 5×5×5 subgrid as the scalar test. We could
use larger neighborhoods for both angle and scalar test which would increase the re-
liability of predicting a gradient correct, but might mean misclassifying some correct
gradients as incorrect.

Algorithm RELIABLEGRAD computes a gradient at each grid vertex using the cen-
tral difference formula and then calls ANGLETEST and SCALARTEST on each gradient.
(See Figure 4.) Gradients which fail either test are reset to (0,0,0) indicating that the
gradient at that vertex is unknown.

Routines ANGLETEST and SCALARTEST have a number of fixed parameters. Pa-
rameter choices are discussed in Section 8.

5 MergeSharp
The second part of our reconstruction algorithm reconstructs an isosurface from a set
of correct gradients at grid vertices. We use our algorithm MERGESHARP described
in [1]. For completeness, we give a brief description here.

Algorithm MERGESHARP has four steps. First, MERGESHARP computes isosur-
face vertex locations for each grid cube c intersected by the isosurface. These iso-
surface vertices are identified as lying on sharp corners or sharp edges or smooth re-
gions of the isosurface. Second, MERGESHARP selects a set of “sharp” isosurface
vertices on sharp corners and edges. Third, MERGESHARP applies Nielson’s DUAL
MARCHING CUBES algorithm [20] to construct the dual contouring isosurface. Lastly,
MERGESHARP merges each selected “sharp” isosurface vertex with nearby unselected
isosurface vertices.

MERGESHARP computes the location of isosurface vertex wc for grid cube c as
follows. The gradient g and scalar value sv at each grid vertex v define a scalar field
fv,g (Equation 2) and a plane πv = f−1

v,g (σ) with isovalue σ . MERGESHARP computes
these scalar fields fv,g and planes πv for each vertex of c and its neighboring cubes. It
places isosurface vertex wc at the position which minimizes the least squares distance
to those planes.

In computing the least squares distance to the planes πv, MERGESHARP computes
the singular values of an array A formed from the plane normals. If A has only one
large singular value, then vertex wc is in a smooth region of the surface. If A has two
large singular values, then vertex wc is on a sharp edge of the surface. If A has three
large singular values, then vertex wc is on surface corner.

10

(a) (b)

(c)

Figure 5: (a) Isosurface mesh constructed by MERGESHARP. Each isosurface vertex
on a sharp corner or edge (red) is far from its neighbors. (b) Red lines are mesh edges
with dihedral angle less than 140◦. (c) Correct gradients which passed both the angle
test and the scalar test

11

MERGESHARP selects a set of “sharp” isosurface vertices by selecting cubes which
generated sharp isosurface vertices. If a cube is selected, then the 26 adjacent cubes are
not selected. The 26 adjacent cubes are “covered” by the selected cube. MERGESHARP
repeatedly selects cubes generating sharp isosurface vertices until all remaining cubes
generating sharp vertices are covered by some selected cube. Of course, the selected set
depends upon the order of selection. MERGESHARP first selects cubes generating sharp
corners, and then selects cubes generating sharp edges. Among each class of cubes,
MERGESHARP prefers cubes which generate isosurface vertices which are closer to
the cube center. MERGESHARP also avoids selecting cubes whose isosurface vertices
would create degenerate, zero-area triangles with already selected isosurface vertices.

Let wc be the isosurface vertex generated by a selected cube c. MERGESHARP
merges the isosurface vertices generated by the 26 neighboring cubes of c with wc.
If a cube is covered by more than one selected cube, it is merged with the isosurface
vertex generated by the first selected cube. Figure 5 (a) contains an example of part of
a surface created by MERGESHARP. Note that each isosurface vertex on a sharp corner
or sharp edge is relatively far from its neighbors.

In [1], MERGESHARP is described for uniform grids. However, the algorithm can
be easily adjusted for non-uniform grids. Coordinates of grid vertices are computed in
a world space. Isosurface vertex locations are computed from the grid vertex locations
and gradient in a world space. As described in Section 4, let τ be the affine transforma-
tion mapping the grid to a uniform grid with edge length one. When distances between
points or planes must be compared or tested against thresholds, the points or planes are
transformed using τ and the distances are computed in the transformed space.

6 Extending the Neighborhood in MergeSharp
When gradients are computed from scalar data as in Section 4, the gradients near non-
smooth points in the scalar field will be incorrect. These computed gradients will
fail either ANGLETEST or SCALARTEST and be reset to (0,0,0). If a sharp feature
intersects a grid cube, then many or all of the gradients at its vertices will be (0,0,0).
Many gradients at neighboring cubes may also be (0,0,0). These gradients are ignored
by MERGESHARP. Thus for gradients computed from scalar data, we must use a larger
neighborhood of gradients in computing isosurface vertex positions.

We select vertices from an 8×8×8 subgrid centered at c to compute wc. To choose
the vertices from the subgrid we apply a number of tests. First, we are only interested in
vertices which are near the isosurface. Thus, we only choose vertices from edges where
one endpoint has scalar value below the isovalue and one endpoint has scalar value at or
above the isovalue. Second, we are only interested in vertices whose gradients generate
planes which are close to c. We construct a cube c′ of size 3×3×3 centered at c and
only choose a vertex v if the plane πv intersects c′.

In smooth, curved surfaces, choosing gradients at vertices far from c can cause the
creation of non-existent sharp features in the isosurface. Thus, we wish to only choose
a vertex which is far from c if the closer vertices are not chosen.

Let Q be the set of vertices of the subgrid whose gradients are (0,0,0). Let Qc be
the vertices of c. Let Gc be the graph whose vertices are Q∪Qc and whose edges are

12

(u,v) where (u,v) is a grid edge. We find the connected component G′ of Gc containing
Qc. A grid vertex u 6∈V (G′) is on the boundary of G′ if (u,v) is a grid edge and v is in
V (G′). We only a choose a vertex if it is in Qc or if it is on the boundary of G′.

Applying the three tests gives a set of vertices and their gradients which define
planes. We place isosurface vertex wc at the position which minimizes the least squares
distance to those planes.

MERGESHARP has two major parameters which determine its behavior: a singular
value threshold and the subgrid size for computing wc. The singular value threshold
determines which singular values are considered significant. The singular values are
normalized by dividing by the largest value. Singular values below the threshold are
set to 0. The default threshold is 0.1 and this threshold is used throughout this paper
and in [1].

As in RELIABLEGRAD, the subgrid size poses the most problems. In fact, this
subgrid size should be set in conjunction with the subgrid size used in ANGLETEST. It
should be large enough to get correct gradients in the neighborhood of sharp features,
but not so large that it finds gradients which are unrelated to the feature. Subgrid sizes
are discussed further in Section 9.

Algorithm MERGESHARP assumes that all the edges of the grid cubes have equal
length. As mentioned in the previous section, we subsampled the industrial CT data so
that grid cube edge lengths were approximately equal.

(a) (b)

Figure 6: (a) Red lines are edges with dihedral angle less than 140◦. (b) Red lines are
edges with dihedral angle less than 140◦ whose endpoints are identified as sharp by
MERGESHARP.

7 Visualization of Sharp Edges
As described in [1], sharp edges of f−1(σ) can be easily identified and visualized by
selecting mesh edges with dihedral angle under less than a threshold. Figure 5 (b)
is an example of an isosurface whose mesh edges with dihedral angle less than 140◦

are drawn in red. On isosurfaces constructed from synthetic data such as Figure 5,

13

(a) (b)

Figure 7: Isosurface produced by RELIABLEGRAD and MERGESHARP from the
Honda rectangular calibration data set. (a) Red lines are edges with dihedral angle less
than 140◦. (b) Red lines are edges with dihedral angle less than 140◦ whose endpoints
are identified as sharp by MERGESHARP.

FINDSHARP does not return any mesh edges in the smooth regions of the isosurface.
However, industrial CT data contains noise and sampling artifacts which can create
produce mesh edges with high dihedral angle in the smooth portions of the isosurface.
For instance, the red edges in Figure 6 (a) are mesh edges with dihedral angle less than
140◦. The surface edge and corner is correctly represented by the red edges. However,
there are also spurious red curves on smooth portions of the surface. These spurious
curves are sampling artifacts and should not be identified as sharp features.

As described in Section 5, MERGESHARP categorizes each isosurface vertex as
smooth or sharp. We can use this categorization to eliminate mesh edges with dihedral
angle less than 140◦ whose endpoints are not sharp. The red edges in Figure 6 (b) are
mesh edges with dihedral angle less than 140◦ whose endpoints are sharp. Figure 7
shows the result on a full dataset. Note, in Figure 7(b) the spurious edges have not
been detected.

(a) (b) (c) (d) (e) (f) (g)

Figure 8: The Honda calibration pieces. (a-d) shows the honda rectangular piece
scanned in four orientations,(a) Honda-45. (b) Honda-45-sideways. (c) Honda-45-45.
(d) Honda-flat. Mesh edges with dihedral angle less than 140◦ and sharp endpoints are
colored red. (e) shows the Honda cylindrical piece, (f-g) shows Blender renderings the
Honda cylindrical piece and a corner of the Honda rectangular piece, generated from
ReliableGrad and MergeSharp.

14

8 Parameters
RELIABLEGRAD has six parameters which could potentially be changed: a magnitude
threshold (0.001), an angle threshold (20 degrees), a minimum agreement number (4),
the maximum distance to π̃v (0.5), the maximum distance to π̃v,v′ (0.4) and the subgrid
size (5×5×5). Gradients with magnitude less than the magnitude threshold are treated
as zero gradients and ignored (steps 2 and 4 in ANGLETEST). Isosurfaces representing
object boundaries tend to have high gradients in their vicinity so this parameter has
little effect on their reconstruction.

Gradients whose angles are within the angle threshold are counted as agreeing. We
used an angle threshold of 20 degrees. Consider a uniform grid with edge length one.
If v and w are adjacent grid vertices on an isosurface sphere of radius three (principal
curvature 1/3), then the angle between the gradients at p and q is about 20 degrees. If
p and q are on isosurface spheres of radii four, five, or six, then the angles between
the gradients are approximately 15, 12, and 10 degrees, respectively. Thus, even with
approximation and measurement errors, gradients near smooth surfaces with curvature
less than 1/6 pass the angle test. This curvature bound must be adjusted for non-uniform
grids or uniform grids with edge length other than one, but curvatures are always scale
dependent.

We require the number of gradients which agree with gv in ANGLETEST (step 11)
to be at least 4. Since we test gradients in six directions, this means that for some
direction d, gradients at x+ ed and x− ed both agree with gv.

In SCALARTEST, we only test gv on vertices which are within the maximum dis-
tance of 0.5 to πv. By using a max distance of 0.5, we ensure that for each grid edge
intersecting πv, we test gv against at least one endpoint of that grid edge.

To test gv on the scalar value at w, we compute a plane π̃v,w based on the scalar
value at w. Plane π̃v,w is defined using the affine transformation τ which maps the grid
to the uniform grid with edge lengths one. Gradient gv passes the test if τ(w) is within
distance 0.4 of π̃v,w. The units are cube edges so gv is predicting v′ to within 2/5 of
its actual location. Note that this parameter is independent of the magnitude of the
gradient or the length of grid edges.

The last parameter, the size of the subgrid R used in SCALARTEST, is the most
difficult to choose and is the most dependent on the input data. Small subgrids may
cause the misidentification of gradients as correct, misleading MERGESHARP in posi-
tioning isosurface vertices and identifying them as sharp. Large subgrids will increase
the accuracy and reliability of gradients marked correct but cause many more gradi-
ents which are marked as incorrect. Increasing the number of incorrect gradients may
mean that there are no correct gradients on a thin facet, causing MERGESHARP to miss
the sharp edges on those facets. Parameter choices are discussed further in Section 9
describing experimental results.

9 Experimental Results
We applied our algorithm on a number of industrial CT data sets at different orienta-
tions and sampling resolutions.We use, four different CT scans of a rectangular cali-

15

bration piece from Honda American Manufacturing (Figure 8 (a-d),(g)), two different
scans from Honda of a cylindrical calibration piece (Figure 8 (e-f)), and the 400 volt
connector data set described in [11]. The Honda calibration pieces are machined alu-
minum used for calibration of industrial CT scanners. Honda data sets were acquired
using a 1536 matrix flat panel detector. In the first Honda data set (Honda-flat), the
rectangular calibration piece is sampled so that its faces are parallel to the xy, yz and
xz planes of the regular grid. In the second Honda data set (Honda-45), the calibration
pieces are oriented in the (1, 0, 1) direction so some faces are parallel to the xz-plane
of the regular grid. The orientation in the third Honda data set (Honda-45-sideways) is
the same as the second, but the rectangular piece is rotated 90 degrees around the (1, 0,
1) axis. In the fourth Honda data set (Honda-45x45), the calibration piece are oriented
in the (1, 1, 1) direction so no faces are parallel to any coordinate planes. The first
cylindrical calibration piece is sampled so that its flat faces are parallel to the xy, yz and
xz planes of the regular grid. In the second scan object is tilted and no faces are parallel
to the planes of the regular grid. The 400volt data is also oriented along (1,1,1).

Dataset Sample Res (mm) Grid Dimensions
Honda-flat 0.0201x0.0201x0.031 325x660x140
Honda-45 0.110x0.110x0.031 1200x600x453

Honda-45-sideways 0.110x0.110x0.031 1150x500x448
Honda-45x45 0.0201x0.0201x0.031 630x600x382

Honda-cyl 0.0201x0.0201x0.031 450x450x396

Table 1: Sample resolutions along with scalar grid dimensions.

Table 1 contains sampling resolutions. Sampling resolution in the slice direction
was always different than in the x and y directions.

Figures 8 and 12 show the results of constructing isosurfaces with sharp features
from scalar data using RELIABLEGRAD and MERGESHARP. The red edges are edges
with dihedral angle less than 140◦.

As can be seen from Figure 8 (a-e) and 12, our algorithm did a good, but not perfect,
job of identifying sharp surface edges in the Honda calibration pieces and representing
them by sharp mesh edges. In all isosurfaces, there are some discontinuities along
the sharp mesh edges. As expected, the best results are for Honda-flat and Honda-cyl,
which both had axis aligned orientations. As discussed in [1], reconstruction of sharp
features on axis-aligned isosurfaces is easier than reconstruction on isosurfaces which
are not axis-aligned.

Our reconstruction algorithm correctly constructed sharp edges on even the thinnest
facet in Honda-flat. It also correctly reconstructs the thinnest facet in all the non axis-
aligned data sets except for honda-45x45, where it incorrectly reconstructs the sharp
edges on the thinnest facet. The algorithm positions isosurface vertices on these sharp
edges giving the appearance of a correctly reconstructed sharp edge. However this
edge is actually covered by numerous degenerate, zero area triangles instead of being
represented by a sequence of edges with dihedral angle near 90◦. This failure shows
some of the limitations of our algorithm.

The edges with dihedral angle less than 140◦ and their endpoints can be viewed as a

16

Dataset RELIABLEGRAD Times (sec)
Name # Cubes Central Diff AngleTest ScalarTest Total

Honda-flat 30030K 1 3.45 9.82 13.27
Honda-45 326160K 10.92 36 77.77 113.77

Honda-45-sideways 257600K 9.5 29 73 102
Honda-45x45 7640K 4.65 14.76 11.82 26.58

Honda-cyl 80190K 2.68 9 15 24

Table 2: All times are in seconds. Second column is number of cubes in the scalar grid
used as input to RELIABLEGRAD and MERGESHARP.

Dataset MERGESHARP Times (sec)
Name # Cubes Position Merge Trimesh Total

Honda-flat 30030K 44.37 0.15 0.65 45.17
Honda-45 326160K 124.02 0.55 6.53 131.1

Honda-45-sideways 257600K 122.47 0.48 4.96 127.91
Honda-45x45 7640K 64.63 0.25 2.36 57.24

Honda-cyl 80190K 93.57 0.3 1.57 95.44

Table 3: All times are in seconds. Second column is number of cubes in the scalar grid
used as input to RELIABLEGRAD and MERGESHARP.

graph embedded in R3. In [1], the authors measure the correctness of a reconstruction
based on this graph. In a perfect reconstruction, the number of vertices with degree
k 6= 2 should match the number of sharp corners with k incident sharp edges in f−1(σ).
The difference between the degree counts for the reconstruction and f−1(σ) gives a
useful, quantitative measure of the deviation of the sharp features of the reconstruction
from f−1(σ).

Reconstructions from industrial CT data contain many edges with dihedral angle
less than 140◦ which do not correspond to sharp surface edges. As suggested in Sec-
tion 7, we filter edges with dihedral angle less than 140◦ by requiring their endpoints
to also be identified as sharp by MERGESHARP. This reduced set of edges can also be
viewed as a graph embedded in R3. We compare the number of vertices with degree
k 6= 2 to the number of sharp corners with k incident sharp surface edges to measure
the correctness of sharp features in our reconstruction.

In Table 4, we report the degree counts of vertices for sharp edges of the Honda
rectangular calibration piece. The sharp edges have dihedral angle less than 140 de-
grees and sharp endpoints. The graph of sharp edges should have 48 degree 3 vertices.
All other vertices should have degree 2. The high number of degree 1 vertices and the
presence of some vertices with degree above 3 indicates that our reconstruction is still
far from perfect.

We know of no prior, published experimental results of constructing isosurfaces
with sharp features from scalar data. However, we wished to compare our algorithm
(Figure 1c) with a variation where MERGESHARP was replaced by the dual contouring
algorithm of Ju et. al. [15, 14, 22] or gradients were computed just by central dif-

17

DataSet Degree 1 Degree 3 Degree >3 Total
Honda-flat 201 76 19 296
Honda-45 1578 414 209 2201

Honda-45-sideways 2066 436 187 2689
Honda-45x45 373 399 116 888

Honda-cyl 832 301 64 1197

Table 4: Degree counts on isosurfaces from the Honda data sets. Sharp edges were
extracted using SELECTIVEFINDSHARP.

Gradient Computation Reconstruction Algorithm Degree 1 Degree 3 Degree >3 Total
Central Difference Dual Contouring 5343 1296 678 7317
RELIABLEGRAD Dual Contouring 6516 13793 277 20586
Central Difference MERGESHARP 1072 45 53 1170
RELIABLEGRAD MERGESHARP 373 399 116 888

Table 5: Degree counts on isosurfaces from different algorithms on the honda-45-45
data set. The Honda-45-45 dataset is challenging, because it is not axis aligned and
does not have isotropic resolution. Sharp edges were extracted using SELECTIVEFIND-
SHARP.

ference, not RELIABLEGRAD. Dual contouring as described in [15] requires surface
normals to calculate isosurface vertex locations. Instead of computing such surface
normals from gradients, we directly calculate the isosurface vertex locations directly
from gradients as described in [1]. The step of computing surface normals from gradi-
ents can only add errors to the calculation of isosurface vertex locations.

Table 5 contains results from different variations of our algorithm. The first two
rows give results for the dual contouring algorithm of [15]. The third row shows
MERGESHARP applied to gradients computed by central difference. The last row is
the results of this algorithm. Figure 9 shows samples of the results in table 5. This test
was run on other non-axis aligned datasets with similar results.

While there have been many other algorithms proposed for constructing isosurface
with sharp features, they all rely upon exact placement of isosurface vertices based on
exact surface normals. We think they will have similar problems to dual contouring
when isosurface vertex locations can only be approximated.

Next, we evaluate gradients generated from RELIABLEGRAD with gradients from
synthetic data sets. For this, we generate a flange dataset fig.10 (a). When compared
with the gradients whose magnitudes are above a minimum value, 261 gradients had
difference more than 5 degrees between the RELIABLEGRAD results and the true gra-
dients. Only 6 gradients had difference more than 10 degrees and non above 16 degrees
(the maximum being 15.7 degrees). In other data sets we found similar results.

Figure 10 evaluates the effect of adding noise to this data. In Figure 10 (a) we see
a close-up of the result of running RELIABLEGRAD and MERGESHARP on the flange
data. The scalars were perturbed by adding noise from an uniform distribution between
-0.2 and 0.2. Figure 10 (b) shows the result of running Central Difference followed by

18

(a) (b)

(c) (d)

Figure 9: (a) Shows the sharp edges extracted after running Central Difference and
Dual Contouring, due to the smooth change in direction of gradients computed using
Central Difference across edges, dual contouring captures few sharp edges or corners.
Thus, the high degree 1 count in Table 5. (b) ReliableGrad followed by dual contouring
captures a lot of spurious small edges as it is unable to select the correct gradients
which leads to erroneous location of the dual vertex.(c)shows the result of applying
MergeSharp on the results of Central Difference. (d) shows the result of the current
algorithm which gives superior results.

19

(a) (b)

Figure 10: Effect of adding uniform noise. (a) shows the flange dataset, the scalar val-
ues of (a) are perturbed uniformly within a given bound.(b) shows the result of applying
ReliableGrad and MergeSharp (c) shows the result of applying Central Difference and
Dual Contouring.

Dual Contouring. We note in the second case the sharp edges are jagged and noisy.
We also wanted to check how RELIABLEGRAD and MERGESHARP performs in

noise added to actual CT data. For this we added noise from an uniform distribution
between (-100.0 to 100.0) to the 400volt dataset. On the original data set, which is
not axis aligned the reconstruction of the individual sockets is very good (Figure11 (c)
for a close up , Figure 12 (a) for an overview). In Figure 11(a) we show the result of
running Central Difference with MERGESHARP, next, in Figure 11 we show the result
of running RELIABLEGRAD with MERGESHARP. This shows even with significant
noise, RELIABLEGRAD with MERGESHARP performs better than currently utilized
techniques

We end this section with a discussion of subgrid sizes used in RELIABLEGRAD
and MERGESHARP and the maximum distance to π̃v,v′ used in RELIABLEGRAD. We
constructed the isosurface, extracted mesh edges with dihedral angle under 140◦ and
sharp endpoints and counted the degrees of the resulting graph.

If the maximum distance to π̃v,v′ was decreased (for example to 0.2) then large
portions of sharp edges would be missed (Figure 3 (c,d)). In our experiments varying
the RELIABLEGRAD subgrid size or the MERGESHARP subgrid size did not create
significant changes in output be it simulated data or CT data from different sources.
We do note that decreasing the RELIABLEGRAD subgrid size to very small, would
identify most gradients as incorrect and give poor results.

9.1 Timings
Running times of RELIABLEGRAD and MERGESHARP on the different data sets are
given in Table 3, 2 respectively. Running times were on an intel machine with 16GB
RAM and a 3Ghz processor. The running time of RELIABLEGRAD is proportional to

20

(a) (b)

(c)

Figure 11: Results of adding noise to a part of the 400v dataset. (a) Central Difference
and MergeSharp on noisy data, (b) ReliableGrad and MergeSharp on noisy data.(c)
ReliableGrad and MergeSharp on original data.

21

the grid size. The SCALARTEST subroutine is much more expensive than ANGLETEST
because it iterates over a 5×5×5 neighborhood around each vertex.

RELIABLEGRAD needs to be run only once in a preprocessing step to compute
gradients at all grid vertices. MERGESHARP can then be applied to the scalar and
gradient data to compute isosurfaces at different isovalues.

The running time of MERGESHARP is proportional to the number of grid cubes
intersected by the isosurface. The time to calculate isosurface vertex positions far out-
weighs the running times of the other steps in MERGESHARP. Computing isosurface
vertex positions is a common step of all algorithms which reconstruct sharp features.

(a) (b)

Figure 12: (a) A rendering of the bottom of the 400volt data set, generated by applying
ReliableGrad and MergeSharp. (b) shows a close-up from the Honda cylindrical piece.

10 Conclusion and Future Work
We showed that isosurfaces with sharp features can be reconstructed from industrial CT
scalar data. This is a major improvement over previous algorithms which require exact
surface normals or gradients. The reconstruction can be used to render and visualize
the sharp isosurface features.

The reconstructed isosurface produced by MERGESHARP is not necessarily a mani-
fold. We plan to modify MERGESHARP so that it guarantees manifold isosurfaces. The
problem is to guarantee that isosurfaces are manifolds without substantially affecting
the reconstruction of sharp features.

Our test data was of surfaces whose smooth faces met at 90 degree angles. We
plan to experiment on surfaces with other angles. As the sharp dihedral angle grows
smaller, the sharp edge becomes harder to distinguish from a smooth region with high
curvature. On the other hand, as the sharp dihedral angle becomes larger, there are
fewer samples at the tip of the angle and it becomes harder to compute and represent
that tip.

22

References
[1] A.Bhattacharya, R.Wenger. Constructing isosurfaces with sharp edges and cor-

ners using cube merging. Computer Graphics Forum, 32:11–20, 2013.

[2] U. Alim, T. Moller, and L. Condat. Gradient estimation revitalized. IEEE Trans-
actions on Visualization and Computer Graphics, 16(6):1495–1504, Nov. 2010.

[3] K. Ashida and N. I. Badler. Feature preserving manifold mesh from an octree. In
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications,
pages 292–297. ACM Press, 2003.

[4] C. L. Bajaj and G. Xu. Anisotropic diffusion of surfaces and functions on sur-
faces. ACM Trans. Graph., 22:4–32, January 2003.

[5] E. W. Cheney and D. R. Kincaid. Numerical Mathematics and Computing.
Brooks/Cole Publishing Co., Pacific Grove, CA, USA, 2007.

[6] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in sur-
face processing. In Proc. of IEEE Visualization 2000 (VIS’00), pages 397–405,
Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[7] T. K. Dey, X. Ge, Q. Que, I. Safa, L. Wang, and Y. Wang. Feature-preserving re-
construction of singular surfaces. Comp. Graph. Forum, 31(5):1787–1796, Aug.
2012.

[8] S. F. F. Gibson. Constrained elastic surface nets: Generating smooth surfaces
from binary segmented data. In Proceedings of the First International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention, MICCAI
1998, pages 888–898. Springer-Verlag, 1998.

[9] S. F. F. Gibson. Using distance maps for accurate surface representation in sam-
pled volumes. In Proceedings of the 1998 IEEE Symposium on Volume Visualiza-
tion, pages 23–30, 1998.

[10] A. Greß and R. Klein. Efficient representation and extraction of 2-manifold iso-
surfaces using kd-trees. Graphical Models, 66(6):370–397, 2004.

[11] C. Heinzl, J. Kastner, and E. Groller. Surface extraction from multi-material
components for metrology using dual energy ct. Visualization and Computer
Graphics, IEEE Transactions on, 13(6):1520–1527, 2007.

[12] C. Ho, F. Wu, B. Chen, and M. Ouhyoung. Cubical marching squares: Adap-
tive feature preserving surface extraction from volume data. Computer Graphics
Forum, 24:2005, 2005.

[13] Z. Hossain, U. R. Alim, and T. Moller. Toward high-quality gradient estimation
on regular lattices. IEEE Transactions on Visualization and Computer Graphics,
17(4):426–439, 2011.

23

[14] T. Ju. Robust repair of polygonal models. ACM Transactions on Graphics,
23(3):888–895, Aug. 2004.

[15] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.
ACM Transactions on Graphics, 21(3):339–346, 2002.

[16] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive
surface extraction from volume data. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pages
57–66. ACM Press, 2001.

[17] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface con-
struction algorithm. Computer Graphics, 21(4):163–170, 1987.

[18] J. Manson and S. Schaefer. Isosurfaces over simplicial partitions of multiresolu-
tion grids. Computer Graphics Forum, 29(2):377–385, 2010.

[19] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A comparison of normal
estimation schemes. In Proceedings of the 8th conference on Visualization ’97,
VIS ’97, pages 19–ff., Los Alamitos, CA, USA, 1997. IEEE Computer Society
Press.

[20] G. M. Nielson. Dual Marching Cubes. In Proceedings of IEEE Visualization
2004, pages 489–496. IEEE Computer Society, 2004.

[21] N. Salman, M. Yvinec, and Q. Merigot. Feature preserving mesh generation from
3d point clouds. Computer Graphics Forum, 29(5):1623–1632, 2010.

[22] S. Schaefer and J. Warren. Dual contouring: The secret sauce. Technical Report
TR 02-408, Dept. of Computer Science, Rice University, 2002.

[23] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of dual
grids. In Proceedings of the Computer Graphics and Applications, 12th Pacific
Conference, pages 70–76. IEEE Computer Society, 2004.

[24] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface smooth-
ing via anisotropic diffusion of normals. In Proceedings of the conference on
Visualization ’02, VIS ’02, pages 125–132, Washington, DC, USA, 2002. IEEE
Computer Society.

[25] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface process-
ing via normal maps. ACM Trans. Graph., 22(4):1012–1033, Oct. 2003.

[26] T. Tasdizen and R. T. Whitaker. Anisotropic diffusion of surface normals for
feature preserving surface reconstruction. In 4th International Conference on 3D
Digital Imaging and Modeling (3DIM 2003), pages 353–360, 2003.

[27] G. Varadhan, S. Krishnan, Y. J. Kim, and D. Manocha. Feature-sensitive subdi-
vision and isosurface reconstruction. In Proceedings of IEEE Visualization 2003,
pages 99–106. IEEE Computer Society, 2003.

24

[28] N. Zhang, W. Hong, and A. Kaufman. Dual contouring with topology-preserving
simplification using enhanced cell representation. In Proceedings of IEEE Visu-
alization 2004, pages 505–512. IEEE Computer Society, 2004.

25

	Introduction
	Definitions
	Related Work
	Determining Correct Gradients
	MergeSharp
	Extending the Neighborhood in MergeSharp
	Visualization of Sharp Edges
	Parameters
	Experimental Results
	Timings

	Conclusion and Future Work

