
Framework for Distributed Contractions of Tensors with Symmetry

Samyam Rajbhandari∗, Akshay Nikam∗, Pai-Wei Lai∗, Kevin Stock∗, Sriram Krishnamoorthy,†, P. Sadayappan∗
∗Dept. of Computer Science and Engineering

The Ohio State University
Columbus OH, USA

{rajbhand,nikam,laip,stockk,saday}@cse.ohio-state.edu
†Computational Sciences and Mathematics Division

Pacific Northwest National Laboratory
Richland WA, USA
sriram@pnnl.gov

Abstract—Tensor contractions represent the most compute-
intensive core kernels in ab initio computational quantum
chemistry and nuclear physics. In this paper we develop a
comprehensive framework for distributed tensor contractions
on a torus network. The contraction algorithms are constructed
using three basic data movement operations: Rotation, Recur-
sive Broadcast and Reduction. A characterization is developed
that classifies all possible mappings of the tensor elements and
the computational iteration space onto processors, associating
each mapping with the requisite data movement primitives. A
cost model enables the selection of the algorithm with minimal
communication overhead.

We then develop an efficient approach to contract sym-
metric tensors. We introduce a novel approach that avoids
data redistribution in contracting symmetric tensors while
avoiding redundant storage and maintaining load balance. We
present experimental results on two parallel supercomputers,
for several symmetric contractions that appear in the CCSD
coupled cluster quantum chemistry method.

I. INTRODUCTION

Tensor contractions are higher dimensional analogues of
matrix matrix products, and comprise the computationally
dominant operations in most many body methods in compu-
tational physics and chemistry, such as coupled cluster meth-
ods [2], [7]. Production parallel computational chemistry
software suites such as ACES [8], GAMESS [10], NWChem
[18] partition tensors into blocks that are distributed among
nodes in a distributed-memory parallel computer in order to
exploit parallelism in performing tensor contractions. Unlike
the case for matrix-matrix multiplication, for which several
efficient distributed-memory parallelization schemes have
been developed [17], [14], [12], [19] that represent different
space-time trade-offs, when these codes were developed, no
communication optimized distributed parallel tensor contrac-
tion algorithms were known for tensors.

A significant complication in developing effective dis-
tributed tensor contraction algorithms is that the tensors used
in computational models in quantum physics and chemistry
exhibit symmetry over multiple dimensions, and exploitation
of the symmetry is critical, both in order to save storage as
well as avoid unnecessary arithmetic operations. Therefore
all existing parallel quantum chemistry suites represent the
distinct elements of symmetric tensors in a blocked fash-
ion, distribute the blocks in some uniform fashion among

nodes of a parallel system and dynamically perform re-
quired movement of blocks to the nodes where block-block
contractions are performed. That strategy was practically
satisfactory until recent times, but with the number of cores
on parallel systems exceeding hundreds of thousands, the
communication overhead of distributed tensor contractions
now limits the scalability of coupled cluster methods [13].

Although some studies over the last two decades have
studied the optimization of communication for parallel ten-
sor contractions [5], [9], a significant limitation of most of
these efforts is that symmetry in tensors was not exploited
in the communication optimized schemes, and therefore not
practically useful for quantum chemistry codes. The first
distributed algorithm for symmetric tensors, called the Cy-
clops Tensor Framework (CTF), was recently developed by
Solomonik et al. [17]. In this paper, we present a systematic
framework to derive communication efficient implementa-
tions of tensor contractions expressions on distributed mem-
ory machines, with the CTF approach corresponding to one
scheme in this classification. We identify three fundamental
building block operations needed – recursive broadcast,
rotation, and reduction. We determine the constraints in
mapping the tensors to a multidimensional processor grid
and bound the space of configurations to be considered. We
develop a cost model to identify the most communication ef-
ficient configuration and the corresponding implementation.
Multidimensional equivalents of 2.5D SUMMA for matrix
multiplication are automatically derived in the framework.

Using the new framework, we then develop efficient
distributed algorithms for contraction of symmetric tensors.
These algorithms represent the first proposed approach to
avoid the need for multiple redistributions when performing
communication optimized contraction of symmetric tensors.
Experimental results for representative contractions from the
CCSD coupled cluster method are reported for a Cray XE6
and BlueGene/Q system, demonstrating effectiveness.

This paper makes the following contributions:
• It presents a systematic framework for developing

efficient distributed tensor contraction algorithms for
arbitrary dimensional dense and symmetric tensors.
This represents an advance towards developing an
understanding of parallel tensor contraction algorithms
that compares with the comprehensiveness of our un-

derstanding of parallel matrix multiplication.
• It develops an approach to perform distributed con-

traction of symmetric tensors without requiring explicit
transpose of the tensors during a contraction. To the
best of our knowledge, this is the first such scheme
to be developed. The system is planned to be made
publicly available1 later this year.

• It develops a cost model to determine the best dis-
tributed contraction scheme based on tensor dimensions
and symmetry characteristics, processor dimensionality
and communication parameters, as well as available
memory. When additional collective memory beyond
the minimal to hold all tensors is available, it is
automatically exploited to select a higher dimensional
scheme with lower communication overhead, analogous
to the 2.5D and 3D algorithms known for matrix
multiplication.

• It presents an experimental evaluation of the system,
demonstrating its effectiveness.

II. RRR FRAMEWORK

A. Overview

Consider the following tensor contraction:

C[o1...k...n] =
∑

i1...im

A[o1...k, i1...m]×B[i1...m, ok+1...n]

A and B are input tensors that contract to produce tensor
C. The labels for the indices only serve to match the
dimensions involved in a contraction. o1, . . . are the external
indices, i.e., indices from the input tensors that appear in
the result. i1, . . . are contraction or internal indices that are
common across both inputs and are summed over. Let the
dimensionality A, B and C are dA, dB and dC respectively.
There are dC external indices and dA+dB−dC

2 contraction
indices in this contraction. Hence the dimensionality of the
iteration space or the computational space of this contraction
is given by dC + dA+dB−dC

2 . For a p-dimensional torus, the
framework works as follows.
• Consider all possible mappings of the iteration space

to the p-dimensional torus.
• For each mapping consider all possible contraction

algorithms.
• For each contraction algorithm, determine the possible

data space mapping of tensors.
• Model the total cost of contraction and memory require-

ment based on the algorithm and data space mapping.
• Choose the algorithm and distribution with the lowest

cost that satisfies the memory constraints of the system.
The framework exhaustively searches through all iteration

space mappings and data space mappings, and gives the
optimal algorithm within this space. In this section we
describe the first three steps above in detail. The remaining
two will be explained in Section IV

1The system can be made available to reviewers if desired

B. Iteration Space Mapping
Consider all valid ways that a l-dimensional iteration

space can be mapped to a t-dimensional torus network
(excluding equivalent mappings because all network dimen-
sions are equivalent). Each dimension of the iteration space
corresponds to either an external or a contraction index. We
will call them external and contraction iterator respectively.
• Each dimension of the iteration space must be ei-

ther distributed along some dimension of the torus
or serialized. A dimension i of the iteration space is
distributed along dimension pi of the grid if each node
along pi holds a range of iteration points along i in
a tiled fashion. A dimension i of the iteration space is
serialized if every node in the grid holds all the iteration
points along i.

• No two dimensions of the iteration space can be
mapped to the same dimension of the torus. Such a
mapping has no meaning. An iteration space consists
of all points in the product set given by the cartesian
product of all the points in each dimension. It is not
possible to form full cartesian product between two
dimensions of the iteration space if they are both
mapped to the same dimension of the torus.

• Iteration space must be replicated along those dimen-
sions of the torus where no dimension of the iteration
space is mapped. This implies redundant computation.

The mapping of the iteration space precisely defines where
each computation of a tensor contraction occurs and there-
fore defines the data that needs to be present in each node.
However, all the data required by the iteration space mapping
at a particular node may not be immediately available. In this
case data needs to be communicated. In the next sub-sections
we formalize the communication operators and describe how
contraction algoritms are constructed using these operators.

C. Data Communication Operators
Each dimension of the iteration space either corresponds

to a contracting or an external iterator. In the iteration
space mapping described above, each dimension is either
distributed or serialized.

Distribution of a contracting iterator i along some dimen-
sion pi of the torus implies that the mapping produces partial
results along pi. They have to be combined to obtain final
result. We will refer to the communication operation for
combining partial results as Reduction.

Serialization of a contracting iterator implies an owner
compute model where results are computed entirely on the
node. If the data required for this computation is already
present on the node no communication is needed otherwise
the data communication is necessary. We refer to this
communication as Recursive Broadcast.

Similarly serialization of an external iterator e along some
torus dimension pe will result in communication if all the
data corresponding to e is not already present on the node.
We refer to the communication required here as Rotation.
Reduction, Recursive Broadcast and

Reduction(RRR) are the basic communication operations
that allows us to construct contraction algorithm for all input

data distributions. In the next subsections we analyse the
input distributions, precisely define the RRR and elaborate
on how RRR works with different input distributions.

D. Distribution of input tensors
A tensor can be mapped to a torus in the same way

as the iteration space. Consider all valid ways that a t-
dimensional tensor can be mapped to a p-dimensional torus
network (excluding equivalent mappings because all network
dimensions are equivalent).
• Each dimension of a tensor must either be distributed

along some dimension of the torus or serialized.
• No two dimensions of a tensor can be mapped to the

same dimension of the torus.
• A tensor must be replicated along dimensions of the

torus where no dimension of a tensor is mapped.
Under this distribution, the relations between indices of

the input tensors A and B dictates the kind of data movement
that is required.

1) Distribution of Contraction Indices: Let k be a con-
traction index. Let kA and kB be the corresponding con-
traction index in A and B. kA and kB can each be either
serialized on every node of the torus or distributed along
some dimension of the torus. All different possible distribu-
tions of kA, kB are:
• Distributed, Distributed - Aligned (DDA)
• Distributed, Distributed - Orthogonal (DDO)
• Serialized, Distributed or viceversa (SD)
• Serialized, Serialized (SS)
DDA refers to the case when both kA and kB are

distributed along the same dimension of the torus and DDO
refers to distribution along seperate dimensions.

2) Distribution of External Indices: Let eA be an external
index in A. eA can be either serialized on every node of the
torus or distributed along some dimensions. All different
possible mappings of eA are:
• Distributed-Conflicting (DC)
• Distributed-Exclusive (DE)
• Serialized (S)
eA is Distributed-Exclusive if no external index of B is

distributed along the same dimension of torus as eA, it is
Distributed-Conflicting(DC) otherwise.

It is not necessary to classify the relation between the
distributions of external and contraction indices. Notice that
a contraction is defined exactly the same for every element of
C as sum over products of matching contraction indices in A
and B. Similarly each element of C corresponds to a unique
element of the product set formed by the cartesian-product of
the external indices independent of the contracting indices.
Hence, the external indices and contracting indices describe
orthogonal aspects of a contraction. Therefore, it is not
necessary to study the relation between the distributions of
contraction and external indices on the torus.

E. Using RRR with different input distributions
For each of the distributions classified above, RRR can

be used for communication required for contraction. SS and
S does not require communication while the rest does. We

start by elaborating on distributions(DDA, DDO, SD and
DC) that require communication.

Let px and py be two dimensions of p-dimensional torus
and nx and ny be number of processors along px and py .
Let P (x, y) represent a general node whose coordinates are
x along px and y along py .

(a) C[i,j] = A[i,k].B[k,j]
using broadcast (b) C[i] = A[i,k].B[k]

Figure 1. a) DDO Matrix Multiplication. The double arrows along px and
py shows the dimension of the broadcast for kA and kB respectively. b)
DDA vector product. Vector B[k] and C[i] are replicated along py and px
respectively. The single arrow along px shows the dimension of reduction.

1) Recursive Broadcast with Distributed-Distributed-
Orthogonal: Let contraction index kA and kB be distributed
along processor dimension px and py respectively. Let kmA
and kmB be range of values of kA and kB held at processor
P (m, y) and P (x,m) respectively. Notice that except for
the diagonal processors P (m,m) the kA and kB data is not
aligned. In order to contract km, kmA and kmB initially held
at P (m, y) and P (x,m) needs to be held by all nodes. To
do this P (m, y) can broadcast kmA along px to P (∗, y) and
P (x,m) can broadcast kmB along py to P (x, ∗). Now every
processor P (x, y) holds kmA and kmB and a local contraction
km can be performed. This is done for each m so that entire
contraction index k is contracted locally on each node.

This corresponds to serialization of the contracting iter-
ator of the iteration space. This is the SUMMA algorithm
for matrix multiplication. The algorithm is given in List-
ing. II-F and is depicted in Fig. 1.For a contraction involving
multiple contraction index that are DDO, broadcasts are
performed recursively along the dimensions of the torus
where the contraction indices are distributed hence the name
Recursive Broadcast.

2) Reduction with Distributed-Distributed-Aligned and
Serialized-Distributed: Let contraction index kA and kB
be distributed along processor dimension px. Let kmA and
kmB be range of values of kA and kB held at processor
P (m, y). Notice that kmA and kmB are perfectly aligned on
each node, i.e at node P (m, y), km can be contracted since it
has both kmA and kmb . After the local contraction each node
along px i.e nodes P (∗, y) will hold partial result which
can be summed using a Reduction. Notice that Reduction
can also be used for contraction indices that are Serialized-
Distributed. Without loss of generality if kA is serialized and
kB is distributed along px, then the nodes P (m, y) that holds
kmB also holds kmA since KA is serialized. This is shown in
Fig. 1
Reduction corresponds to distribution of the contracting

iterator since partial contractions are performed on each node
along the dimension where contraction iterator is disributed.

(a) C[i,j] = A[i,k].B[k,j]
Reduction and Rotation

(b) C[i,j] =
A[i,k2,k1].B[k2,j,k1]

Broadcast and Reduction

Figure 2. a) DC+DDA Matrix Multiplication. Both i and j are distributed
along py and kA and kB is distributed along px. Hence, B is rotated along
py and partial results are reduced along px. b) 2.5D SUMMA DDA+DDO
Matrix Multiplication. k2 is DDO along px and py hece broadcast is done
along these dimensions. k1 is DDA along pz and hence reduction is done
along pz .

3) Rotation with Distributed-Conflicting: Let external
indices eA and fB be distributed along px of the torus.
Hence, eA and fB are conflicting. Let emA and fmB be ranges
of eA and fB held at some processor P (m, y). Under such
distribution there is no node which holds emA and fnB where
m 6= n. In otherwords a full cartesian product between eA
and eB is not formed.

Since eA and fB are external indices that appears in
output tensor C, these indices cannot be aligned and a full
cartesian product needs to be formed between them. This can
be done by rotating either A or B along px. Without loss
of generality, during each step of rotation of B a processor
P (m, y) will recieve fm−1

B from P (m−1, y) and will send
fmB to processor P (m + 1, y). Hence, after nx steps of
rotation, fB will be completely serialized on each node.
Hence, Rotation corresponds to serialization of external
iterator.Refer to Fig. 2.

4) Input distributions requiring no Communication: If
the distribution of some contraction index k is SS, then
entire range of kA and kB is available on each node. No
communication is required to contract this index. Similarly
if an external index eA is serialized, the a full cartesian
product is automatically formed between eA and all other
external indices, hence no communication is required w.r.t
eA.

F. Generating Contraction Algorithms and Input Distribu-
tion from Iteration Space Mapping

For a given iteration space map Fig. 3 shows how dif-
ferent algorithms and compatible data distribution can be
derived. Each dimension of the iteration space corresponds
to either a contraction iterator or an external iterator which
is either distributed or serialized. When a contraction it-
erator is distributed it must correspond to a Reduction
and hence the contraction index in the tensors must me
DDA. Notice that serialization of a contraction iterator can

Figure 3. Scheme for deriving contraction algorithm and input distribution
from iteration space mapping.

correspond to either no communication with SS distribu-
tion or Recursive Broadcast with DDO. They however
incur different communication cost(CCost) and differ in
memory requirement(MReq). This will be elaborated in the
Section IV of the paper. Similarly serialization of external
iterator can either be done with no CCost corresponding
to serialization of the external index or via Rotation with
DC distribution of external index. Lastly, the distribution
of an external iterator always implies distribution of the
corresponding external iterator which can be either DC or
DE.

A general contraction algorithm for any iteration space
mapping is given in Listing. 1. The algorithm works
by first aligning all DDO contracting indices using
Recursive Broadcast. Local contractions are performed
once the indices are aligned. Once the DDO indices are
contracted a reduction is done for indices that are DDA. This
completes the algorithm in case where no external indices
are DC, otherwise an input tensors with DC external indices
corresponding to serialized external iterators are rotated one
step at a time. The RRR process is repeated until a full
rotation has completed.

G. Distribution of the Output Tensor
The distribution of the output tensor C is determined

by the distribution of the input tensors and the iterator
space mapping. Indices of C corresponding to DE external
indices of input tensors will have the same distribution in
the output. An external index that is DC will be serialized
if it corresponds to a serialized iterator otherwise it will
stay distributed in the output. Alternatively, DC external
indices with corresponding serialized external iteratrs may
be distributed in the output if there exists some dimensions
of the grid where no external index is mapped. As an
example consider C[i, j] = A[i, k].B[j, k]. Let the tensors
be mapped to a 2-D torus with dimensions px and py . Here
i and j are overlapped along px and no external index are
mapped along py . The contraction index is distributed along
py . The contraction can be performed using Reduction and
Rotation. Index j can be redistributed along py in the output
by reducing at the corresponding nodes along py for each j.

H. Dimension Scaling
The dimensionality of a torus grid varies from one ma-

chine to another. If this dimensionality is larger than that of

Listing 1. General tensor contraction algorithm
e_conflict = DC external indices from B
c_aligned = DDA contraction indices
c_ortho = DDO contracting indices
num_rotation =

product(grid_size(x) for x in e_conflict)

for i in range(0, num_rotation):
if c_aligned >= 1 and c_ortho >= 1:

recursive_broadcast(c_ortho, c_aligned)
reduction(c_aligned)

else if c_aligned == 0 and c_ortho >= 1:
recursive_broadcast(c_ortho)

else if c_aligned >= 1 and c_ortho == 0:
local_computation(c_aligned)
reduction(c_aligned)

rotate_one_step(e_conflict)

Listing 2. Recursive SUMMA
c_ortho = DDO contraction indices
r_summa(a, b, c_buf, c_orthogonal):

k = c_ortho.pop()
A_d, B_d = Dimension of k in A and B
for x in range(0, len(k)):

if A_d is not serialized:
if my_rank == x:

BCAST(A[k]) to A_d
else: RECEIVE(A[k])

if B_d is not serialized:
if my_rank == x:

BCAST(B[k]) to B_d
else: RECEIVE(B[k])

if is_empty(c_ortho):
local_dgemm(a[k], b[k], c_buf)

else:
r_summa(a[k], b[k],

c_buf, c_ortho)

Listing 3. Rotate A
e_conflict = DC external indices of A
rotate(a, e_conflict):
k = e_conflict.pop();
d_k = dimension where k is distributed
for i in range(0,len(d_k)):

next = node_ID corresponding to
to the next node along d_k

previous = node_ID corresponding to
previous node along d_k

SEND a to next
RECEIVE a from previous
if !r_conflict.is_empty:

rotate(a,e_conflict)

the tensors, then the tensors will have to be replicated along
those extra dimensions. Furthermore, if the dimensionality of
grid is larger than that of the iteration space then redundant
computation may be done. One solution to such redundancy
is to map a higher dimensional grid onto a lower dimension.
However, algorithms developed for this embedded lower
dimensional grid will not be able to use high level of
internode connections of the higher dimensional grid.

An alternative and a more efficient solution is to upscale
the dimensions of the input tensor, in other words dimension
splitting. For instance a single dimension of a tensor i with
a range 0 − 15 may be splitted into two dimensions i1
and i2 with range 0− 3 and 0− 3 respectively. Dimension

splitting will increase the dimension of input tensors if a
contraction index is split or increase the dimensionality of
both input and output tensors if an external index is split.
Dimension splitting will also increase the dimensionality of
the iteration space therefore avoid redundant computation
or replication of tensors while fully taking advantage of the
higher dimensional torus network. An example of such a
contraction is 2.5D SUMMA where a matrix multiplication
is performed in a 3D grid by dimension splitting and using a
combination of Broadcast and Reduction show in Fig. 2.

III. CONTRACTION ALGORITHM FOR SYMMETRIC
TENSORS: CAST

A. Introduction to Symmetric Tensors

A tensor is symmetric with respect to a subset of its
indices if permuting the indices within the subset does not
change the value of the tensor. As an example, consider a
tensor v[a, b, i, j]. We say that indices a and b are symmetric
if v[a, b, i, j] = v[b, a, i, j]. A symmetric tensor can have
multiple symmetry groups.For example, we say a, b and i, j
are two symmetric groups of v if v[a, b, i, j] = v[b, a, i, j] =
v[b, a, j, i] = v[a, b, j, i]. This tensor can be stored in a
compact form v[a < b, i < j] due to its symmetry. The
symmetric properties imply that only 1/d! values of the
full tensor need to be stored in the memory, where d is
the dimensionality of a symmetric group. In case of v there
are two symmetry groups of size 2, hence 1

2 ×
1
2 .

The primary difficulties in supporting a symmetric tensor
contraction are two folds.
• Providing load balanced data distribution and compu-

tation.
• Providing efficient communication scheme. Dense ten-

sor contraction algorithms do not work as only unique
elements of symmetric tensors are stored.

The tensor distribution can be load balanced by using
a cyclic or a block cyclic distribution where a symmetric
tensor is divided into blocks which are then distributed in
round robin fashion along the dimensions of a tori. For
example consider Fig. 4. It shows block cyclic distribution
of an 8x8 tensor grid of symmetric tensor A across a
2x2 physical processor grid. The 4 physical processors are
marked in 4 different colored dots. Each processor holds
several blocks in the grid. Let us index tensor blocks with
small letters and physical grid with capital letters. Assuming
0 ≤ k ≤ 7, consider column k = 1 of Ar. The corresponding
section of A is distributed across the yellow and green
processors. However, the column k data expected in the
upper triangular part of A is stored at the blue processor
instead of yellow due to symmetry.

This displacement of data in a block-cyclically distributed
symmetric tensor makes deriving a communication efficient
scheme for tensor contraction not so trivial. In this section
we present a novel algorithm that expands on the recursive
broadcast scheme to support symmetric tensors.

For ease of understanding we start with 2D symmetric
matrix multiply. We then present a slightly more general

Figure 4. Block cyclic distribu-
tion

Figure 5. Communication pat-
tern

4D symmetric tensor contraction. We finally present a com-
pletely general scheme for symmetric tensor contractions.

B. A Symmetric matrix Multiply
Consider a 8x8 physical processor grid as shown in Fig. 5.

A symmetric tensor A is block cyclically distributed over
this grid. The kth column of A is stored at all the processors
in the Kth row and column due to symmetry and the block
cyclic distribution. These processors are marked in red in
Fig. 5.

Recall that in SUMMA(broadcast for matrix-
multiplication) for non-symmetric tensors, in order to
contract column k of A with row k of B, each processor
P (Y,K) has to broadcast the data kA it holds to all
processors P (Y, ∗). When A is symmetric, this data is held
at P (Y,K) and P (K,Y). Hence, to achieve the broadcast,
P (Y,K) can first recieve the data from P (K,Y) via
P (Y, Y) shown in pink in Fig. 5. Then it can broadcast the
combined data to P (Y, ∗). Similar process is repeated for
B. We will define instigation as the process of collecting
all the data required before doing the broadcast. The
processors collecting the data are instigators and the ones
sending the data are senders. Hence a broadcast scheme
can be modified to work with symmetric tensors by adding
an instigation before each broadcast.

C. Symmetric 4D contraction

C[i, j, d, l] = A[i, j, k, l]×B[k, d] (1)

Consider the above contraction in which A has symmetry
between all four dimensions while B is nonsymmetric and
k is the contracting index. Assume a 4D-physical pro-
cessor grids. A is block cyclically distributed across four
dimensions, while B is similarly distributed across two
dimensions and replicated in the rest. Processors are referred
as P [I1, I2, I3, I4] as per their location in the grid.

Since there is a 4D-symmetry [i > j > k > l] in A, for
a particular value of k, the processor P [I1, I2,K, I4] require
the blocks of A collectively represented by A[i > j > l, k] .
These blocks can be grouped as A[k > i > j > l], A[i > k >
j > l], A[i > j > k > l] and A[i > j > l > k] .

All the aforementioned groups of blocks are located at
processors P [K, I1, I2, I4], P [I1,K, I2, I4], P [I1, I2,K, I4] and
P [I1, I2, I4,K] respectively. Processor P [I1, I2,K, I4] needs
to instigate a data collection from all these processors before
it can do a broadcast. The senders send their respective

data via the diagonal processors. For instance, data held
by P [K, I1, I2, I4] is sent via P [I2, I2, I3, I4] and then via
P [I2, I3, I3, I4] . We will refer to these diagonal processors
as bouncers. In this contraction, for each value of the
contraction index, an instigation is required as described
above before a broadcast can be done for A. Since B is
not symmetric, it can be directly broadcasted.

Listing 4. General CAST
CAST(A, B, C, cidxs):

/* A,B,C : Tensors */
/* cidxs : contraction indicies */
c = cidxs.pop(0)
for c in range(0, len(c)):

if processor_id is instigator for A:
Collect data in A_recieve
Broadcast A_recv

if processor_id is sender for A:
Send data to instigator

if processor_id is receiver for A:
Receive broadcasted data A_recv

/* Repeat for B */
if len(cidxs) == 0:

dgemm(A_recv, B_recv, C)
else:

CAST(A_recv, B_recv, C, cidxs)

D. Generalization of CAST
In the previous example the presence of a 4D symmetry

group required data from four different physical nodes to
be combined together before being broadcasted. In general,
for a n-dimensional symmetry group, data from n physical
nodes need to be bounced combined together. To clarify
consider an n-dimensional tensor: A[i1, i2,, ik,, in] with
n-dimensional symmetry i1 > i2 > > ik > > in
stored at physical node P [I1, I2,, Ik,, In]where ik is the
contracting index. For some particular value of ik, data
collectively represented by

A[i1 > i2 >ik−1 > ik+1 > > in, ik] (2)

needs to be broadcast to P [I1, I2,, Ik−1, ∗, Ik+1, ...In] .
The data represented by Eq. 2 has to be collected from the
following processors

P [Π (I1, I2, ..., Ik−1,K, Ik+1, ...In)] (3)

at P [I1, I2, ..., Ik−1,K, Ik+1, ...In] where K = Ik and Π
gives all possible permutation of the indices such that Ij−1

always comes before Ij where 1 ≤ j ≤ n and Ik−1 always
comes before Ik+1 in sequence of indices. In other words
the lexicographical ordering is preserved among all indices
except K. This ensures that the relative ordering of the
symmetric indices are preserved.

The general algorithm for contracting any symmetric
tensors is: Let A be a tensor with mA symmetry groups
and let B be a tensor with mB symmetry groups. Let
saj |0 < j < mA represent the jth symmetry group of A.
Similarly sbj |0 < j < mB represent the jth symmetry group
of B. Let nsa and nsb be the set of nonsymmetric indices

in A and B respectively. Let the total number of contraction
indices be n, denoted by cj |1 < j < n. In order to identify
the symmetry groups they belong to, let cia1 denote that
the first contraction index that belongs to the itha symmetry
group in A. Let Cia be the set of all contraction indices
belonging to the itha symmetry group in A. Let CI be a list
of all contraction indices.

Let the set of all indices in A be IndA and IndB be the
set of all indices in B. A general tensor contraction is of
the form:

C[(IndA − CI)
⋃

(IndB − CI)] = A[sa1 , s
a
2 , ...s

a
mA

, nsA] (4)

×B[sb1, s
b
2, ...s

b
mB

, nsB]

Consider the physical grid where A and B are distributed:
Let the set of indices saj be distributed along dimensions
Sa
j and indices sbj be distributed along dimensions Sb

j . The
contraction index cjak is distributed along dimension Cja

k ∈
Sa
j and similarly for B. Now the distribution of A and B can

be expressed as P [Sa
1 ...S

a
mA

, nSa] and P [Sb
1...S

b
mB

, nSb].
Let the set of indices saj = i1...in

a
j where ix ∈ saj . Similarly,

the set of physical indices Sa
j = {I1...In}aj .

For contraction index cjak in A, the data collectively
represented by

A[sa1 , s
a
2 , .., s

a
j−1, (5)

{i1 > i2 > ... > ik−1 > ik+1 > ... > in}aj ,
saj+1.., s

a
mA

, nSa, ik]

where ik = cjak needs to be broadcasted among processors
represented by Eq. (6). Using Eq. (3), the data is collected
from Eq. (7) at processor Eq. (8)

P [Sa
1 , .., S

a
j−1, {I1, .., Ik−1, ∗, Ik+1, ..., In}aj , (6)

Sa
j+1.., S

a
mA

, nSa]

P [Sa
1 , S

a
2 , .., S

a
j−1, {Π (I1, I2, .., Ik−1,K, Ik+1, ..., In)}aj , (7)

Sa
j+1.., S

a
mA

, nSa]

P [Sa
1 , S

a
2 , .., S

a
j−1, {I1, I2, .., Ik−1,K, Ik+1, ..., In}aj , (8)

Sa
j+1.., S

a
mA

, nSa]

For a given contraction index cjai , let us call the processors
given by Eq. (6) receivers, Eq. (7) senders and Eq. (8)
instigator. Let A recieve be the data represented by
Eq. (5). The pseudocode for a general contraction given by
Eq. (4) can be represented as Listing. (4). The structure of
this algorithm is very similar to that of recursive broadcast.
In recursive broadcast for dense tensor, for a given iteration
of the contraction index, processors holding the data can
initiate a broadcast. In a symmetric tensor, none of the
nodes initially hold all the data needed for the broadcast. An
instigation is done to collect data from senders by instigators.
Once this data is collected, the broadcast can proceed.

The ability to contract one iteration at a time makes it
possible to contract only those iterations that preserves the
ordering of contracting indicies. For example, if there are
x number of contraction indicies belonging to the same

symmetry group c1, c2, ..cn then, contraction needs to be
performed only for c1 > c2 > c3... > cx. The result can
then be multiplied by x! to obtain the correct result.

E. Using a virtual grid for non-uniform physical grid

CAST works on perfectly square tori, i.e all the dimension
of the physical grid along which symmetric indices are
mapped have to be equal. The sizes do not have to be equal
along different symmetry groups but within the same sym-
metry group. To overcome this restriction, we introduction
a virtual grid. In this scheme, CAST will run on a perfectly
square virtual grid which can be mapped to any rectangular
physical grid. For instance, a 6x6 virtual grid may be mapped
to a 6x3 physical grid where each physical node will be
performing the work of two virtual nodes.

IV. COST MODEL

In this section we present the cost model for RRR frame-
work followed by the cost of CAST. The cost model for
RRR framework predicts the optimal contraction algorithm
and data space mapping within the framework. It works
by iterating over all iteration space mapping. For each
iteration space mapping, it considers all possible contraction
algorithms and data space mappings given by Fig. 3. For
each of these it generates a cost function based on the
RRR components and chooses the one with the lowest cost
under the memory constraints. CAST is a modification to
recursive broadcast in RRR framework. CAST involves
an instigation before each broadcast. The cost of CAST is the
sum of cost of instigations and the recursivebroadcasts.

In the following subsections we elaborate on the cost
function and the memory requirement for a contraction
algorithm and its data space mapping.

A. Cost function based on RRR

The general algorithm for any iteration space mapping is
given by Listing. 1. The cost function is simply the cost of
each RRR component of the general algorithm given by

Total cost =num rotation×
(cost(recursive broadcast+ local computation)+

cost(reduction) + ts + tw ×m)

Each component of the equation above is elaborated in the
following subsections.

1) Cost of Rotation: num rotation is the total number
of times an input tensor is rotated due to presence of DC
external index. If pi is the torus dimension along which a
DC external index is distributed and ni is the number of
processors along pi then numrotation = Πni. ts and tw
are the latency and bandwidth of the torus network and m is
the size per node of the input tensor that needs to be rotated.

2) Cost of Recursive Broadcasts and Local Computation:
For a message size of m, the cost of broadcasting it along a
torus dimension pi with ni processors is log(ni)×(ts+tw×
m). Let the size of message per node be mA and mB for
tensors A and B respectively. Let k be a DDO contraction
index and let kA and kB be distributed along px and py

respectively. For simplicity let nx = ny . Then total cost for
broadcasting and local computation will be
nx × log(nx)×mA + nx × log(nx)×mB + nx × γ(mA,mB) (9)

where gamma gives the local computation time which is
total flops/flops per second based on machine parame-
ters. For tensor contractions with multiple DDO contraction
indices, this cost will be defined recursively. Let the total
number of DDO contraction indices be b. Then the total
cost of recursive broadcast and local computation is given
by
cost (b) = nx×log (nx)×mA+nx×log (nx)×mB+nx×cost (b− 1)

(10)
The base case is given by Eq. 9. The log terms that appears

in the cost can be made linear using a pipelined version
that we use for our implementation. For interested readers
we refer to the SUMMA paper by Geijn.at.all. For matrix
multiplication SUMMA algorithm corresponds to Broadcast
and Local Computation.

3) Cost of Reduction: The cost of reduction has been
studied rigorously and several algorithms exists. Here, we
present the most well known cost. If a data of size m needs
to be reduced amoung n processors, the cost is log(n)(ts +
tw ×m+ γ(m)) where γ(m) gives the computational cost
of adding two blocks of size m. ts and tw are latency and
bandwidth of the torus.

B. Memory required for a contraction
The memory per node for a contraction is given by

the distribution of the input tensors. Remember that each
dimension of the tensor is either distributed or serialized. Let
i be a dimension of the tensor distributed over dimension
pi of the torus. Let size of pi be ni. Let the total size of
the tensor be S. So the memory required for this tensor
per node is S

Πni
. Hence the memory required per node is

the sum pf memory required by input and output tensors.
Additionally memory will be required for send and recieve
buffers. The maximum buffer requirement will at most the
memory required for the input tensors since RRR sends and
recieves data to and from at most one processor at a time.
In the experimental section of this paper we will compare
the prediction of our cost model with actual results for a 3D
tensor contraction.

C. Cost Model for CAST
In the case of a symmetric tensor, if the contraction

indices are stored in full, a non-symmetric recursive broad-
cast scheme can be applied. At a single recursion level,
representing a particular contraction index, the cost of
communication is given by Eq. (11). This cost is derived
from [19]. Consider distributed symmetric tensors A and
B, with a contraction index stored in full. If the total size
of these tensors distributed as described is MA and MB ,
their respective sizes per node would be MA

P and MB

P where
P is the total number of nodes. If there are p number of
nodes along the dimension of the virtual grid where the
contraction index in A and B are distributed, then the total
communication cost for the recursion level represented by
this contraction index will be:

cost =(k + 2p− 3)

(
α+

MA × p
P × k

β

)
(11)

+ (k + 2p− 3)

(
α+

MB × p
P × k

β

)

where k is the number of blocks along the contraction
dimension that is block cyclically distributed among p virtual
nodes. α is the latency term and β is the bandwidth term.
Notice that we force the distribution dimension of the
contraction index in both A and B to be of equal length
p which is not necessary when the contraction index is
stored in full but necessary otherwise. This is because all
the symmetric indices are distributed with the same phase
in CAST.

In the case when the contraction index is not stored in
full, the instigator needs to collect data as described in
Alg. (4). Without loss of generality, consider the data that
needs to be collected by a virtual node P [I1, I2, I3,K] for
tensor A[i1, i2, i3, k] where all the indices are symmetric.
Using the diagonal bouncing scheme (which is essentially
equivalent to a XY type routing scheme in a torus network),
the data route can be expressed as

P [K, I1, I2, I3]→ P [I1, I1, I2, I3]→ P [I1, I2, I2, I3] (12)
→ P [I1, I2, I3, I3]→ P [I1, I2, I3,K]

Notice that all the senders, P [Π{K, I1, I2, I3}] denoted
by Eq. (3) follow a subsection of this route. Furthermore,
notice that this path is unique to this instigator and no
other instigator will use this path. This is true because
the ordering among the indices are preserved, hence given
a set of indices there can only be one such path that keeps
the original ordering of the indices.

For a given iteration of the contraction index, the total data
collected by the instigator is equal to the data that would
have been at the instigator node if the contraction index
was stored in full. This is MA×p

P×k for tensor A in Eq. (11).
Furthermore, this is the maximum amount of data that flows
through the unique route for each instigator. Hence, this
implies that the cost of collecting data at the instigator
for each iteration of the contraction index is given by α ×
n + MA×p

P×k β. Therefore, the communication cost of CAST
for a single level of recursion corresponding to a particular
contraction index is

cost =(2× k + 2p− 3)

(
α+

MA × p
P × k

β

)
(13)

+ (2× k + 2p− 3)

(
α+

MB × p
P × k

β

)
(14)

+ 2× k × (n− 1)× α

The cost of communication at each recursion level can be
added to obtain the total communication cost of performing
CAST on the virtual grid.

1) Mapping square virtual grid to rectangular physical
grid: CAST forces the symmetric dimensions of the virtual
grid to have equal size, but that cannot be imposed on a
physical grid. Without loss of generality, consider a sym-
metric tensor given by Eq. (2). The data distribution in the
virtual grid is given by
P [I1, I2,, Ik,, In], where all dimensions are of equal
length. Given a physical grid whose size on each of the
n dimensions are f1, f2, ..., fn−1, fn respectively, preform
a cyclic distribution of the virtual nodes to physical nodes.
Given virtual nodes Pv and physical nodes Pp, let the length
of each virtual grid dimension be pv and the ratio between pv
and fi be ri. The data held at a virtual grid Pv[I1, I2,IN]
maps to a physical node

Pp[I1%f1, I2%f2,IN%fn]. For a given iteration of a
contraction index ik the data collected at physical node

Pp[I1%f1, I2%f2,K%fk,IN%fn] (15)

needs to be distributed among physical nodes
Pp[I1%f1, I2%f2, ∗,IN%fn] (16)

In fact, all virtual nodes of the form
Pv [I1 + j1 × f1, I2 + j2 × f2, ...,K, ..., In + jn × fn] (17)

map to the same physical node Eq. (15) where −ri < ji < ri
such that 0 ≤ Ii + ji×fi ≤ pv . Since fi×ri ≤ pv , the total
number of virtual nodes that maps to the same physical node
is Πn,i 6=k

i=1 ri. Since a single physical node has to perform the
task of multiple virtual nodes, the communication cost of a
single virtual node is scaled by this factor.

In the case where a contraction index is stored in full,
Eq. (11) gives the communication cost of data in the physical
grid along that index in A:
footnotesize

cost =
(
k + 2fAk − 3

)(
α+ Πn,i6=k

i=1 ri ×
MA × pv
Pv × k

β

)
(18)

where k is the total number of blocks along ik, fAk is the
total number of physical processors along Ik for A and Pv
is the size of the virtual grid. Eq. (11) can be simplified to :

cost =
(
k + 2fAk − 3

)(
α+

MA × pv
Pp × k × rk

β

)
(19)

where rk = pv

fk
. Now let us consider the case where

the contraction index is not stored in full. In the earlier
section, we described the uniqueness of the route taken by
senders to send data to the instigator. Here, we show
that the route taken by the data from sender in the physical
grid to its instigator is unique for Πn,i6=k

i=1 ri where k
instigators where ik is the contraction index and n is
total dimension of the tensor and ri = pv/fi. Consider the
data that needs to be collected by a physical node:

Pp[I1%f1, I2%f2,K%fk] (20)

All the senders will take a subsection of the route given by

Pp[K%f1, I1%f2, I2%f3,, Ik−1%fk]
↓

Pp[I1%f1, I1%f2, I2%f3...., Ik−1%fk]
↓

Pp[I1%f1, I2%f2, I2%f3...., Ik−1%fk]
↓

Pp[I1%f1, I2%f2, I3%f3...., Ik−1%fk]
↓

.......
Pp[I1%f1, I2%f2,, Ik−1%fk−1, Ik−1%fk]

↓
Pp[I1%f1, I2%f2,,K%fk]

Each step of the route described above is unique to at
most
MAXn

m=1

(
Πn,i 6=m

i=1 ri

)
virtual nodes. The total data col-

lected by a single instigator in the virtual grid is equal
to the data that would have been present at that node, if the
contraction index was stored in full which is MA×p

P×k . Hence
the total data that flows through the route described above
can be bounded by

MAXn
m=1

(
Πn,i6=m

i=1 ri

)
×
MA × p
P × k

(21)

The communication cost for A for a given contraction index
is given by

cost =
(
k + 2fAk − 3

)(
α+

MA × pv
Pp × k × rk

β

)
(22)

+ k ×MAXn
m=1

(
Πn,i 6=m

i=1 ri

)
×
(
α+

MA × pv
Pv × k

β

)
which can be re-written as

cost =
(
k + 2fAk − 3

)(
α+

MA × pv
Pp × k × rk

β

)
(23)

+ k

(
Πn

i=1ri × α+
MA × pv
Pp × k

β

)
×

1

MINn
i=1 (ri)

Notice that the communication cost is of the same order
as performing a general SUMMA for the bandwidth term
where the contraction index is stored in full. For a given
virtual grid and physical grid ri are constants.

V. EXPERIMENTS

In this section we present results for three different
experiments. We construct contraction algorithms for various
iteration space mappings for a 3D tensor contraction within
the RRR framework. We use the cost model to predict the
fastest algorithm and compare theoretical predictions with
the result. We then show comparision of communication
time with Cyclops Tensor Framework(CTF). Finally we
present scalability of CAST vs CTF using a wide range of
symmetric tensor contractions.

A. Cost Model Verification
Consider the following contraction.

C[i, j, a, b] = A[i, j, k]×B[k, a, b] (24)

For simplicity of this example let the range of all the
indices be n. Then mA = mB = n3

p3 and mC = n4

p3 .
Table I shows the iteration space mapping and data

space mappings on to a 3D torus with px, py and pz as
its dimensions. Map1 performs rotation and reduction,
Map2 uses the broadcast and Map3 does not need any
communication. The memory requirement and total costs
can be defined as per the cost model and is shown in Table
II.

 0

 1

 2

N=256 N=384 N=448 N=512

C
o
st

 R
a
ti

o

Problem Size

Predicted(M1/M3)
Actual(M1/M3)

Predicted(M2/M3)
Actual(M2/M3)

 0

 1

 2

 3

 4

N=256 N=384 N=448 N=512

C
o
st

 R
a
ti

o

Problem Size

Predicted(M1/M3)
Actual(M1/M3)

Predicted(M2/M3)
Actual(M2/M3)

Figure 6. a) Actual vs Predicted on 256 BG/Q nodes. b)Actual vs Predicted
on 256 Cray XE6 nodes.

For the purpose of model verification, we took the ratio
of the time required to perform contractions using Map1,
Map2 and Map3 on Cray XE6 and on BG/Q. The con-
tractions were run on 256 nodes for 3D tensors A and B
of size 256, 384 and 512 on each dimension. We used the
cost model to predict the times . In Fig. 6, M1, M2 and M3

i j a b k
Map1 1 px py s s pz
Map1 2 px py pz s s
Map1 3 px py pz s s

PG i1 i2 i3 s
A i j k
B a b k
C i j a b

PG i1 i2 i3 s
A i j k
B r k a b
C i j a b

PG i1 i2 i3 s s
A i j r k
B r r a b k
C i j a b

IterationSpaceMap Map1 : DC +DDA Map2 : DE + S +DDO Map3 : DE + S + SS

Table I
ITERATION SPACE MAPPING OF EQ. 24 AND DATA SPACE MAPPING ONTO A 3D PHYSICAL TORUS. r DENOTES REPLICATION AND s DENOTES

SERIALIZATION

Mapping Memory required Time Complexity

Map1 mA +mB +mC 2γp2 n5

p5
+ 2p

(
mC + γ n4

p4

)
+ p2 (mC +mB)

Map2 mA + p×mB +mC 2γ n5

p3
+ (3p− 3)mA + (3p− 3)mB × p

Map3 p×mA + p2 ×mB +mC 2γ n5

p3

Table II
PREDICTED TIME COMPLEXITIES FOR DIFFERENT MAPPINGS

represent Map1, Map2 and Map3. The cost model ranks
M1>M2>M3 as the order for running time. The predicted
and the actual values agree.

B. Comparision with CTF
The implementation of our framework is written in C/C++

and utilizes MPI for communication and BLAS for compu-
tation. Computational expensive routines are threaded using
OpenMP. We compare our implementation with CTF [17]
on seven symmetric representative tensor contractions from
CCSD equations:

1 C[i, j, a, b] = A[i, k, a > l]×B[l, j, k > b]
2 C[i > j, a > b] = A[i > k, j > l]×B[a > b, k > l]
3 C[i, a, j, b] = A[i > k, j > l]×B[l, a, k, b]
4 C[i, a, j, b] = A[i > k, j > l]×B[l, a, k > b]
5 C[i, a, j, b] = A[i > k, j > l]×B[l > a, k > b]
6 C[i, a] = A[i > k]×B[k > a]
7 C[i, j, a, b] = A[i, j, b > k]×B[a > k]

 0
 5

 10
 15
 20
 25

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

Ti
m

e
in

 s
ec

on
ds

Contractions on BG/Q

DGEMM
COMM

7654321

 0
 10
 20
 30
 40

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

C
TF

C
A

S
T

Ti
m

e
in

 s
ec

on
ds

Contractions on Cray XE6

DGEMM
COMM

7654321

Figure 7. The figure on left shows the communication and computation
time for seven contraction on 16,384 BG/Q nodes (262,144 cores) and the
figure on the right shows times on 1,024 Cray XE6 nodes (24,576 cores).

Experimental results are collected on two state of the art
supercomputer architectures, IBM Blue Gene/Q (BG/Q) and
Cray XE6. The BG/Q consists of 16 cores (1.6GHz), 16 GB
of memory per node and a 5D torus interconnect. The Cray
XE6 supercomputer consisting of dual socket 12ncore AMD
MagnyCours 2.1GHz and 32GB memory per node. Nodes
are connected through a 3D torus Cray Gemini network,
however, the scheduler on Cray XE6 does not support
topology aware mapping. On each platform, we use vendor
provided, optimized on node parallel BLAS implementation
for benchmarking (IBM ESSL and Cray LibSci).

Fig.7 shows the communication and computation time
taken by CAST and CTF for problem size N=384 on BGQ
and N=256 on Cray XE6 for contractions 1,2,3,4,5 and
7, and N=32,768 for contraction 6. The larger size for
contraction 6 was chosen because the total computational
cost of contraction 6 is much smaller than the rest. On BG/Q,
we report the result on 16,384 nodes with one MPI rank per
node (total number of cores is 262,144). On Cray XE6, we
ran on 1,024 nodes with four MPI ranks per node (total
number of cores is 24,576). We use DGEMM to denote the
time spent on BLAS computation, and COMM for rest of
the time, the majority of which is communication.

C. Scalability of CAST
The seven contractions described in V-B can be catego-

rized as 4D-4D (Contractions 1,2,3,4,5), 2D-2D (Contraction
6) and 4D-2D (Contraction 7). Of the 4D-4D contractions
contraction 2 is the only one with symmetry in the external
indices. Contractions 1, 3, 4 and 5 are similar contractions
with varying degree of symmetry. Due to limited space we
chose contractions 2, 3, 6 and 7 based on the aforementioned
categorization to show scalability result of CAST compared
to CTF. Fig.8 shows scalability of CAST and CTF on BG/Q.
Notice that the slope of the scalability curve for CAST
does not alter drastically for any contraction. For CTF the
scalabilty trends are normal for contraction 6 and 7 but the
slopes change directions for contractions 2 and 3 on 4,096
and 16,384 nodes. Based on the break down of different
components of the ctf algorithm, at very large node size,
packing and unpacking of data required to perform dgemm
produces large overhead for contraction 2. Contraction 3
uses all reduce in its contraction algorithm to combine partial
results. Doing all reduce on very large torus is expensive,
which doesnt allow ctf to scale very well on 4096 and 16384
nodes. Fig.9 shows scalability of CAST and CTF on Cray
XE6. The results show that both CAST and CTF have very
similary slopes with different offsets. However, in terms of
absolute performance CAST outperforms CTF on all but
contraction 2. The primary reason for this is that CTF uses
a fully cyclic distribution of tensors while CAST uses block-
cyclic distribution. In cases where the resulting tensors are

Figure 8. Scalability of contractions 2,3, 6 and 7 on upto 16,384 BG/Q
nodes for N=256, 384 and 32768.

Figure 9. Scalability of contractions 2,3, 6 and 7 on upto 1024 Cray XE6
nodes for N=192, 256 and 32768.

symmetric, a block cyclic distribution is can cause small
load imbalance which results in slightly lower performance.

Overall CAST outperforms CTF in most contractions,
however both CAST and CTF both have strength and
weaknesses that are apparent in Fig.7, 8, 9. The most optimal
scheme could be something that combines the strengths of
both these two schemes but that is beyond the scope of this
paper.

VI. RELATED WORK

Due to the prominent role of tensors in quantum chem-
istry, efficient execution of tensor contraction expressions
have been extensively studied [3]. Efforts to minimize the
number of operations in chains of tensor contraction ex-
pressions [11], minimize their memory requirement [6], and
trade off increased computation cost to reduce space [4] have
all been considered. None of these efforts directly attempted
to minimize the communication costs.

Minimizing the communication volume using the Can-
non’s algorithm in the context of multiple tensor contractions
under memory constrained was considered by Cociorva et
al. [5]. Gao et al. [9] extended this algorithm by taking into
account disk I/O costs. These algorithms only employed
a 2D processor grid and also did not handle permutation
symmetry in tensors.

Widely used implementations of tensor contractions, such
as in the NWChem [18] computational chemistry suite,
employ a simple dynamic load balancing scheme. In this
scheme, the loops representing a tensor contraction expres-
sion are tiled and parallelized, akin to an OpenMP parallel
loop. Each processor then dynamically determines the loop
iterations to execute without concern for communication
costs. While this was considered good enough in the past,
recent work has shown that communication costs now im-
pose fundamental limits on scalability of these methods.
For example, Kowalski et al. [13] observed that while
the computationally dominant (O(N7)) noniterative triples
calculation scales to hundreds of thousands of cores, the less
expensive (O(N6)) iterative portion does not scale beyond
a few thousand cores. This disparity between the two sets
of tensor contractions, has resulted in the less expensive
iterative calculation requiring greater wallclock time than the
noniterative calculation, thus becoming the computational
bottleneck.

Solomonik et al. [17] created the first implementation of
a communication optimized and load balanced distributed
contraction algorithm for symmetric tensors. Their Cyclops
Tensor Framework (CTF) uses a cyclic distribution of
tensors across a multidimensional physical torus, thereby
ensuring excellent load balancing of all tensors. Contractions
involving symmetric tensors are achieved by using a number
of passes of a generalization of the 2D SUMMA [19]
algorithm, with dynamic redistribution of symmetric tensors
in between passes. While effective, their approach is limited
to employing SUMMA. When the data distribution does
not match that required to employ the SUMMA algorithm,
the tensors are transposed. Since a symmetric tensor stores
only a portion of the actual data, tensor contractions with
symmetry using CTF incur repeated redistribution costs to
realign the dimensions being contracted.

Communication lower bounds and associated algorithms
have been studied for various configurations of 2D ma-
trix multiplication operations [12], [1]. In particular, 2D
algorithms have been shown to incur asymptotically higher
communication costs than algorithmic lower bound. 3D
algorithms, which are communication optimal incur higher
memory overheads. Solomonik and Demmel [16] presented
the 2.5D algorithm, which is communication efficient [15]
and considers a trade off between memory costs communi-
cation minimization.

Our approach differs in two significant ways from that
of CTF: i) it considers a wider range of parallel imple-
mentations, and also considering additional communication
schemes besides generalized 2D, 2.5D SUMMA, and ii) it
avoids the need for multiple dynamic redistributions when
contracting symmetric tensors.

VII. CONCLUSION

In this paper, we have presented a comprehensive frame-
work for generating optimal algorithm and data mapping
for contracting distributed tensors. We have also presented
a novel and communication efficient algorithm for con-
tracting tensors with symmetry. The cost model for our
framework was verified and we showed scalability results
for our contraction algorithm on BG/Q and Cray XE6.
Comparisions with CTF revealed that CAST outperforms
CTF in most situations, while still remaining competitive in
the remaining.

REFERENCES

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Mini-
mizing communication in numerical linear algebra. SIAM J.
Matrix Analysis Applications, 32(3):866–901, 2011.

[2] R. Bartlett and M. Musia. Coupled-cluster theory in quantum
chemistry. Reviews of Modern Physics, 79(1):291–352, 2007.

[3] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata,
V. Choppella, D. Cociorva, X. Gao, R. Harrison, S. Hirata,
S. Krishnamoorthy, et al. Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry
models. Proceedings of the IEEE, 93(2):276–292, 2005.

[4] D. Cociorva, G. Baumgartner, C.-C. Lam, P. Sadayappan,
J. Ramanujam, M. Nooijen, D. E. Bernholdt, and R. J.
Harrison. Space-time trade-off optimization for a class of
electronic structure calculations. In PLDI, pages 177–186,
2002.

[5] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C.-C.
Lam, P. Sadayappan, and J. Ramanujam. Global communi-
cation optimization for tensor contraction expressions under
memory constraints. In IPDPS, page 37, 2003.

[6] D. Cociorva, J. W. Wilkins, C.-C. Lam, G. Baumgartner,
J. Ramanujam, and P. Sadayappan. Loop optimization for
a class of memory-constrained computations. In ICS, pages
103–113, 2001.

[7] T. Crawford and H. Schaefer III. An Introduction to Coupled
Cluster Theory for Computational Chemists. In Reviews in
Computational Chemistry, volume 14, pages 33–136. 2000.

[8] E. Deumens, V. F. Lotrich, A. Perera, M. J. Ponton, B. A.
Sanders, and R. J. Bartlett. Software design of aces iii with
the super instruction architecture. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 1(6):895–901,
2011.

[9] X. Gao, S. K. Sahoo, C.-C. Lam, J. Ramanujam, Q. Lu,
G. Baumgartner, and P. Sadayappan. Performance modeling
and optimization of parallel out-of-core tensor contractions.
In PPOPP, pages 266–276. ACM, 2005.

[10] M. S. Gordon and M. W. Schmidt. Advances in Electronic
Structure Theory: GAMESS a Decade Later.

[11] A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner,
D. E. Bernholdt, S. Hirata, C.-C. Lam, R. M. Pitzer, J. Ra-
manujam, and P. Sadayappan. Automated operation mini-
mization of tensor contraction expressions in electronic struc-
ture calculations. In ICCS, pages 155–164, 2005.

[12] D. Irony, S. Toledo, and A. Tiskin. Communication lower
bounds for distributed-memory matrix multiplication. J.
Parallel Distrib. Comput., 64(9):1017–1026, Sept. 2004.

[13] K. Kowalski, S. Krishnamoorthy, R. M. Olson, V. Tipparaju,
and E. Apra. Scalable implementations of accurate excited-
state coupled cluster theories: application of high-level meth-
ods to porphyrin-based systems. In SC. IEEE, 2011.

[14] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz.
Communication-avoiding parallel strassen: implementation
and performance. SC ’12, pages 101:1–101:11, 2012.

[15] E. Solomonik, A. Bhatele, and J. Demmel. Improving com-
munication performance in dense linear algebra via topology
aware collectives. In SC, page 77, 2011.

[16] E. Solomonik and J. Demmel. Communication-optimal paral-
lel 2.5d matrix multiplication and lu factorization algorithms.
In Euro-Par 2011, pages 90–109. 2011.

[17] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel.
Cyclops tensor framework: Reducing communication and
eliminating load imbalance in massively parallel contractions.
In IPDPS, pages 813–824, 2013.

[18] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma,
H. V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus,
and W. de Jong. Nwchem: A comprehensive and scalable
open-source solution for large scale molecular simulations.
Computer Phys. Comm., 181(9):1477 – 1489, 2010.

[19] R. A. van de Geijn and J. Watts. Summa: scalable universal
matrix multiplication algorithm. Concurrency - Practice and
Experience, 9(4):255–274, 1997.

