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Abstract

Blue noise sampling is an important component in many graphics
applications, but most of the prior techniques consider mainly the
spatial positions of samples, making them less effective when han-
dling features, such as image color and surface geometry. We apply
the bilateral blue noise dart throwing method in [Chen et al. 2013]
to graphics applications including image/video stippling and non-
linear filtering. We also propose a bilateral Lloyd relaxation method
which works comparably with the kernel based bilateral relaxation
method in [Chen et al. 2013].

Keywords: bilateral, feature, blue noise, sampling, filtering, stip-
pling, image, video

1 Introduction

Sampling is a fundamental component for a variety of computa-
tional tasks. Given a fixed number of samples, the goal is to best
represent a given sample domain Ω and its corresponding feature
range Γ. Though the notion of “best representation” is application
dependent, it often consists of two main components: spatial do-
main blue noise and range feature preservation. Here, blue noise
refers to sample distributions that are uniform and yet random, re-
sulting in reduced noise and aliasing [Cook 1986; Ulichney 1987].
For example, in image stippling [Balzer et al. 2009; Li et al. 2010;
Fattal 2011], the domain Ω is a 2D pixel grid, the range Γ is the
pixel color, and the goal is to distribute the stipples as spatial blue
noise and yet depicts the image colors well. As another example,
in geometry sampling [Öztireli et al. 2010; Chen et al. 2013], the
domain is a 3D point cloud, the range is the surface normal, and the
goal is to sub-sample the points so that the output can reproduce
smooth and sharp regions of the underlying surface.

Due to the fact that different applications have different range fea-
tures, it is usually difficult to preserve both domain blue noise and
range feature, since they conflict with each other in many cases.
Although researchers have carried extensive research on preserving
either of them, no existing techniques can handle both well as far as
we know. Without considering range features, the results will lose
interesting details as the left column in Figure 1 shows.1

Recently, [Chen et al. 2013] presented a general bilateral blue-noise
sampling method, whose sampling results preserve both domain
blue noise and range features. Their basic idea is a sample-distance
measure that incorporates both sample positions and features pre-
serving; and can be readily combined with prior blue noise sample
analysis and synthesis algorithms.

In this technical report, we apply the bilateral dart throwing al-
gorithm [Chen et al. 2013] for additional applications, including
image stippling, dynamic stippling, and nonlinear filtering. Fur-
thermore, we propose and demonstrate bilateral Lloyd relaxation
method which can work comparably to the kernel based relaxation
shown in [Chen et al. 2013].

1Figure 1a and 1b are generated based on short film Alma; and Figure 1c
and 1d are generated based on photo in National Geography.

(a) adaptive video stippling (b) bilateral video stippling

(c) uniform image sampling (d) bilateral image sampling

Figure 1: Prior blue noise sampling versus bilateral blue noise sampling.
(a) and (b) show the video stippling result of traditional adaptive blue noise
sampling [Wei 2010] and bilateral blue noise sampling, respectively (Sec-
tion 5.2) ; (c) and (d) show a comparison between the nonlinear filtering
results with uniform blue noise sampling [Banterle et al. 2012] and bilat-
eral blue noise sampling (Section 5.3). As shown, prior sampling methods
may smooth out small yet important features (a) or miss them entirely (c).

2 Previous Work
Blue noise sampling Blue noise sampling generates random
samples with uniform distribution. It is known for its uniformity
in the spatial domain, low noise/aliasing in the spectrum domain,
and its robustness in numerous applications:

• rendering: [Cook 1986; Pharr and Humphreys 2004;
Schlömer et al. 2011; Sun et al. 2013]

• geometry: [Turk 1992; Alliez et al. 2002; Öztireli et al. 2010;
Bowers et al. 2010; Chen et al. 2013]

• image,visualization: [Balzer et al. 2009; Wei 2010; Li et al.
2010; Fattal 2011; Ebeida et al. 2011; de Goes et al. 2012]

• animation: [Schechter and Bridson 2012]

Importance adaptive sampling Non-uniform blue noise allows
samples to be distributed conforming to some user defined density
which is usually proportional to the importance of the domain re-
gions. However a pure density-map-guided blue noise sampling
may suffer from following problems: For one, a precise comput-
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ing of such density map is usually not trivial. For two, importance
sampling is likely to miss sharp or thin features with near zero area,
even if some high importance value is assigned. Besides, if the
importance changes dramatically as it often does in images and ge-
ometry models, samples in less importance areas may squeeze out
nearby samples over sharp features.

Bilateral sampling Feature-aware sampling methods have been
designed for various applications, such as stippling [Kim et al.
2008; Li and Mould 2011], half-toning [Li and Mould 2010], and
meshing [Lévy and Liu 2010]. However, they usually do not pre-
serve blue noise properties, which are desired by the corresponding
applications. The spectral sampling in [Öztireli et al. 2010] is a no-
table work, in which it also attempts to keep blue noise properties
as a by-product of feature-preservation.

Bilateral blue noise sampling introduced in [Chen et al. 2013] aims
at preserving both blue noise properties and features. The basic idea
behind bilateral blue noise sampling is to define a bilateral differ-
ence ξ(si, sj) between pairs of samples si and sj as a combination
of the positional difference d(pi,pj) = pi−pj in Euclidean space
Ω; and a (dis)similarity measure f(vi,vj) of non-spatial sample at-
tributes(feature) vi and vj in range Γ:

ξ(si, sj) = d(pi,pj) ◦ f(vi,vj), (1)

where ◦ denotes a generic operator. [Chen et al. 2013] presented
two bilateral distance metrics: augmentative form and multiplica-
tive form. In the rest of this technical report, we will focus on the
augmentative bilateral distance and its related applications.

Augmentative bilateral distance The augmentative bilateral
distance was proposed in the form:

ξ(si, sj) =

(
d(pi,pj)

σp
,
d(vi,vj)

σv

)
, (2)

with following metric (L2 norm):

‖ξ(si, sj)‖2 = d2
p(s, s

′) + d2
v(s, s′)

=

∥∥∥∥p(s)− p(s′)

σp

∥∥∥∥2

+

∥∥∥∥v(s)− v(s′)

σv

∥∥∥∥2

(3)

, in which p denotes sample’s position vector, v denotes sample’s
feature vector, and σp and σv are the weights for position and fea-
ture, respectively. dp is the spatial sample distance in traditional
blue noise sampling, either Euclidean (e.g. image sampling, point
cloud subsampling, or photon mapping) or Geodesic (e.g. surface
sampling). dv is the application-specific feature distance. For ex-
ample, in geometry sampling, v can be set to be point cloud normal
[Chen et al. 2013]. In image cases (Section 5), we have v = c,
which is the pixel color (grayscale or RGB).

The combination of σp and σv provides a balance between the blue
noise properties and feature preservation. When σv → ∞, the
bilateral blue noise sampling method is reduced to traditional blue
noise sampling, and when σv gets smaller, more emphasis will be
put onto features rather than blue noise.

Higher dimensional space interpretation If we regard
ξ(si, sj) in Equation 2 as a new vector in a higher-dimensional
space Ψ formed by p and v. Equation 3 basically calculates
the distance between two samples in space Ψ. So that bilateral
sampling with augmentative distance generates random samples
over an embedded manifold M in Ψ, and the result is their
projections to a lower-dimensional space, as Figure 2 shows.
Under the simplest case of uniform analysis/synthesis with v as

surface M

spatial Ω

fe
at

ur
e 
Γ

Ψ

Figure 2: Higher dimensional space interpretation. Taking height field as
an example: given a spatial domain Ω (horizontal axis) with feature(height)
range Γ (vertical axis), if we perform a uniform sampling (•) in the height
field surface M embedded in a higher dimensional space Ψ, the corre-
sponding samples (•) manifested in Ω can have non-uniform distributions
induced by the features.

the only source of non-uniformity, we are essentially performing a
uniform sampling of M for synthesis, and gauging the distribution
uniformity over M during analysis.

3 Synthesis

The bilateral blue noise sampling can be applied to prior sampling
methods by simply replacing the traditional position-only distance
with augmentative distance Equation 3. Below we provide the bilat-
eral Lloyd relaxation algorithm followed by a brief introduction of
the bilateral dart throwing method introduced in [Chen et al. 2013].

3.1 Dart Throwing

Dart throwing [Dippé and Wold 1985; Cook 1986] produces indi-
vidual samples stochastically subject to the constraint that no two
samples s and s′ can be closer to each other than a pre-determined
distance threshold r(s, s′). All we need to do is to plug in our bilat-
eral distance d from Equation 3 in lieu of the spatial-only distance
in traditional dart throwing. By using different r(s, s′) represen-
tations, bilateral blue noise sampling can be orthogonally applied
for various sampling scenarios, including uniform (r is a constant),
isotropic (r(s, s′) depends on the distance between s and s′ but
not their relative direction), and anisotropic (an accurate directional
function r(s, s′) or the Jacobian approximation in [Li et al. 2010]).

3.2 Relaxation

Lloyd relaxation [Lloyd 1983] is another classical method that has
been applied to generating blue noise samples. Unlike dart throw-
ing which generates samples from scratch, relaxation starts from
a given sample distribution and gradually improves its uniformity.
Let S be a set of samples (or “sites” in the jargon of [Balzer et al.
2009]) whose distribution we wish to optimize for. The uniformity
of S can be measured by the following energy function:

E(S,V) =
∑
i

∫
s′∈Vi

d2(s′, si)ds
′ (4)

, where V is the Voronoi tessellation generated from S, Vi the
Voronoi region corresponding to site si ∈ S, s′ a point in the do-
main Ω. The major difference here is that we are using the bilateral
distance d(s′, si) = ‖ξ(s′, si)‖ in Equation 3 instead of a pure
spatial domain distance. Lloyd relaxation minimizes this energy
function by iterating between the following two steps, Voronoi and
centroid, until sufficient convergence:
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Voronoi For each point s′ ∈ Ω, find the site s(s′) that is the clos-
est to s′ among all sites in S:

s(s′) = arg min
s∈S

d2(s′, s) (5)

. The augmentative bilateral distance can be directly plugged in
here to substitute for d without changing the remaining search al-
gorithm.

Centroid Move each site si ∈ S to the centroid mi of the cor-
responding Voronoi region Vi ∈ V to minimize the corresponding
energy term: ∫

s′∈Vi

d2(s′, si)ds
′ (6)

. This can be achieved via the Jacobian approximation [Du et al.
2002] or [Li et al. 2010] as follows:

mi =

(∫
Vi

JTJ(s′)ds′
)−1 ∫

Vi

JTJ(s′)s′ds′ (7)

, where J is the Jacobian:

p̂ =
p

σp
, v̂ =

v

σv
(8)

J =

(
Jp(p̂)
Jp(v̂)

)
(9)

, where Jp(p̂) and Jp(v̂) indicate the Jacobian of p̂ relative to p,
and Jacobian of v̂ relative to p, respectively. Note that Jp(p̂) =
1
σp
I (with I indicating the identity matrix) only if the domain Ω is

(spatially) Euclidean.

Note that even though above centroid step is only approximate, it
works well when the sampling density is sufficiently high (relative
to domain variations), as discussed in [Li et al. 2010].

4 Analysis

Sample distributions can be analyzed through a variety of criteria,
including both qualitative visual comparisons as well as quanti-
tative measures, including spatial uniformity ρ [Lagae and Dutré
2008] and differential-domain spectrums (DDA) [Wei and Wang
2011] for blue noise.

Approximation in Ω As shown in [Chen et al. 2013], we can
avoid directly dealing with higher dimensional manifolds M and
keep all analysis computations in the original domain Ω using the
anisotropic analysis method in [Wei and Wang 2011] with the Jaco-
bian approximation described in Equation 9. However, the Jacobian
in Equation 9 above might not be square due to the presence of v.
This can cause issues for analysis methods that require square Ja-
cobians such as [Wei and Wang 2011] which needs to preserve the
dimension of d after χ. This can be addressed following the ap-
proach described in the extended version of [Wei and Wang 2011]
based on the simple observation: since the distance measure in [Li
et al. 2010] depends on only JTJ, not J itself, all we need is to
derive a square J′ so that

JTJ = J′TJ′ (10)

. This can be achieved by the standard matrix square root method:

JTJ = VTDV (11)

, where V is an orthonormal matrix and D a diagonal matrix. Note
that since JTJ is positive definite, D will contain only non-negative
diagonal elements. Thus, we have

J′ = VT
√
DV (12)

. Following Equation 15 of [Wei and Wang 2011] for anisotropic
sampling, we have d = s− s′, and

χ(d) =
1

E (λ)

(
J′−1(s) + J′−1(s′)

2

)−1

(s− s′)T (13)

, whereE (λ) is the mean of the eigenvalues of J ′(.) over Ω. Notice
the use of J′ instead of J allows us to compute different domain
spectrum with the same dimensionality as the sample space Ω.

5 Results

In this section, we present our results in three applications: image
stippling, dynamic stippling, and nonlinear filtering.

5.1 Image Stippling

Stippling refers to techniques that use small primitives (e.g. dots)
to illustrate images [Secord 2002; Balzer et al. 2009; Li et al. 2010;
Fattal 2011]. The primitives are usually of the same color (e.g.
black) or from a small palette of colors [Wei 2010]. Since human
visual systems tend to blend multiple dots in local spatial regions,
stippling with limited colors can still faithfully reproduce continu-
ous image tones. Such trick for trading off spatial for color resolu-
tions has also been taken advantage of in image halftoning where
samples lie on discrete regular pixel grids [Pang et al. 2008; Chang
et al. 2009; Li and Mould 2011].

For both stippling (continuous domain sample location) and
halftoning (discrete domain sample location) applications, it is well
known that sample sets with blue noise properties are more visu-
ally pleasing. In addition to blue noise, it could also be desirable
to maintain image structures or features [Pang et al. 2008; Chang
et al. 2009; Li and Mould 2011].

However, to our best knowledge, prior methods that have certain
limitations. They may sacrifice blue noise properties to preserve
features (e.g. contrast aware halftoning [Li and Mould 2010; Li
and Mould 2011]); and they might not offer enough flexibility in
controlling the relative weights between the blue noise and fea-
ture preservation (e.g. [Chang et al. 2009; Li and Mould 2011]);
besides, most of them operate in discrete grids (e.g. [Pang et al.
2008; Chang et al. 2009]) and might not be appropriate for contin-
uous domain applications such as stippling. ([Li and Mould 2011]
demonstrated impressive stippling results via error diffusion; how-
ever, sufficiently large neighborhoods have to be used. See [Wei
2010] for relevant discussions about other potential issues for pro-
ducing continuous domain effects via discrete domain sampling.)

Bilateral blue noise sampling (dart throwing and relaxation) can
be applied for such feature-aware image stippling or halftoning by
simply using gray-scale image color c as features v in Equation 3.
It is applicable to both discrete and continuous domains, and very
easy to combine with prior blue noise stippling algorithms [Balzer
et al. 2009; Li et al. 2010; Fattal 2011] by simply plugging the
distance measure in Equation 3. As shown in Figure 3, the bilat-
eral method preserves features and blue-noise-properties better than
prior techniques.

Metric comparison Figure 4 compares the bilateral distance in
Equation 3 with other conflict metrics such as mean-conflict [Wei
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Figure 3: Image stippling results with bilateral Lloyd relaxation. We compare bilateral Lloyd relaxation method (our method) against traditional adaptive
Lloyd relaxation and [Li and Mould 2011], a state of art stippling method that considers structure, blue noise, and tone reproduction. As shown, our method
outperforms adaptive Lloyd relaxation in feature preservation, and [Li and Mould 2011] in tones, structures (e.g. better boundary between the chin and
background in the lower left corner of old man face) and blue noise properties (e.g. a more uniform sample distribution).

2008] and min-conflict [Kalantari and Sen 2011] for dart throwing.
As shown, comparing with these methods, the result generated by
bilateral blue noise sampling has a better quality, especially around
features. Notice, to keep the fairness in the comparisons, we gen-
erate all results in Figure 4 by dart throwing method (i.e., no relax-
ation is included).

5.2 Dynamic Stippling

Bilateral blue noise sampling can be applied to numerous dynamic
effects, such as sprite-based animation [Yu et al. 2009], video stip-
pling [Chen et al. 2012], and hybrid point distribution [Vander-
haeghe et al. 2007]. The key, as stated in [Vanderhaeghe et al.
2007], is to maintain the balance between 2D spatial blue noise, 1D
temporal coherence, and 2D (video) or 3D (object) motion depic-
tion. This is a challenging problem due to both spatial and temporal
constraints.

Here, we describe two particular applications: cross-dimensional
sampling for 2D stylization of dynamic 3D objects and spatial-
temporal sampling for video stylization. Both are described in

[Vanderhaeghe et al. 2007]. The basic idea is to perform bilateral
blue noise sampling for the first frame, advect the samples accord-
ing to the scene motions (e.g. 3D object motions or 2D video opti-
cal flows), and maintain blue noise properties by removing/adding
samples from/to crowded/sparse regions, meanwhile maintains the
feature preserving. (Please refer to the accompany video of Figure 5
& 6 for animation effects.)

Feature v For video stylization, we simply use colors c as v.
For cross sampling (2D stylization of 3D objects), we define the
v(s) for each 2D screen space sample s as a combination of the 2D
screen space shading c(s) and the 3D object space normal n(s′):

s′ = raycast(s), v(s) =
(
αc(s),n(s′)

)
(14)

, where α is the relative weight between c and n, s′ the 3D object
surface point corresponding to s (obtained through ray casting from
the eye point), and n is the 3D object normal in the eye coordinate
system. (If raycast(s) does not hit the object surface, we set n(s′)
to 0.) This choice allows us to emphasize both shading and pro-
jected geometry features better than considering only 3D geometry
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(a) input (b) mean conflict

(c) min conflict (d) bilateral

Figure 4: Distance metric comparison. Here, we compare our bilateral
distance metric with alternative measures including (b) mean conflict [Wei
2008] and (c) min conflict [Kalantari and Sen 2011]. Each case contains
about 35K samples produced by dart throwing. Notice that mean conflict
metric can produce noticeable knock-out effects (e.g. lower-middle of the
second right column) and a max conflict metric can produce even worse
results (not shown here but see [Kalantari and Sen 2011] Figure 8). Min-
conflict metric produces less knock-out effects, with the cost of a less uni-
form distribution in non-feature area.
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Figure 5: Spatial-temporal sampling for video stylization. Notice the
better feature preservation of our method, such as the gecko mouth and
eye, and the doll face and clothing. Each frame of gecko/Alma contains ∼
2200/19000 samples.

or 2D image features. Some examples include interior and exterior
silhouettes (e.g. the genus 3 model in Figure 6) and shallow ridges

(a) cross blue noise (b) cross bilateral

Figure 6: Cross-dimensional dynamic sampling for 2D
stylization of 3D objects. Here we compare our cross di-
mensional bilateral blue noise sampling to the non-bilateral
method in [Vanderhaeghe et al. 2007]. As shown, our
method preserves features better in object silhouettes, geom-
etry ridges, and shading variations, while retains the bene-
fits of the original method, such as temporal coherence and
screen-space blue noise. Each case of genus3/claw contains
∼ 4500/8000 visible samples. The input models are shown
on the left.

that might not be very prominent on the original 3D geometry but
can be enhanced due to projection and shading (e.g. the claw model
in Figure 6).

5.2.1 Video stylization

Figure 5 demonstrates our spatial-temporal sampling application
for video stylization. This can be considered as a generalization of
stippling static images to dynamic videos with the need to consider
motion depiction and temporal coherence similar to the cross sam-
pling application. Here, the motions are computed through video
optical flow, and the feature v is the underlying RGB video pixel
color c. As shown in Figure 5, our method preserves features bet-
ter than non-bilateral blue noise [Vanderhaeghe et al. 2007] while
maintains its other advantages including motion depiction, tempo-
ral coherence, and screen space blue noise.

5.2.2 Cross-dimensional sampling

Figure 6 provides examples for applying our method for cross di-
mensional sampling, i.e. placing stipples on a 2D plane to render
dynamic 3D objects. There, we compare our bilateral cross sam-
pling method against the original cross dimensional (non-bilateral)
blue noise sampling in [Vanderhaeghe et al. 2007]. As shown, our
method provides better quality in describing features. For tone re-
production, we set the local adaptive-sampling radius r(s) accord-
ing to the shading value.

5.3 Nonlinear Filtering

Nonlinear filtering, such as bilateral and medial filtering, has a va-
riety of important applications. However, it tends to be relatively
slow compared to linear filtering. Various acceleration methods
have been proposed (see e.g. [Weiss 2006; Chen et al. 2007; Adams
et al. 2009; Gastal and Oliveira 2012]).

Among these accelerations, sub-sampling has shown to be a vi-
able approach for filters that can function well with a sub-set of
taps, such as bilateral filtering [Banterle et al. 2012]. Banterle et
al. [2012] further demonstrated that, among various sub-sampling
schemes, blue noise offers unique advantages such as reduced noise
and absence of aliasing. However, their method uses a global con-
stant sampling rate for each image. This content-oblivious ap-
proach might not adapt well to the underlying image content, where
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complex areas may require more samples whereas simple areas may
suffice with less. This naturally leads to a content-aware subsam-
pling method, whose sampling rate varies according to the underly-
ing image region complexity.

(a) uniform + global (b) bilateral + global

Figure 7: Filter sample distributions around the upper-left corner of the
music sheet in Figure 8. Notice the better preservation of features for the
bilateral method. Here, all samples lie on a discrete grid and are colored
through the underlying pixels.

Our approach offers a potential content-aware sub-sampling
method for nonlinear filtering. In a nutshell, we perform bilat-
eral blue noise sampling based on the underlying image content, by
treating image color c as the feature v in Equation 3, and use these
samples for filtering. We propose two flavors of our method to meet
different speed/memory considerations: local, in which sample pat-
tern within a filter kernel is generated independent for each output
pixel (as originally proposed by [Banterle et al. 2012]); and global,
in which sample pattern of the entire output image is produced as a
pre-process (Figure 7), from which samples falling within individ-
ual output kernels are used during filtering.

In the following, we compare uniform/bilateral× local/global sam-
pling methods for bilateral filtering via quality (Figure 8 & Fig-
ure 9) and performance (Table 1). Based on these, we have found
that the bilateral + global method offers the best tradeoff.

Quality Bilateral sampling tends to produce better quality than
uniform sampling, especially under sparse sample distributions.
This is illustrated in Figure 8 for perceptual image quality, and Fig-
ure 9 for numerical error measurements under a variety of images
and parameter settings. As a rule of thumb, bilateral sampling can
achieve similar quality to uniform sampling with fewer samples,
usually 75/60% for local/global sampling.

Global sampling tends to be less noisy than local sampling, both
visually and numerically. This is because in a global method, two
adjacent output pixels can have overlaps in their filter tap/sample
sets, providing extra coherence than the case where the filter sets
are produced independently. We have observed that such sample
set coherence may cause bias in a very sparse sampling setting (e.g.
large missing chunks in Figure 8e), but in most cases, it outperforms
a local sampling method without such coherence.

Performance Table 1 shows the timing information of various
methods under equal quality settings, with major steps separated for
clarity, such as sampling, filtering, and Voronoi cell area computa-
tion which is needed for unbiased filtering under bilateral sampling.
Compared to uniform sampling, bilateral sampling tends to take
more time in sampling and less time in filtering. Global sampling
tends to be faster than local sampling due to amortized sampling
workload among output pixels. Note that global-bilateral sampling
is faster than uniform sampling (both local and global), even as-
suming zero sampling time for the latter (e.g. using pre-computed
tiles as in [Banterle et al. 2012]). So far, we did all of our measure-

ments on a single CPU (Intel Core i7 machine with 4GB memory).
Due to the parallel nature of blue noise sampling [Wei 2008] and
filtering, we believe the entire process can be further accelerated
for multi-/many-core CPUs/GPUs.

Parameters For the kernel size K and per-kernel sample count
Ns, we recommand to use K

Ns
= 0.5 ∼ 2.0 in general by consider-

ing both quality and speed. For fair comparison between local and
global methods, we use following rule to compute the total sam-
ple count for the global method: Ms = |Ω|

K2 · Ns, where |Ω| is the
domain size and K the filter kernel size.

We set σv
σp

differently for local and global methods. For the local-

bilateral method, our experiments indicate that σv
σp

= 2.0·|Ω|−
1
2 ∼

8.0 · |Ω|−
1
2 will give optimal outcomes in both visual and accu-

racy evaluation, across different kernel sizes K and different sam-
ple counts Ns. For the global bilateral method, our experiments
suggest to use σv

σp
= 3.0 · |Ω|−

1
2 ∼ 10.0 · |Ω|−

1
2 . Among this

range, we further suggest a lower σv
σp

for a smaller kernel size (e.g.
K < 40) and a relatively higher σv

σp
for a larger kernel size.

kernel size K = 10/20/40 pixels
uniform (local∗ and global†)

Ns = 1K Ns = 2K Ns = 3K

sampling∗ 0.83/1.52/2.26 1.15/2.56/4.93 1.74/2.96/7.89
sampling† 0.94/0.30/0.07 2.00/0.67/0.26 4.37/1.19/0.41

filtering 3.96/8.33/16.45 8.37/16.00/33.20 12.18/25.26/49.54
total∗ 4.79/9.85/18.71 9.52/18.56 /38.13 13.93/28.23/57.43
total† 4.90/8.63/16.52 10.37/16.67 /33.46 16.55/26.45/49.95

local bilateral
Ns = 0.75K Ns = 1.5K Ns = 2.25K

sampling 4.59/8.59 /14.11 8.82/19.49/36.94 13.56/34.68/61.99
Voronoi 5.19/11.55/23.86 11.10/23.00/46.91 15.22/34.24 /71.70
filtering 3.11/6.48/12.78 6.22/12.41/24.00 9.59/18.37/36.43

total 12.90/26.62/50.74 26.14/54.90/107.8 38.37/87.30/170.1

global bilateral
Ns = 0.6K Ns = 1.2K Ns = 1.8K

sampling 0.30 /0.15/0.04 0.93/0.33/0.11 1.74 /0.59/0.19
Voronoi 0.22/0.15/0.04 0.44/0.26/0.10 0.74/0.37/0.18
filtering 2.74/5.30/9.48 5.26/9.85/19.34 7.74/14.96/28.53

total 3.26/5.60/9.56 6.63/10.44/19.55 10.23/15.93/28.90

Table 1: Timing information for sub-sampling accelerated bilateral filter-
ing. Here we show the timing information of various methods, with kernel
size K = 10, 20, and 40 pixels, and various sample counts under equal-
quality settings (75/60% of samples-per-kernel for bilateral local/global
sampling relative to uniform sampling as described in the main text). The
measurement units is 10−3sec/Kpixel. For uniform sampling, the local and
global methods differ only in sampling time and share very similar filtering
time.

6 Limitations and Future Work

We have not yet attempted to combine bilateral sample distance
with a maximal sampling method such as [Cline et al. 2009; Gamito
and Maddock 2009; Ebeida et al. 2011; Kalantari and Sen 2011].
Such combination should be doable, and could preserve features
even better.

Our current implementation adopted prior acceleration methods
based on spatial measures only, such as grids for dart throwing [Wei
2008]. Further refinements in acceleration methods will help the
performance of bilateral sampling.

6
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Figure 8: Subsampling-accelerated bilateral filtering. Here we compare uniform/bilateral × local/global subsampling schemes with full bilateral filtering.
With each case are the full image (top) and the zoom-in (bottom). Notice the better quality of bilateral sampling for both the local and global settings, i.e. less
noise for the former and less bias (in the form of large missing chunks) in the latter. In the music-sheet/city-bay case, the sub-sampling results are generated
with kernel size K=15/30 pixels and average samples-per-kernel Ns = 0.5K.
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Figure 9: Accuracy evaluation of different sub-sampling methods versus
different kernel sizes K. Shown here are the RMSE relative to the ground
truth full bilateral filtering of uniform/bilateral × local/global , respectively,
over the music sheet/city bay input in Figure 8. The left/right columns are
computed with different samples-per-kernel Ns=0.5K/2K. As shown, un-
der identical sample counts, the bilateral method tends to have a lower error
rate than the uniform method, whereas the global method tends to have a
lower error rate than the local method.

In our current dynamic stippling application, to keep a better tem-
poral coherence and speed up the process, we avoid to use any re-
laxation process in our current framework. It would be an inter-
esting future work to improve the temporal coherence with Lloyd
relaxation or kernel based relaxation in [Chen et al. 2013].

Finally, we would like to extend our idea to other sampling patterns
[Zhou et al. 2012; Öztireli and Gross 2012] and applications such

as rendering [Spencer and Jones 2009] and fluids [Ando et al. 2012;
Schechter and Bridson 2012].

Acknowledgements We would like to thank Hua Li for answer-
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