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Abstract

Technology trends will cause data movement to account for

the majority of the energy expenditure as well as execution

time on emerging/future computers. Therefore the computa-

tional complexity of algorithms will no longer be a sufficient

metric for comparing algorithms, and a fundamental charac-

terization of the data access complexity of algorithms will be

increasingly important.

In this paper we revisit the problem of data access com-

plexity (also called I/O complexity) in a two-level memory

hierarchy, first addressed by the seminal work of Hong and

Kung [16] using the formalism of the red/blue pebble game.

It improves on prior work in several ways: 1) it enables the

development of lower bounds on the I/O complexity of com-

posite computations from lower bounds for a set of constituent

sub-computations, 2) it develops a complementary graph min-

cut based bounding strategy to Hong & Kung’s S-partitioning

approach, enabling tighter analytical lower bounds for some

algorithms, and 3) it develops an automated approach to

generate concrete lower bounds on the I/O complexity of

arbitrary, possibly irregular computational directed acyclic

graphs.

1. Introduction

Advances in technology over the last few decades have

yielded significantly different rates of improvement in the

computational performance of processors relative to the speed

of memory access. Because of the significant mismatch be-

tween computational latency and throughput when compared

to main memory latency and bandwidth, the use of hierarchi-

cal memory systems and the exploitation of significant data

reuse in the higher (i.e., faster) levels of the memory hier-

archy is critical for high performance. Although hardware

techniques for data pre-fetching and overlapping of computa-

tion with communication can alleviate the impact of memory

access latency on performance, the mismatch between maxi-

mum computational rate and peak memory bandwidth is much

more fundamental; the only solution is to limit the volume of

data movement to/from memory by enhancing data reuse in

registers and higher levels of the cache.

Thus the characterization of the data locality properties

of algorithms is extremely important. Current approaches to

computing locality metrics, e.g., stack reuse distance profiles

[8, 10, 14, 20], only characterize an algorithm’s implementa-

tion for a specific execution order corresponding to the given

structure of the input program. It is highly desirable to char-

acterize the inherent data locality properties of a program, al-

lowing for all possible dependence-preserving reorderings of

the elementary operations of the program.

Several techniques have been developed to maximize data

locality and minimize communication for a given program,

in particular through loop transformation frameworks [17,

30]. It is of interest to assess how the data access costs of a

transformed program compare to an inherent lower bound for

the computation. Characterizing a lower bound on the inherent

data access complexity of a computation was addressed in

the seminal work of Hong & Kung (where they called it I/O

complexity; we will use both terms interchangeably) by using

the model of the red/blue pebble game on a computational

directed acyclic graph (CDAG) [16]. In this paper, we revisit

the Hong & Kung approach for developing lower bounds on



the I/O complexity of CDAGs and extend the model and its

application in three significant ways:

• Decomposition of CDAGs: The original Hong & Kung

red/blue pebble game model of I/O complexity is not

amenable to deriving I/O lower bounds for a CDAG by de-

composing into component sub-CDAGs (this is explained

in detail in Sec. 3). We develop a modified CDAG model

and pebble game that enables additive combining of I/O

lower bounds of decomposed parts of a CDAG. This prop-

erty is critically important in enabling the analysis of real

applications that are composed of a number of component

algorithms with different computational structures and in-

herent I/O complexity.

• Alternative Lower Bound Approach: The lower bounds

derivable by the Hong & Kung “2S-Partitioning” approach

are weak for some algorithms because the model inher-

ently does not account for the internal structure and op-

erations within the components of the graph partition, but

only dominators of incoming edges to the components. We

develop an alternative lower bounding approach based on

convex min-cut partitions of DAGs. We provide details of

this approach in Sec. 4, demonstrating tighter analytical

lower bounds for some algorithms compared to the Hong

& Kung 2S-partitioning.

• Lower Bounds for Arbitrary CDAGs: The Hong & Kung

model has so far been used for developing I/O lower

bounds for only a small number of regular algorithms,

with CDAG-structure-specific reasoning being required

for each analyzed algorithm. We develop an automated

approach for the estimation of I/O lower bounds of ar-

bitrary, possibly irregular CDAGs. We provide details in

Sec. 5 and experimental results in 6.

This paper is organized as follows. In Sec. 2 we provide

some background on CDAGs and the approach of Hong &

Kung for I/O complexity estimation. Sec. 3 identifies the lim-

itations of the Hong & Kung red/blue pebble game model for

analyzing composite applications comprised of multiple com-

ponent algorithms, and presents a modified model of CDAGs

and a pebble game to address the problem. Sec. 4 develops an

alternative approach to Hong & Kung 2S-partitioning for es-

timating I/O lower bounds, using convex graph partitioning.

Sec. 5 develops the automated analysis approach to character-

izing the I/O complexity of arbitrary, irregular CDAGs. Sec. 6

presents experimental results for the automated heuristic ap-

proach. Sec. 7 discusses related work. Sec. 8 discusses some

open problems raised by this work, and potential uses for the

presented analysis approach.

2. Background

2.1 Computational Model

The model of computation we use is a computational directed

acyclic graph (CDAG), where computational operations are

represented as graph vertices and the flow of values between

operations is captured by graph edges. Fig. 1 shows an ex-

ample of a CDAG corresponding to a simple loop program.

Two important characteristics of this abstract form of repre-

senting a computation are that (1) there is no specification of

any particular order of execution of the operations: although

the example program executes the operations in a specific se-

quential order, the CDAG abstracts the schedule of operations

by only specifying partial ordering constraints as edges in the

graph; (2) there is no association of memory locations with the

source operands or result of any operation (labels in Fig. 1 are

used simply to the show the correspondence between the loop

code and its CDAG, but are not part of the formal description

of the CDAG).

for (i = 1; i < 4; ++i)

S += A[i-1] + A[i];

A[0] A[1] A[2] A[3]S

Figure 1: Example of a CDAG. Input vertices are represented

in black, output vertices in grey.

We use the notation of Bilardi & Peserico [5] to formally

describe CDAGs. We first describe the model of CDAG used

by Hong & Kung:

DEFINITION 1 (CDAG-HK). A computational directed acyclic

graph (CDAG) is a 4-tuple C = (I,V,E,O) of finite sets such

that: (1) I ⊂ V is the input set and all its vertices have no in-

coming edges; (2) E ⊆V×V is the set of edges; (3) G=(V,E)
is a directed acyclic graph;(4) V − I is called the operation

set and all its vertices have one or more incoming edges; (5)

O⊆V is called the output set.

2.2 The Red-Blue Pebble Game

Hong & Kung used this computational model in their seminal

work [16]. The inherent I/O complexity of a CDAG is the

minimal number of I/O operations needed while optimally

playing the red-blue pebble game. The game uses two kinds of

pebbles: a fixed number of red pebbles that represent the small

fast local memory (could represent cache, registers, etc.), and

an arbitrarily large number of blue pebbles that represent the

large slow main memory. Starting with blue pebbles on all

inputs nodes in the CDAG, the game involves the generation

of a sequence of steps to finally produce blue pebbles on all

outputs. A game is defined as follows.

DEFINITION 2 (Red-Blue pebble game [16]). Given a CDAG

C = (I,V,E,O) such that any vertex with no incoming (resp.



outgoing) edge is an element of I (resp. O), S red pebbles and

an arbitrary number of blue pebbles, with a blue pebble on

each input vertex. A complete game is any sequence of steps

using the following rules that results in a final state with blue

pebbles on all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has

a blue pebble (load from slow to fast memory),

R2 (Output) A blue pebble may be placed on any vertex that

has a red pebble (store from fast to slow memory),

R3 (Compute) If all immediate predecessors of a vertex of

V − I have red pebbles, a red pebble may be placed on that

vertex (execution or “firing” of operation),

R4 (Delete) A red pebble may be removed from any vertex

(reuse storage).

The number of I/O operations for any complete game is the

total number of moves using rules R1 or R2, that is the total

number of data movements between the fast and slow memo-

ries. The inherent I/O complexity of a CDAG is the smallest

number of such I/O operations that can be achieved, among all

valid red-blue pebble games on that CDAG. An optimal red-

blue pebble game is a game achieving this minimal number of

I/O operations.

2.3 S-partitioning for lower bounds on I/O complexity

This red-blue pebble game provides an operational definition

for the I/O complexity problem. However, it is not practically

feasible to generate all possible valid games for large CDAGs.

Hong & Kung developed a novel approach for deriving I/O

lower bounds for CDAGs by relating the red-blue pebble game

to a graph partitioning problem defined as follows.

DEFINITION 3 (Hong & Kung S-partitioning of a CDAG [16]).

Let C = (I,V,E,O) be a CDAG. An S-partitioning of C is a

collection of h subsets of V such that:

P1
⋂h

i=1 Vi = /0, and
⋃h

i=1 Vi =V

P2 there is no cyclic dependence between subsets

P3 ∀i, ∃D ∈ Dom(Vi) such that |D| ≤ S

P4 ∀i, |Min(Vi)| ≤ S

where a dominator set of Vi, D ∈ Dom(Vi) is a set of vertices

such that any path from I to a vertex in Vi contains some vertex

in D; the minimum set of Vi, Min(Vi) is the set of vertices

in Vi that have all its children outside of Vi; and |Set| is the

cardinality of the set Set; A subset Vi is said to depend on

subset Vj if there is an edge in E from a vertex in Vj to a

vertex in Vi.

Hong & Kung showed a construction for a 2S-partition of a

CDAG, corresponding to any complete red-blue pebble game

on that CDAG using S red pebbles, with a tight relationship

between the number of vertex sets h in the 2S-partition and

the number of I/O moves q in the pebble-game:

THEOREM 1 (Pebble game, I/O and 2S-partition [16]). Any

complete calculation of the red-blue pebble game on a CDAG

using at most S red pebbles is associated with a 2S-partition

of the CDAG such that

S×h≥ q≥ S× (h−1),

where q is the number of I/O moves in the game and h is the

number of subsets in the 2S-partition.

The tight association from the above theorem between any

pebble game and a corresponding 2S-partition provides the

following key lemma that served as the basis for Hong &

Kung’s approach to deriving lower bounds on the I/O com-

plexity of CDAGs.

LEMMA 1 (Lower bound on I/O [16]). Let H(2S) be the min-

imal number of vertex sets for any valid 2S-partition of a given

CDAG. Then the minimal number Q of I/O operations for any

valid execution of the CDAG is bounded by

Q≥ S× (H(2S)−1)

This key lemma has been useful in proving I/O lower bounds

for several CDAGs [16] by reasoning about the maximal num-

ber of vertices that could belong to any vertex-set in a valid

2S-partition.

3. I/O Lower Bound using CDAG

Decomposition

Application codes are typically constructed from a number of

sub-computations using the fundamental composition mech-

anisms of sequencing, iteration and recursion. In contrast to

analysis of computational complexity of such composite ap-

plication codes, I/O complexity analysis poses challenges.

With computational complexity, the operation counts of sub-

computations can simply be added (either using concrete

counts for a specific instance of the code for particular val-

ues of problem parameters, or by combining parametric ex-

pressions of the complexity of component sub-computations).

For example, an application containing an outer loop over t

iterations, with a dense matrix-matrix multiplication, a ma-

trix vector product, and a dot-product in the loop body, has

a computational complexity of t × (2N3 + 2N2 + 2N) oper-

ations. Using the red/blue pebble game model of Hong &

Kung, as elaborated in Sec. 3.1, it is not feasible to develop

lower bounds on the I/O complexity of a computation by com-

bining I/O lower bounds of constituent sub-computations. We

address this limitation by defining a modified model of the

pebble game in Sec. 3.2 and formalize decomposition proper-

ties for I/O lower bounds in Sec. 3.3. A discussion comparing

the original Hong & Kung model with the modified model is

provided in Sec. 3.4.

3.1 Overview of the Problem and Solution Approach

The Hong & Kung red/blue pebble game model places blue

pebbles on all CDAG vertices without predecessors, since

such vertices are considered to hold inputs to the computation,



for(i = 0; i < 4; i++)

c[i] = a[i] + b[i]; // S1

for(i = 0; i < 4; i++)

d[i] = c[i] * c[i]; // S2

for(i = 0; i < 4; i++)

e[i] = c[i] + d[i]; // S3

for(i = 0; i < 4; i++)

f[i] = d[i] * e[i]; // S4

(a) Original code

a[0] b[0] a[1] b[1] a[2] b[2] a[3] b[3]

c[i]

d[i]

e[i]

f[i]

(b) Full CDAG

a[0] b[0] a[1] b[1] a[2] b[2] a[3] b[3]

c[i]

d[i]

e[i]

f[i]

sub-CDAG #1 
with S1 and S2 only

sub-CDAG #2 
with S3 and S4 only

(c) CDAG partitioning

Figure 2: Example illustrating limitation of Hong & Kung model regarding composition of lower bounds from sub-components

of CDAG

and therefore assumed to start off in slow memory. Similarly,

all vertices without successors are considered to be outputs

of the computation, and must have blue pebbles at the end

of the game. If the vertices of a CDAG corresponding to

a composite application are disjointly partitioned into sub-

DAGs, the analysis of each sub-DAG under the Hong & Kung

red/blue pebble game model will require the initial placement

of blue pebbles on all predecessor-free vertices in the sub-

DAG, and final placement of blue pebbles on all successor-

free vertices in the sub-DAG. The optimal pebble game for

each sub-DAG will require at least one load (R1) operation

for each input and a store (R2) operation for each output. But

in playing the red/blue pebble game on the full composite

CDAG, clearly it may be possible to pass values in a red

pebble between vertices in different sub-DAGs, so that the

total I/O cost for the game on the full CDAG could be less

than the sum of the I/O costs for the optimal pebble games for

each sub-DAG. In fact, it is even possible for the I/O cost for a

valid pebble game on the full DAG to be less than the optimal

I/O cost for each sub-DAG.

Fig. 2(b) shows the CDAG for the computation in Fig. 2(a).

Fig. 2(c) shows the CDAG partitioned into two sub-DAGs,

where the first sub-DAG contains vertices of S1 and S2 (and

the input vertices corrsponding to a[i] and b[i]), and the sec-

ond sub-DAG contains vertices of S3 and S4. Considering

the full CDAG, with just two red pebbles, it can be com-

puted at an I/O cost of 12, incurring I/O just for the initial

loads of inputs a[i] and b[i], and the final stores for outputs

f[i]. In contrast, with the partitioned sub-DAGs, the first sub-

DAG will incur additional output stores for the successor-

free vertices S2[i], and the second sub-DAG will incur input

loads for predecessor-free vertices S3[i]. Thus the sum of op-

timal red/blue pebble game I/O costs for the two sub-DAGs

amounts to 20 moves, i.e., it exceeds the optimal I/O cost for

the full CDAG.

The above example illustrates a fundamental problem with

the Hong & Kung red/blue pebble game model: it is infeasible

to combine I/O lower bounds for sub-CDAGs of a CDAG to

generate an I/O lower bound for the composite CDAG. It is not

even possible to assert that the maximum among the I/O lower

bounds of sub-CDAGs of a CDAG is a valid lower bound for

the composite CDAG.

The ability to perform complexity analysis by combin-

ing analyses of component sub-computations is critical to the

analysis of real applications. In order to enable such decom-

position of complexity analysis, we make two changes to the

Hong & Kung pebble game model, one relaxation, and one

restriction:

1. Flexible input/output vertex labeling: Unlike the Hong

& Kung model, where all vertices without predecessors

must be input vertices, and all vertices without successors

must be output vertices, the modified model allows flex-

ibility in indicating which vertices are labeled as inputs

and outputs. In the modified variant of the pebble game,

predecessor-free vertices that are not designated as input

vertices do not have an initial blue pebble placed on them.

However, such vertices are allowed to fire using rule R3

at any time, since they do not have any predecessor nodes

without red pebbles. Vertices without successors that are

not labeled as output vertices do not require placement of

a blue pebble at the end of the game. However, all com-

pute vertices in the CDAG are required to have fired for

any complete game.

2. Prohibition of multiple evaluations of compute ver-

tices: In the modified pebble game, recomputation of val-

ues are prohibited on the CDAG, i.e., each vertex is only

allowed to “fire” once using rule R3. Several other efforts

[3–5, 9, 12, 18, 21–27] have also imposed a restriction to

disallow recomputation in the pebble game model. While

such a model is indeed more restrictive than the original

Hong & Kung model, as explained later in this section, this

restriction enables the development of techniques to form

tighter lower bounds.

We proceed by first defining a modified pebble game where

recomputation is disallowed, followed by relaxation to the

CDAG model regarding inputs/output vertices.



3.2 Disallowing Recomputation: The Red-Blue-White

Pebble Game

The red-blue pebble game model used by Hong & Kung im-

plicitly permits recomputation of vertices in the CDAG, i.e.,

it is possible to place a red pebble on a vertex by use of rule

R3, then remove the red pebble using rule R4, and at a later

time place a red pebble at the same vertex again by use of rule

R3. Multiple firings of a vertex by use of rule R3 represent re-

computation of the same value in a CDAG multiple times and

may in some situations be beneficial because it avoids storing

and reloading the computed value. An alternative model has

also been used by several works [3–5, 9, 12, 18, 21–27] where

each value may only be computed once, i.e., recomputation is

not permitted. Our adaptation of the standard red-blue pebble

game to model computation of CDAGs without recomputa-

tion involves the use of an additional kind of pebble, white

pebble. A white pebble is initially placed on all input vertices

(in addition to blue pebbles) and any vertex as soon as it fires

using rule R3. Rule R3 is modified to disallow firing of any

vertex that already has a white pebble on it. The Red-Blue-

White pebble game is defined as follows.

DEFINITION 4 (Red-Blue-White (RBW) pebble game). Given

a CDAG C = (I,V,E,O) such that any vertex with no incom-

ing (resp. outgoing) edge is an element of I (resp. O), S red

pebbles and an arbitrary number of blue and white pebbles,

with a blue pebble on each input vertex, a complete game is

any sequence of steps using the following rules that results in

a final state with blue pebbles on all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has

a blue pebble.

R2 (Output) A blue pebble may be placed on any vertex that

has a red pebble.

R3 (Compute) If a vertex v does not have a white pebble and

all its immediate predecessors have red pebbles on them, a

red pebble along with a white pebble may be placed on v.

R4 (Delete) A red pebble may be removed from any vertex.

First, Definition 3 is adapted to this new game so that

Theorem 1 and thus Lemma 1 hold for the RBW pebble game.

DEFINITION 5 (S-partitioning of CDAG – RBW pebble game).

Let C = (I,V,E,O) be a CDAG. An S-partitioning of C is a

collection of h subsets of V − I such that:

P1
⋂h

i=1 Vi = /0, and
⋃h

i=1 Vi =V − I

P2 there is no cyclic dependence between subsets

P3 ∀i, |In(Vi)| ≤ S

P4 ∀i, |Out(Vi)| ≤ S

where the input set of Vi, In(Vi) is the set of vertices of V −Vi

that have at least one child in Vi; the output set of Vi, Out(Vi)
is the set of vertices of Vi also part of the output set O or that

have at least one child outside of Vi.

We now prove Theorem 1 for the Red-Blue-White pebble

game.

Proof. Consider a pebble game instance C that corresponds to

some scheduling (i.e., execution) of the vertices of the graph

G = (V,E) that follows the rules R1–R4 of the Red-Blue-

White pebble game (see Definition 6 in Sec. 3.2). We view

this pebble game instance as a string that has recorded all

the transitions (applications of pebble game rules). Suppose

that P contains exactly q transitions of type R1 or R2. Let

P1,P2, . . . ,Ph correspond to a partitioning of the transitions of

P into h = ⌈q/S⌉ consecutive sub-sequences such that each Pi

in P1, . . . ,Ph−1 contains exactly S transitions of type R1 or R2.

Because the CDAG contains no node isolated from the

output nodes, and because of the white pebbles, any vertex

of V − I is computed exactly once in P . Let Vi be the set of

vertices computed (transition R3) in the sub-calculation Pi.

Property P1 is trivially fulfilled.

As transition R3 on a vertex v is possible only if its prede-

cessor vertices have a red pebble on them, those predecessors

are necessarily executed in some Pj, j ≤ i and are thus part of

a Vj, j ≤ i. This proves property P2.

To prove P3 for a given Vi we consider two sets: VR is the

set of vertices that had a red pebble on them just before the

execution of Pi; VBR is the set of vertices on which a red pebble

is placed according to rule R1 (input) during Pi. We have that

In(Vi)⊆VR∪VBR. Thus |In(Vi)| ≤ |VR|+ |VBR|. As there cannot

simultaneously be more than S red pebbles, |VR| ≤ S; also by

construction of Pi, |VBR| ≤ S. This proves that |In(Vi)| ≤ 2S

(property P3).

Property P4 is proved in a similar way: V ′R is the set of

vertices that have a red pebble on them just after the ex-

ecution of Pi; V ′RB is the set of vertices of Vi on which a

blue pebble is placed during Pi according to rule R2. We

have that Out(Vi) ⊆ V ′R ∪V ′RB. Thus |Out(Vi)| ≤ |V ′R|+ |V ′RB|.
As there cannot simultaneously be more than S red pebbles,

|V ′R| ≤ S; also by construction of Pi, |V ′RB| ≤ S. This proves

that |Out(Vi)| ≤ 2S (property P4). �

3.3 Decomposition

Fig. 2 illustrated the decomposition problem with the Hong

& Kung RB pebble game model. Since any vertex without

predecessors was always an input vertex with an initial blue

pebble, it was not feasible to decompose a larger CDAG and

combine I/O lower bounds from sub-CDAGs of the larger

CDAG. We introduce an adaptation of the Hong & Kung

CDAG model to overcome the decomposition problem. Here,

we allow flexibility in specifying which vertices of a CDAG

are tagged as input and output vertices. Thus, vertices without

any predecessors are not forced to be input vertices with initial

blue pebbles. Similarly, vertices without successors are also

not required to be output vertices. The motivation is to develop

a model where “interior” computations in a sub-CDAG of a

larger CDAG can be analyzed without forcing an initial R1

load transition on predecessor-free vertices of the sub-CDAG

or a R2 store transition for successor-free vertices of the sub-

CDAG.



a0

a11
a14

a21 a24
a22 a23

a31 a34

a4

+

+ +

** 2 ** 3 ** -3** -2

x7x5

Figure 3: CDAG with large interior vertices being decom-

posed into two sub-CDAGs

Fig. 3 shows one such CDAG. The computation begins

from a single input, expands to a large number of intermediate

values and finally reduces to a single output. Application of

S-partitioning to such CDAGs will lead to a trivial partition

with just a single set. Hence, the CDAG is decomposed into

two sub-graphs as illustrated in fig. 4 to expose the “interior”

vertices to obtain a tighter lower bound as described later in

this section.

a0

a11
a14

a21 a24
a22 a23

a31 a34

a4

+

+ +

** 2 ** 3 ** -3** -2

x7x5

Figure 4: CDAG with large interior vertices being decom-

posed into two sub-CDAGs

In order to ensure that all computations on such a CDAG

proceed even when there are no designated input and output

vertices, we modify the rules of the RBW pebble game as

follows.

DEFINITION 6 (RBW pebble game: Flexible I/O vertex model).

Given a CDAG C=(I,V,E,O), S red pebbles and an arbitrary

number of blue and white pebbles, with a blue pebble on each

input vertex, a complete game is any sequence of steps using

the following rules that results a final state with white pebbles

on all vertices and blue pebbles on all output vertices:

R1 (Input) A red pebble may be placed on any vertex that has

a blue pebble; a white pebble is also placed along with the

red pebble, unless the vertex already has a white pebble on

it.

R2 (Output) A blue pebble may be placed on any vertex that

has a red pebble.

R3 (Compute) If a vertex v does not have a white pebble and

all its immediate predecessors have red pebbles on them, a

red pebble along with a white pebble may be placed on v.

R4 (Delete) A red pebble may be removed from any vertex

(reuse storage).

In the modified rules for the RBW game, all vertices are re-

quired to have a white pebble at the end of the game, thereby

ensuring that the entire CDAG is evaluated. Non-input ver-

tices without predecessors do not have an initial blue pebble

on them, but they are allowed to fire using rule R3 at any time

– since they have no predecessors, the condition in rule R3 is

trivially satisfied. But if all successors of such a node cannot

be fired while maintaining a red pebble, “spilling” and reload-

ing using R2 and R1 is forced because the vertex cannot be

fired again using R3.

The above modification for flexible input/output in Def. 6

does not change the complexity model of the RBW game from

Def. 4; it is in essence the same game, but enabling it to be

played on CDAGs with possibly no designated input/output

vertices, while still requiring the execution of all computation

vertices in the graph. Such a refinement is needed to define

proper decomposition rules, as shown below. We note that

the modified S-partitioning from Def. 5 and the associated

I/O complexity reasoning is also applicable to the flexible

I/O RBW pebble game. For (sub-)graphs without input/output

sets, the application of S-partitioning will however lead to a

trivial partition with all vertices in a single set (e.g., h = 1). A

careful tagging of vertices as virtual input/output nodes will

be required for better I/O complexity estimates, as detailed

below and later in Sec. 5.

Definition 6 allows us to partition a CDAG C into sub-

CDAGs C1,C2, . . . ,Cp, to compute lower bounds on the I/O

complexity of each sub-CDAG IO(C1), IO(C2), . . . , IO(Cp) in-

dependently and simply add them to bound the I/O complexity

of C. This is stated in the following decomposition theorem.

THEOREM 2 (Decomposition). Let C =(I,V,E,O) be a CDAG.

Let V1,V2, . . . ,Vp be an arbitrary (non necessarily acyclic)

partitioning of V (i 6= j ⇒ Vi ∩Vj = /0 and
⋃

1≤i≤p Vi = V )

and C1,C2, . . . ,Cp be the induced partitioning of C (Ii = I∩Vi,

Ei = E ∩Vi×Vi, Oi = O∩Vi). Then

∑
1≤i≤p

IO(Ci)≤ IO(C).



In particular, if Qi is a lower bound on the IO of Ci, then

∑1≤i≤p Qi is a lower bound on the I/O of C.

Proof. Consider an optimal valid game P for C, with cost

Q = IO(C). We define the cost of P restricted to Vi, denoted as

Q|Vi
, as the number of R1 or R2 transitions in P that involve

a vertex of Vi. Clearly Q = ∑1≤i≤p Q|Vi
. We can build from

P , a valid game P|Vi
for Ci, of cost Q|Vi

. This will prove that

IO(Ci) ≤ Q|Vi
, and thus ∑1≤i≤p IO(Ci) ≤ ∑1≤i≤p Q|Vi

= Q =

IO(C). P|Vi
is built from P as follows 1: (1) for any transition

in P that involves a vertex v in Vi, apply this transition in P|Vi
;

(2) delete all other transitions in P . Conditions for transitions

R1, R2, and R4 are trivially satisfied. Whenever a transition R3

on a vertex v is performed in P , all the predecessors of v must

have a red pebble on them. Since all transitions of P on the

vertices of Vi are maintained in P|Vi
, when v is executed in P|Vi

,

all its predecessor vertices must have red pebbles, enabling

transition R3. �

I/O complexity with modified Input/Output sets As devel-

oped later in this paper, with a divide-and-conquer approach

of partitioning a CDAG into disjoint sub-CDAGs, we can

use two different techniques to develop a lower bound on

the I/O complexity of the sub-CDAGs: one based on the 2S-

Partitioning technique of Hong & Kung (Lemma 1), and a new

technique using convex min-cuts on graphs (Lemma 2, devel-

oped in the next section). These two approaches require dif-

ferent strategies for handling of input/output vertices in order

to get good lower bounds. Below, we develop bounding rela-

tions between the I/O complexity of a CDAG and a variant of

it that has some inputs/outputs modified in specific ways.

COROLLARY 1 (Input/Output Deletion). Let C and C′ be two

CDAGs: C′ = (I∪dI,V ∪dI∪dO,E ′,O∪dO), C = (I,V,E ′∩
V ×V,O). Then IO(C′) can be bounded by a lower bound of

IO(C) as follows:

IO(C)+ |dI|+ |dO| ≤ IO(C′) (1)

Proof. The proof involves a direct application of the decompo-

sition theorem, with V1 = dI, V2 =V , and V3 = dO. Indeed, the

I/O complexity of the CDAG made of only dI is exactly |dI|
(transition R1 is necessary for each of them to place a white

pebble on it); the I/O complexity of the CDAG made only of

dO is exactly |dO| (transition R2 is necessary for each of them

to place a blue pebble on them). �

Reciprocally, as discussed below, IO(C) can generally not

be bounded tightly by a lower bound of IO(C′). However,

suppose we start from a CDAG with no input/output vertices,

and to each free-predecessor/successor vertex we create an

input/output vertex. As the out-degree of any element of dI

and the in-degree of any element of dO are exactly one, a

1 We do the reasoning here for the red-blue-white pebble game. Similar

reasoning can also be done for the red-blue pebble game.

bound relating the I/O complexity of the initial graph to the

I/O complexity of the modified graph can established:

THEOREM 3 (Input/Output Insertion – RBW pebble game).

Let C and C′ be two CDAGs: C′ = (I∪dI,V ∪dI∪dO,E ′,O∪
dO), C = (I,V,E ′ ∩V ×V,O) such that (i) the out-degree of

any input vertex in dI is 1 in C′ and different input vertices

in dI connect to distinct vertices; and (ii) the in-degree of any

output vertex of dO is 1 in C′. Then IO(C) with S red pebbles

can be bounded by a lower bound of IO(C′) with a game with

S+1 red pebbles as follows:

IOS+1(C
′)−|dI|− |dO| ≤ IOS(C) (2)

where IOS represents the I/O complexity with S pebbles.

Proof. The inequality is proved by considering an optimal

valid game P for C with S pebbles, of cost IOS(C). We will

build a valid game P ′ with S+ 1 pebbles, of cost IOS(C) +
|dI|+ |dO|. We build P ′ from P as follows: (1) any transition

in P is reported in P ′; (2) for each (unique) successor w of

an input v ∈ dI, the first (and unique) transition R3 involving

w is prefixed by R1(v) and postfixed by R4(v); (3) for each

(unique) predecessor w of an output v ∈ dO, the first (and

unique) transition R3 involving w is postfixed by the sequence

of R3(v);R2(v);R4(v). �

There are cases where separating input/output vertices

leads to very weak lower bounds. This happens when input

vertices have high fan-out (Inequality 2 cannot hold) such as

for matrix multiplication: in the CDAG for matrix multipli-

cation if we remove all input and output vertices, we get a

set of independent chains that can each be computed with no

more than 2 red pebbles. To overcome this problem, we de-

velop the following theorem that allows us to compare the

I/O of two CDAGs: a CDAG C′ = (I′,V,E,O′) and another

C = (I,V,E,O) built from C′ by just transforming some ver-

tices without predecessors into input vertices, and some oth-

ers into output nodes so that I′ ⊂ I and O′ ⊂ O. In contrast

to the prior development above, instead of adding/removing

input/output vertices, here we do not change the vertices of a

CDAG but instead only change the labeling (i.e., the tag) of

some vertices as inputs/outputs in the CDAG. So the DAG re-

mains the same, but some input/output vertices are relabeled

as standard computational vertices and vice-versa.

THEOREM 4 (Input/Output Untagging – RBW pebble game).

Let C and C′ be two CDAGs of the same DAG G = (V,E):
C = (I,V,E,O), C′ = (I∪dI,V,E,O∪dO). Then, IO(C′) can

be bounded by a lower bound on IO(C) as follows (untag-

ging):

IO(C)≤ IO(C′) (3)

Proof. Consider an optimal valid game say P ′ for C′, of cost

IO(C′). We will build a valid game P for C, of cost no more

than IO(C′). This will prove that IO(C) ≤ IO(C′). We build

P from P ′ as follows: (1) for any input vertex v ∈ dI, the first



transition R1 involving v in P ′ is replaced in P by a transition

R3 followed by a transition R2; (2) any other transition in P ′

is reported as is in P . �

THEOREM 5 (Input/Output Tagging – RBW pebble game).

Let C and C′ be two CDAGs of the same DAG G = (V,E):
C = (I,V,E,O), C′ = (I ∪ dI,V,E,O∪ dO). Then, IO(C) can

be bounded by a lower bound on IO(C′) as follows (tagging):

IO(C′)−|dI|− |dO| ≤ IO(C) (4)

Proof. Consider an optimal valid game P for C, of cost IO(C).
We will build a valid game P ′ for C′, of cost no more than

IO(C) + |dI|+ |dO|. This will prove that IO(C′) ≤ IO(C) +
|dI|+ |dO|. We build P ′ from P as follows: (1) for any in-

put vertex v ∈ dI, the first (and only) transition R3 involving

v in P is replaced in P ′ by a transition R1; (2) for any output

vertex v ∈ dO, the last transition R3 involving v in P is com-

plemented by an R2 transition; (3) any other transition in P is

reported as is in P ′. �

Fig. 5(a) shows the same CDAG as in fig. 3, with the input

vertex removed and the output vertex untagged. In fig. 5(b),

the free-predecessor vertices are tagged as input vertices.

3.4 RBW versus RB pebble games

All the theorems stated in this Section 3.3 considered a red-

blue-white pebble game. Although the proof of Theorem 2

(decomposition) has been written for an RBW pebble game,

it is easy to check that it also holds for an RB pebble game. For

that reason, Corollary 1 that allows us to derive a bound for a

CDAG C′ from the bound of a CDAG C obtained by deleting

some input/output vertices also holds when recomputation is

allowed. Similarly, we could check that its untagging version

(Theorem 4) would also hold. As we will see later in this

paper, deletion/untagging is useful when the I/O complexity

of a CDAG is to be derived from its inner I/O complexity. Note

that the purpose of Sec. 4 is to develop the so called min-cut

approach that evaluates the inner I/O complexity.

Actually, there are many cases where after decomposing

a CDAG C into pieces C1, . . . ,Cp, each sub-CDAG has to

be enriched with input/output nodes. This happens whenever

the sub-CDAG Ci has an I/O complexity that comes from

the nature of its boundary (high fan-out input vertices) and

that cannot be derived from its inner complexity. To illustrate

this point, consider an initial CDAG made up of the outer

product of two vectors A = u⊗v followed by the square of the

obtained matrix B = A2. The I/O complexity of this CDAG is

quite inhomogeneous: (1) taking the outer product alone, its

complexity comes from its output, so it is Ω(n2); (2) taking

the matrix-matrix multiplication alone, its complexity comes

from the extensive reuse of its inputs, and is Ω(n3/
√

S). We

would like, on this example, to be able to decompose the full

CDAG into one made up of the outer product and one made

up of the matrix-matrix multiplication. But the I/O complexity

of this latter comes from the sharing by many computational

vertices of its input vertices. This means that, technically, we

need to tag the A vertices as inputs (or insert a predecessor

input to each A vertex), compute the I/O complexity of this

modified CDAG, and then derive the I/O complexity of the

initial CDAG from this. This is possible for the RBW pebble

game thanks to Theorem 5 (or Theorem 3). We would be able

to conclude that the I/O is the sum of Ω(n) (outer product

with no commit of the outputs), plus Ω(n3/
√

S−n2) (matrix-

matrix multiplication with no inputs using Theorem 5).

This “trick” turns out to be not possible for the RB pebble

game: there are no equivalent versions of theorems 3 and 5. In-

deed inserting/tagging nodes as input can lead to an I/O com-

plexity arbitrarily larger the actual I/O complexity of the ini-

tial graph. Our current example illustrates this point. The RB

I/O complexity of a matrix multiplication of A by B where A

and B can be computed for free (not tagged as inputs) would

be n2 (the size of the output), an order of magnitude less than

its version where A and B are tagged as inputs. The I/O com-

plexity of the combined operations (outer product followed

by matrix square) where computations can be interleaved and

where A is not forced to be stored in memory, turns out to be

something in between: Ω(n3/S).

Figure 6: Example of 2S-partitioning using RB and RBW

pebble games, shown in red and green respectively.

There are many cases where actually allowing recomputa-

tion into the game does not help the I/O complexity. This point

is illustrated by the example in fig. 6. The red and green boxes

show the minimal vertex-set 2S-partitions (for S = 2) gener-

ated with RB and RBW pebble game rules respectively. Per-

mitting recomputation allows us to create 2S-partition with as

low as two subsets, which provides us a lower-bound of two.

But as we can see from the figure, we clearly need to spill

much more vertices even with recomputation. In this case,

RBW game’s 2S-partition provides us a tighter and more accu-

rate lower bound. This is the case for all examples developed

in Hung and Kung’s paper [16] that include odd-even trans-

position sort, FFT, matrix-matrix multiplication, and product

graph. For those applications, the lower bound (LBRB – that

uses the RB pebble game) asymptotically matches a known

upper bound that does not use any recomputation (denoted as
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Figure 5: Illustration of Input/Output set modification and vertex Tagging/Untagging

UBRBW). The following inequalities trivially hold:

LBRB ≤ IORB ≤ IORBW ≤ UBRBW.

So, whenever Ω(LBRB) = Ω(UBRBW) we can conclude that

Ω(IORB) = Ω(IORBW).

4. Min-Cut for I/O Complexity Lower Bound

In this section, we develop an alternative lower bounding ap-

proach to the Hong & Kung 2S-partitioning. It is motivated

from the observation that the 2S-partitioning approach does

not account for the internal structure of a CDAG, but essen-

tially only on the boundaries of the partitions. In contrast, we

develop an approach that captures internal space requirements

using the abstraction of wavefronts.

4.1 The Min-Cut based Approach

We first present needed definitions. Given a graph G = (V,E),
a cut is defined as any partition of the set of vertices V into

two parts S and T = V − S . An s− t cut is defined with

respect to two distinguished vertices s and t and is any (S ,T )
cut satisfying the requirement that s ∈ S and t ∈ T . Each cut

defines a set of cut edges (the cut-set), i.e., the set of edges

(u,v) where u ∈ S and v ∈ T . The capacity of a cut is defined

as the sum of the weights of the cut edges. The minimum cut

problem (or min-cut) is one of finding a cut that minimizes

the capacity of the cut. We define vertex u as a cut vertex with

respect to an (S ,T ) cut, as a vertex u ∈ S that has a cut edge

incident on it. A related problem of interest for this paper is

the vertex min-cut problem which is one of finding a cut that

minimizes the number of cut vertices.

Given a DAG G = (V,E) and some vertex x ∈ V , the set

Anc(x) is the set of vertices from which there is a non-empty

directed path to x in G (x 6∈ Anc(x)); the set Desc(x) is the set

of vertices to which there is a non-empty directed path from

x in G (x 6∈ Desc(x)). Using those two notions, we consider

a convex cut (Sx,Tx) associated to x as follows: Sx includes

x∪Anc(x); Tx includes Desc(x); in addition, Sx and Tx must

be constructed such that there is no edge from Tx to Sx. With

this, the sets Sx and Tx partition the graph G into two convex

partitions. We define the wavefront induced by (Sx,Tx) to be

the set of vertices in Sx that have at least one outgoing edge to

a vertex in Tx.

Consider a pebble game instance P that corresponds to

some scheduling (i.e., execution) of the vertices of the graph

G = (V,E) that follows the rules R1–R4 of the Red-Blue-

White pebble game (see Definition 6 in Sec. 3.2). We view

this pebble game instance as a string that has recorded all the

transitions (applications of pebble game rules). Given P , we

define the wavefront WP (x) induced by some vertex x ∈ V at

the point when x has just fired (i.e., a white pebble has just

been placed on x) as the union of x and the set of vertices

u ∈ V that have already fired and that have an outgoing edge

to a vertex v ∈V that have not fired yet. Viewing the instance

of the pebble game P as a string, WP (x) is the set of vertices

x and those white-pebbled vertices to the left of x in the string

associated with P that have an outgoing edge in G to not-

white-pebbled vertices that occur to the right of x in P . With

respect to a pebble game instance P , the set WP (x) defines the

memory requirements at the time-stamp just after x has fired.

Note that there is a one-to-one correspondence between

the wavefront WP (x) induced by some vertex x ∈ V and the

(Sx,Tx) partition of the graph G. For a valid convex partition

(Sx,Tx) of G, we can construct a pebble game instance P in

which at the time-stamp when x has just fired, the subset of

vertices of V that are white pebbled exactly corresponds to

Sx; the set of fired (white-pebbled) nodes that have a succes-

sor that is not white-pebbled constitute a wavefront WP (x) as-

sociated with x. Similarly, given wavefront WP (x) associated

with x in a pebble game instance P , we can construct a valid

(Sx,Tx) convex partition by placing all white pebbled vertices

in Sx and all the non-white-pebbled vertices in Tx.

A minimum cardinality wavefront induced by x, denoted

W min
G (x) is a vertex min-cut that results in an (Sx,Tx) par-



tition of G defined above. We define wmax
G as the maxi-

mum value over the size of all possible minimum cardinal-

ity wavefronts associated with vertices, i.e., define wmax
G =

maxx∈V

(

|W min
G (x)|

)

.

yx

Anc(x)

Desc(x)

Sx

Tx

Figure 7: Illustration of mincut based approach

Fig. 7 illustrates some of these ideas on a Diamond DAG.

The vertices colored in green represent the wavefront W min
G (x)

induced by the partition (Sx,Tx). The maximum value, wmax
G ,

is obtained from the wavefront associated with the vertex y.

LEMMA 2. Let C = ( /0,V,E,O) be a CDAG with no inputs.

For any x ∈V , 2
(

|W min
G (x)|−S

)

≤ IO(C).
In particular, 2

(

wmax
G −S

)

≤ IO(C).

Proof. Let x be a vertex in V . Consider a pebble game instance

P of cost IO(C). Let the wavefront induced by the vertex x

in P be WP (x). Since every vertex in WP (x) has a successor

that is not yet white-pebbled, they must have either a red or

a blue pebble on them. Recall that we have S red pebbles.

Therefore, at least |WP (x)| − S white-pebbled vertices have

a blue pebble on them. These vertices will have to be red-

pebbled at some point in the future and will incur at least

|WP (x)| − S loads after x fires. In addition, as C has no input

vertices, those |WP (x)| − S vertices have been blue pebbled

using rule R2. Therefore, at least |WP (x)|−S stores must have

happened before x fired in P . Thus the total number of loads

and stores IO(C) is at least 2(|WP (x)|−S) which can itself be

bounded using the vertex min-cut associated to x:

2
(

|W min
G (x)|−S

)

≤ 2(|WP (x)|−S)≤ IO(C). �

If applied to the whole CDAG, Lemma 2 will usually lead

to a very weak bound. To overcome this limitation, the idea

is to decompose it into smaller sub CDAGs, and sum up

their individual I/Os. The following theorem formalizes this

approach:

THEOREM 6 (Min-Cut with divide and conquer). Let

C =(I,V,E,O) be a CDAG. Let V1, . . . ,Vp be a (non-necessarily

acyclic) partitioning of V , and C1, . . . ,Cp be the induced par-

titioning of C (Ii = Vi ∩ I, Ei = E ∩Vi×Vi, Oi = O∩Vi). Let

for each i, C′i = ( /0,V ′i ,E
′
i , /0) be the sub DAG obtained from

Ci by deleting all input and output vertices (V ′i =Vi− Ii−Oi,

E ′i = Ei ∩V ′i ×V ′i , and G′i = (V ′i ,E
′
i )). Then the minimum I/O

of C can be bounded by:

p

∑
i=1

2
(

wmax
G′i
−S

)

+ |I|+ |O| ≤ IO(C)

Proof. Theorem 2 states that ∑i IO(Ci) ≤ IO(C). For each

Ci, Corollary 1 states that IO(C′i) + |Ii|+ |Oi| ≤ IO(Ci). By

construction |I|= |∪i Ii|= ∑i |Ii| , and |O|= |∪i Oi|= ∑i |Oi|.
Finally Lemma 2 states that for each i, 2

(

wmax
G′i
−S

)

≤ IO(C′i).
�

4.2 Using Min-Cut Approach for Deriving Analytical

Bounds

Up to now we presented two different approaches for study-

ing/computing the I/O complexity of a given application us-

ing red-blue-white pebble game model. Note that, as we will

discuss further, for all applications we know for which the

I/O complexity have been studied, the red-blue-white pebble

game model does not allow any better asymptotic complexity

than with the red-blue pebble game. This remark concerns in

particular the two different applications used in this section

to illustrate the min-cut approach: Fast-Fourier-Transform

(FFT), and Diamond-DAG. For each of them we propose to

perform the I/O complexity study (with exact constant fac-

tors) using Lemma 1 (of [16]) or Theorem 6. Following the

above remark, when a proof already exists that uses Lemma 1,

we will refer to it instead of adapting it to the red-blue-white

pebble game (another intuitive remark to motivate this choice

is that for each of these applications, the In set of a vertex set

turns out to be a minimum size strict dominating set).

4.2.1 Diamond DAG

THEOREM 7 (2S-Partitioning for Diamond DAG). For a n×
n diamond DAG, the minimal number of vertex sets for any

valid 2S-partition H(2S) is 1.

Proof. The proof is obviously straightforward: a unique parti-

tion V1 = V − I fulfills P3 and P4 as |In(V − I)| = |Out(V −
I)| = 1. Note that for the red-blue model the same very weak

bound would hold: the unique partition V1 =V fulfills P3 and

P4 as I ∈ Dom(V ), |I|= 1, and |Min(V )|= 1. �

This leads to a lower bound for the I/O complexity of 0

while, as the following theorem shows, the min-cut approach

leads to an asymptotic lower bound of n2

S
.

THEOREM 8 (Min-cut based I/O bound for Diamond DAG).

For a n×n diamond DAG, the Minimum I/O cost, Q, satisfies



Q ≥ (n−2S)2

S
, which gives an asymptotic bound of n2

S
where S

is the number of red pebbles.

Proof. Consider an instance P of a red-blue-white pebble

game for the n× n diamond-DAG that has the minimum I/O,

Q. Consider a vertex x at location (i, j) (i.e., in ith row and

jth column). Consider a (rotated) bow-tie-shaped sub-DAG Vx

that consists of two dis-joint m×m squares, whose corners lie

at [(i−m, j),(i−1, j+m−1)] and [(i, j−m),(i+m−1, j−
1)] (refer fig. 8) . From Lemma 2, we have that QVx

the mini-

mum I/O restricted to Vx is bounded by 2(wmax
Vx
−S) with wmax

Vx

the max-min cardinality wavefront restricted to Vx. By con-

sidering the time-stamp just before x fires, wmax
Vx

can itself be

bounded by 2×m : there are exactly 2×m disjoint paths in Vx

that must be cut from ancestors (i−m, j), . . . , (i−2, j), (i−
1, j),(i, j− 1), (i, j− 2), . . . , , (i, j−m) to respectively de-

scendants (i, j+m−1), . . . , (i, j+1), x,(i+1, j), . . . , ,(i+
m−1, j). Hence, QVx

≥ 2(2m−S).
A rectangle of size n×2m can be partitioned into ⌊(n−m)/m⌋

bow-ties. A n×n diamond-DAG can itself be partitioned into

⌊n/2m⌋ such rectangles, so on the overall into ⌊(n−m)/m⌋×
⌊n/2m⌋. This gives, a lower bound for the I/O of 2× (2m−
S)×⌊(n−m)/m⌋×⌊n/2m⌋.

x
(i,j)

Figure 8: Diamond DAG with bow-tie shaped sub-DAG

If we let m = S, we get:

Q ≥ 2S×
⌊

n−S

S

⌋

×
⌊ n

2S

⌋

−|I|+ |O|

≥ 2S× n−S−S+1

S
× n−2S+1

2S

≥ (n−2S)2

S
�

This bound is tight by a factor of 2 as the following theorem

states.

THEOREM 9 (I/O Upper-bound for Diamond DAG). The Di-

amond DAG can be executed with an asymptotic I/O cost of

2 n2

S
.

Proof. To prove the upper bound, we consider the following

actual valid game made up of bands of width m = S−2:

for I = 1 : n step m

for j = 1 : n

for i = I : min(I +m−1,n)
if (i = I and i 6= 1): R1(i−1, j)
R3(i, j)
if (i = I and i 6= 1): R4(i−1, j)
if ( j 6= 1) : R4(i, j−1)
if (i = I +m−1 and i 6= n): R2(i, j)

This game uses exactly m+ 2 pebbles; for each of the upper

⌈n/m⌉− 1 band of width m it performs n loads; for each of

the lower ⌈n/m⌉ − 1 band of width m it performs n stores.

This gives an overall cost of 2n
(

⌈ n
S−2
⌉−1

)

. �

4.2.2 FFT

THEOREM 10 (2S-Partitioning for FFT). For an FFT of size

n, the minimal number of vertex sets for any valid 2S-Partition

is
⌈

n log(2n)
4S log(2S)

⌉

.

Proof. Theorem 4.1 in [16] does not provide any constant

factor, but the proof allows to easily derive one: the idea

developed by Hung and Kung in their proof is simply to show

that “any vertex set of dominator set of size no more than S

can have at most 2S log(S) vertices.” This proves that h, the

minimum number of vertex sets for any valid 2S-Partition is

less than
⌈

n log(2n)
4S log(2S)

⌉

. �

This gives in both cases to an asymptotic lower bound for

the I/O complexity of
n log(n)
4log(S) while, as proved below, the min-

cut approach leads for the problem without recomputation to

an asymptotic I/O complexity of
2n log(n)

log(S) .

THEOREM 11. For the n-point FFT graph, the minimum I/O

cost, Q, satisfies Q ≥ 2n log(n)
log(S) × (1− εn,S), where S is the

number of red pebbles, and εn,S tends to 0 for large values

of n, S, and n
S
.

Proof. Consider a DAG for an FFT of size m. Consider a peb-

ble game instance P with minimum I/O and the time-stamp at

which the first output vertex (i.e. vertex with no successors)

o is fired by this schedule. Let S be the vertices already fired

strictly before o, and T the others. As o is an output vertex, S

contains all the m input vertices. By construction, T contains

all the m output vertices. Hence, the corresponding wavefront,

|WP (o)| ≥ m.

Now, a DAG for the n-point FFT (of height log(2n)) can

be decomposed into disjoint sub-DAGs corresponding to m-

points FFTs (and of height log(2m)). This gives us ⌊n/m⌋×
⌊log(2n)/log(2m)⌋ full sub-DAGs. From Lemma 2, the IO

complexity of each sub-FFT is at least 2× (m− S). If we

consider m = S log(S), by combining all the sub-FFTs we get

a lower bound for IO(FFTn) of

⌊

n

S log(S)

⌋

×
⌊

log(2n)

log(2S log(S))

⌋

×2(S log(S)−S)−2n,



which tends to
2n log(n)

log(S) when n, S, and n
S

grow. �

This bound is tight as a well-known tiled version of FFT

consists of decomposing it into
log(2n)
log(S) stages of n

S
sub-FFTs

of size S. For each sub-FFT the S inputs are loaded, the

computation is spill-free, and the S output are stored, leading

to an asymptotic I/O cost of
n log(n)
S log(S) .

5. Automated Bounds for Arbitrary CDAGs

All approaches for I/O lower bounds reported in the literature

so far have relied on specific properties about the structure

of the analyzed computation. In this section, we develop an

automated approach to deriving I/O lower bounds for any ar-

bitrary CDAG, regular or irregular, without any restrictions

on the structure or reliance on any properties of the CDAG. It

uses a combination of two techniques: convex graph min-cut,

as introduced in Section 4 for which a graph-based heuristic

is detailed hereafter; and Hong & Kung 2S-Partitioning, re-

capped in Section 2 for which an ILP-based approximation

heuristic is detailed below.

5.1 High-Level Meta-Heuristic

Our heuristic IOhierarchical combines both techniques using a

recursive decomposition of the CDAG. The high-level prin-

ciple is to (1) first run both heuristics on the full CDAG.

The result of the min-cut based heuristic IOmincut is stored

on Qmincut ; the result of the 2S-partitioning based heuristic

IOmax2S is stored on Q2Spart . (2) The CDAG is then bisected

into C1 and C2 and IOhierarchical is run independently on each

of the two sub CDAGs. The results are stored into Q1 and Q2,

then summed up into Qrec = Q1 +Q2. (3) The best of three

max(Qmincut ,Q2Spart ,Qrec) is returned.

The precise pseudo-code for IOhierarchical is given in Fig-

ure 9. The description of IOmincut is given in Section 5.2. The

description of IOmax2S is given in Section 5.3.

Both the min-cut based heuristic and the 2S-Partitioning

heuristics are given a timeout proportional to the size of the

graph (the implementation details for this are not reported

in the pseudo-codes). If no result is found within this time-

out, the corresponding procedure returns −1, and the result

is not used. Note that there are circumstances under which it

is clear that it is not worth bisecting the current CDAG. A

simple example is when IOmincut has not been interrupted

by the timeout (so the returned result is an accurate value of

max
(

0,2(W max
G −S)

)

) and it returns 0. In that case IOmax2S

might be run on sub CDAGs but not IOmincut. This optimiza-

tion that effects only the solving time but not the result is not

detailed here. The goal of the bisection Bisect is to (almost)

equally partition the DAG into two sub DAGs C1 and C2 such

that an (almost) minimum number of edges between C1 and

C2 are cut. Ideally this partitioning should be convex (there

are edges from C1 to C2 but no edges from C2 to C1). But

Theorem 2 allows to compose the results of non-convex par-

IOhierarchical(C,V )
Inputs:

C: CDAG

V: vertex (sub-)set of C

Outputs:

Q: lower bound of IO(C) restricted to V

Q ← 0

Qmincut ← IOmincut (C,V)

Q ← max(Q, Qmincut)
Q2Spart ← IOmax2S (C,V)

Q ← max(Q, Q2Spart)
if |V |> 2S then

(V1, V2) ← Bisect (C,V)

Q1 ← IOhierarchical (C, V1)

Q2 ← IOhierarchical (C, V2)

Q ← max(Q, Q1 +Q2)
end if

return Q

Figure 9: Recursive decomposition algorithm for computing

I/O bound on an arbitrary CDAG C

titioning and we thus can use standard graph bisection library

that does not impose any convexity constraint.

5.2 Heuristic for Min-Cut Approximation

The min-cut based heuristic is a direct implementation of

Lemma 2. As the requirement for this lemma is for the CDAG

to have no input vertices, the first operation of IOmincut is to

delete input vertices from V (the application of Corollary 1). It

also removes output vertices. The number of such deleted ver-

tices is then added to the final I/O bound result. For this modi-

fied graph, say G′ = (V ′,E ′) with no input/output vertices, the

variable W that represents W max
G′ is computed as the maximum

value of ConvexMinVertexCut(G′,x) over all x ∈ V ′. Vertices

of V ′ are actually enumerated in random order so that in the

presence of a time-out any intermediate maximum value gives

a correct lower-bound of W max
G′ . The corresponding algorithm

is shown in Fig. 10.

As explained in Section 4, the computation of W min
G′ (x)

(computed through the call to ConvexMinVertexCut(x)) cor-

responds to: (1) a partitioning of V ′ into two sub-DAGs Sx, Tx

such that; (2) there is no edge from Tx to Sx; (3) Sx contains x

plus all the ancestors Anc(x) of x; (4) Tx contains all the de-

scendants Desc(x) of x; (5) The out set of Sx (Out(Sx): set of

vertices of Sx that have a successor in T ) is of minimum size.

This ConvexMinVertexCut, detailed in Fig. 11, is formu-

lated as a Linear Programming (LP) problem that minimizes

the number of cut vertices. Each vertex, v ∈ V ′ is associated

with two non-negative variables, cv and tv. Variable cv cap-

tures the cut vertex count, and the variable tv determines if

vertex v belongs to Sx or Tx, depending on whether tv = 0

or 1, respectively. The convexity is enforced by the first con-



IOmincut(C,V )
Input:

C = (I, V ,E,O): CDAG

V: a (sub)-set of V

Outputs:

Q: lower bound of IO(C) restricted to V

dI ← V ∩ I

dO ← V ∩ O

V ′ ← V −dI−dO
E ′ ← E ∩ V ′× V ′

W ← 0

forall x ∈ V ′ do

Wx ← ConvexMinVertexCut ((V ′,E ′), x)
W ← max(W , Wx)

end do

Q′ ← max(0, 2× (W −S))
Q ← Q′+ |dI|+ |dO|
return Q

Figure 10: Compute Minimum I/O cost for a CDAG using

Min-Cut

straint that given an edge (v,w) ∈ E ′, if v is in Tx, then w also

belongs to Tx. The constraint, cv ≥ tw− tv, accounts for the cut

vertex count whenever a vertex v ∈ Sx has its successor in Tx.

Finally, vertices v = x∪ v′ ∈ Anc(x) (resp. v ∈ Desc(x)) are

restricted to the set Sx (resp. Tx) by setting tv = 0 (resp. 1).
Since the constraint matrix of this LP formulation is totally-

unimodular, this linear optimization problem always has an

integral optimum. The minimization objective (min∑v∈V ′ cv)
implicitly ensures that cv ≤ 1 and tv ≤ 1.

ConvexMinVertexCut(G′, x)
Input:

G′ = (V ′, E ′): DAG

x: vertex about which min-cut is computed

Output:

Wx: W min
G′ (x)

Wx ← Optimal solution to the following LP:
∀ v ∈V ′, tv ≥ 0, cv ≥ 0

minimize ∑v∈V ′ cv

s.t. ∀ (v,w) ∈ E ′, tw ≥ tv
∀ (v,w) ∈ E ′, cv ≥ tw− tv
tx = 0

∀ v ∈ Anc(x), tv = 0

∀ v ∈ Desc(x), tv = 1
return Wx

Figure 11: Compute Convex vertex-min-cut

5.3 Heuristic for 2S-Partitioning Approximation

We complement our min-cut based heuristic with another

method to automatically derive I/O lower bound approxima-

tions. This second heuristic is based on an Integer Linear Pro-

gram that operates on the CDAG, attempting to find an under-

approximation of the minimal number of components in the

optimal 2S-partition that can be built for the CDAG. The mo-

tivation for this second approach comes from the inherent lim-

itation of the min-cut based approach for some CDAG shapes.

The min-cut method offers tight estimation of the minimal

I/O requirement for graphs where the amount of intermedi-

ate values required to complete the computation significantly

exceeds the size of the input set (such as for the extreme

of diamond-like CDAGs). However, this approach mostly ig-

nores the input set fan-out, a critical factor for some other

forms of CDAGs with high data reuse (i.e., matrix-multiply).

We develop another heuristic aimed at effectively supporting

that kind of (sub-)CDAG, which can be combined with the

min-cut approach for more accurate I/O lower bound estima-

tion of arbitrary (sub-)CDAGs.

Approximating the 2S-partitioning problem Optimal 2S-

partitioning is in essence the building of a partition of the

CDAG into convex sets (circuit-free), such that h, the total

number of such sets is minimized. From this optimal partition,

one can then derive I/O lower bound given the value of h [16].

A 2S-partition is built by enforcing properties on the set of

vertices that are connecting a component Vi in the partition

with the rest of the graph: |In(Vi)| ≤ 2S and |Out(Vi)| ≤ 2S.

There is no further constraint on Vi itself, that is, there is

no constraint on how many memory operations are needed

to actually execute Vi. This is in striking contrast with the

min-cut approach which is geared towards estimating the I/O

requirement to execute a sub-CDAG such as Vi, assuming all

input data is already in fast memory. Nevertheless for high

fan-out CDAGs where a single value is reused for multiple

operations, it is also critical to carefully consider how many

data movements may be needed based on how many data

elements are input to sub-CDAGs. This is achieved using 2S-

partitioning of the CDAG, where the focus is to capture input

(and output) data movement requirements to execute a sub-

CDAG.

To solve this problem, we compute an over-approximation

of the size of the largest component in the optimal 2S-partition

of the CDAG. Once this component is computed, its size (in

terms of number of vertices) can be retrieved, and used to

under-approximate the I/O requirement. By Lemma 1, Q ≥
S× (h−1). So, taking the optimal 2S-partition of the CDAG,

i such that ∀ j 6= i, |Vi| ≥ |Vj|, and |U| an over-approximation

of |Vi| we have:
⌈ |V |
|U|

⌉

≤
⌈ |V |
|Vi|

⌉

≤ h ⇒
⌈ |V |
|U|

⌉

≤ h (5)

⇒ Q≥ S×
(⌈ |V |
|U|

⌉

−1

)

(6)

In otherwords a valid under-approximation of h is found by

computing an over-approximation of |Vi|. This is achieved by

searching for a single set of vertices U ⊆ V whose size is



maximized, under constraints on the input set size |In(U)| ≤
2S.

Integer Linear Programming formulation To model the

problem, we resort to formulating an ILP that maximizes

the size of U, using two Boolean variables per vertex in V .

One variable pv captures if the vertex v belongs to U or

not, and the other iv captures if the vertex belongs to In(U)
or not. This maximization (max∑v∈V pv) is performed under

the constraints given by the existence of an edge (i, j) in the

CDAG, where if j is in U then i is either in U or in In(U).
The last constraint, In(U) ≤ 2S, limits the size of the set of

immediate predecessors to U. The ILP is expressed in the

pseudo-code of IOmax2S given in Figure 12.

IOmax2S(C,V )
Inputs:

C: CDAG

V: vertex (sub-)set of C

Outputs:

Q: lower bound of IO(C) restricted to V

dI ← {v ∈V | 6 ∃ (u,v) ∈ E} − I

U ← Optimal solution to the following ILP:
∀ v ∈V , pv ∈ {0,1}, iv ∈ {0,1}
maximize ∑v∈V pv

s.t. ∀ (v,w) ∈ E, pv + iv ≥ pw

∀ v ∈ I∪dI, pv = 0

∑v∈V iv ≤ 2S

Q ←
(⌈

|V |
|U|

⌉

−1
)

−dI
return Q

Figure 12: Compute Minimum I/O cost of a CDAG using 2S-

Partitioning

Solving this ILP maximizes the number of vertices in U.

As we ignore the constraints on the size of Out(U) (which can

be added easily in a similar way than for In(U)) and on the

schedulability of the partition (therefore allowing for U to be a

non-convex set), this may lead to over-approximating the size

of U with respect to Vi, the largest component in the optimal

2S-partition. One may note that necessarily |U| ≥ |Vi|, as |U|
is maximized under looser constraints than the ones imposed

on Vi.

One can remark in IOmax2S the tagging of the dI set as

input vertices. This is done because, even if Lemma 1 holds

for the Flexible IO vertex model given by Definition 6, a 2S-

Partitioning on a CDAG with few or even no input/output

vertices would lead to a very weak lower bound. For this

reason, prior to computing the largest 2S-partition of C, we

tag predecessor-free vertices as inputs. Note that in the case

we would express the constraint on the size of Out(U), we

would tag successor-free vertices as outputs as well. We can

then apply Theorem 5, which leads to substracting |dI| to the

IO cost found on this modified CDAG.

5.4 Discussion

The scalability of the automated tool is an important issue and

being able to address large problems is currently a challenge.

The ConvexMinVertexCut pseudo-code, as reported here, has

an average-case complexity of O(|V |3), leading to an overall

complexity for IOmincut of O(|V |4). The IOmax2S shows an

even larger complexity. In other words, the largest sub CDAG

that can be treated within time credit of T will have at most

Θ
(

4
√

T
)

vertices. In other words, given a CDAG of size |V |=
n, a time credit of T (assuming a scalable heuristic is used

to perform bisection), the CDAG will have to be decomposed

in at least 3

√

T
n4 equal size parts. Further bisections, that may

improve the quality of the bound, will not impact the overall

complexity.

Several techniques could be used to lower the overall com-

plexity. First, as W max
G computed by IOmincut is independent

of the pebble count, S, the IOmincut heuristic can be run just

once for a given problem size, collecting the W max
G of each

(sub-)CDAG in a file and finally post-processing the output

at a cheaper computational cost to obtain the lower bounds

corresponding to any value of S. Also, the computation of

W max
G could be lowered to O(n3) by taking advantage of an

incremental update of W min
G (x) (using a direct graph based

implementation). It can also be lowered by taking the max-

imum value of W min
G (x) on a randomly generated set of ver-

tices x. Further, IOmincut can be parallelized by executing

ConvexMinVertexCut for different vertices in parallel.

The solution of the ILP can also be tuned to address its

inherent prohibitive complexity. For instance, we can guide

the ILP by adding extra constraints on the minimal and max-

imal value of |U|, which can be computed by relaxing the

ILP to a Quadratic Program. While running IOmax2S with

a timeout factor T , after a solver timeout, we can rerun the

problem by setting the lower cutoff tolerance to be the inte-

ger solution, say |P|, found during the previous run. This al-

lows the solver to discard some of the sub-optimal solution

branches, making it run faster during the rerun. In our ex-

perience, P found after the first timeout often turned out to

be the optimal one. Hence, by constraining the solution to be

in ⌊1.1×|P|⌋ ≤ ∑ pv ≤ ⌈(1.1+ ε)|P|⌉ during the rerun, if the

solver finds that the search space is empty, we can safely con-

clude that the optimal |U| can be bounded by 1.1×|P|.
The last technique, perhaps the most challenging and

promising one, is to take advantage of regularities that could

be detected [19] on the graph and reason on an abstract repre-

sentation of it. For example, we could adapt and incorporate

the recent automatic approach developed by Christ et al. [11]

for characterizing lower bounds for a subclass of affine loop

programs. As most regular CDAGs can be decomposed into

isomorphic sub-CDAGs, the tool can be run on a single sub-

CDAG or on the problem with smaller input size (which corre-

sponds to a sub-CDAG of the same problem of larger size) to

compute the lower bounds for the larger problem size by ap-

plication of the decomposition theorem (detailed in Sec. 3.3).



6. Experimental Results

In this section, we present experimental results using the au-

tomated approach described in the previous section.

6.1 Diamond DAG

As shown in Theorem 8, the Minimum I/O cost, Q, for an

n×n Diamond DAG satisfies Q≥ (n−2S)2

S
≈ n2

S
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Figure 13: I/O lower bound for Diamond DAG: Analytical

versus automated CDAG analysis

Fig. 13 shows the lower bound generated by our automated

CDAG analysis for different values of S, for a Diamond DAG

of size 200× 200. The I/O lower bound from the above ana-

lytical expression is also plotted. The bound generated by the

automated CDAG analysis is less tight than the lower bound

obtained using the analytical reasoning developed in this pa-

per, but shows the same trend as a function of S. The reason

why the automated solution does not meet the optimal analyt-

ical one comes from the recursive decomposition of the full

CDAG that tends to create square shaped sub DAGs instead

of the optimal bow-ties used in the proof of Theorem 8.

6.2 Diamond-Chain

Fig. 14 shows a CDAG analyzed by Bilardi et al. [7]. It

is a diamond DAG with m2 nodes composed with a linear

chain graph of m2 nodes, with a dependence edge from each

diamond node to a distinct chain node. The dependence edges

are in reverse order – the last diamond vertex connects to the

first chain vertex, the first diamond vertex connects to the last

chain vertex, etc.

Fig. 15 shows the lower bound generated by automated

CDAG analysis for different values of S for a diamond-chain

of side 200.

It may be seen that the generated lower bound is much

higher than that of a diamond DAG of the same size, shown in

Fig. 13. This is because the values generated early in the Dia-

mond DAG are live till late in the execution of the chain por-

tion of the CDAG. By analyzing the structure of this CDAG, it

can be reasoned that the convex graph min-cut corresponding

to the terminal vertex of the diamond in the diamond-chain

Figure 14: Diamond-Chain CDAG [7]
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Figure 15: I/O lower bound for Diamond-Chain from auto-

mated CDAG analysis

will have a cut size of m2−S vertices. It can be seen from the

automated analysis as a function of S that the complexity is

indeed independent on the value of S and that the complexity

of the composed CDAG is evaluated accurately.

6.3 Matrix Multiplication

Fig. 16 shows the lower bounds generated by automated

CDAG analysis for a 30×30 Matrix multiplication.

The analytical results are from the work of Irony et al. [18].

In this case, we see that the bounds from CDAG analysis,

in this case from the ILP based 2S-partitioning bounds, are

actually higher than the analytical bounds. This is because the

analytical bounds are asymptotic parametric expressions that

do not include lower order terms that can be significant for

small values of N and S.

6.4 Case Study: Sorting

Since the automated CDAG analysis can be applied to ar-

bitrary CDAGs, we applied it to CDAGs from different

comparison-based sorting algorithms. In this section we present

results for two sorting algorithms: quicksort and odd-even
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Figure 16: I/O lower bound for Matrix Multiplication: Ana-

lytical versus generated by automated CDAG analysis

sort. Quicksort has an average computational complexity of

O(n log2 n) to sort n elements, while odd-even sort is has a

an asymptotically higher complexity of O(n2), but a lower

coefficient for quadratic complexity term. So efficient sorting

routines often use a combination of an O(n log2 n) algorithm

like quicksort along with a routine like odd-even sort, and a

threshold value of n (usually set to a value between 16 and

20) for switching between the two algorithms. We were in-

terested in comparing the I/O complexities of the two sorting

algorithms. Fig. 17 compares the I/O complexity of quicksort

an odd-even sort as a function of S, normalized to the number

of comparisons performed. On the same graph, we also see

the normalized number of data movements required in exe-

cuting the sorting algorithms – by playing the red-blue-white

pebble game using the code’s sequential execution order for

firing of CDAG vertices (therefore providing an upper bound

on the I/O complexity). It may be seen that while odd-even

sort has a higher normalized data access cost than quicksort

for the code’s sequential execution order, the lower bounds

from automated CDAG analysis reveal a significantly lower

bound for odd-even sort than quicksort.
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Figure 17: Quick sort versus odd-even sort: Normalized I/O

lower bound and cost for sequential execution order

Upon examining the CDAG for odd-even sort more care-

fully, it became apparent that it was amenable to skewing fol-

lowed by loop tiling to significantly enhance data locality. In

contrast, for the recursive quicksort algorithm, we could not

identify any opportunity for loop transformations that would

improve data locality. We implemented a register-tiled ver-

sion of odd-even sort and evaluated performance for differ-

ent register-tile sizes. Fig. 18 displays relative time for odd-

even sort over quicksort as a function of array size (using Intel

ICC, for int data type), for the standard version as well as the

modified register-tiled version. For the original version, the

cross-over was around 16, i.e., odd-even sort was more effi-

cient for sorting fewer than 16 elements, while quick sort was

more efficient for sorting more than 16 elements. But with the

tiled version of odd-even sort, the cross-over point was much

higher - around 110 elements. The experiment was run multi-

ple times with different random inputs and average time was

taken. Boundary cases like fully sorted and reverse sorted in-

puts were also tested and we found similar trends.
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Figure 18: Execution time for original and tiled odd-even sort

relative to quick sort

7. Related Work

Hong & Kung provided the first characterization of the I/O

complexity problem using the red/blue pebble game and the

equivalence to 2S-partitioning of CDAGs [16]. Their 2S-

partitioning approach uses dominators of incoming edges to

partitions but does not account for the internal structure of

partitions. In this paper, we develop an alternate lower bound

approach that models the internal structure of CDAGs, and

use convex mincut-based partitions enabling tighter analyti-

cal bounds for some algorithms. In addition, Hong & Kung’s

original model does not lend itself easily to development of

lower bounds for a CDAG from bounds for component sub-

graphs.

Several works followed Hong & Kung’s work on I/O com-

plexity in deriving lower bounds on data accesses [1–5, 7, 11,

13, 18, 22–26, 28, 29]. Aggarwal et al. provided several lower

bounds for sorting algorithms [1]. Savage [24, 25] developed



the notion of S-span to derive Hong-Kung style lower bounds

and that model has been used in several works [22, 23, 26].

Irony et al. [18] provided a new proof of the Hong-Kung re-

sult on I/O complexity of matrix multiplication and developed

lower bounds on communication for sequential and parallel

matrix multiplication. More recently, Demmel et al. have de-

veloped lower bounds as well as optimal algorithms for sev-

eral linear algebra computations including QR and LU decom-

position and all-pairs shortest paths problem [3, 4, 13, 28]. Bi-

lardi et al. [5, 7] develop the notion of access complexity and

relate it to space complexity. Bilardi and Preparata [6] devel-

oped the notion of the closed-dichotomy size of a DAG G that

is used to provide a lower bound on the data access complexity

in those cases where recomputation is not allowed. Our notion

of schedule wavefronts is similar to the closed-dichotomy size

in their work; but, unlike the work of [6], we use it do develop

an effective automated heuristic to compute lower bounds for

CDAGs. Extending the scope of the Hong & Kung model to

more complex memory hierarchies has also been the subject

of research. Savage provided an extension together with re-

sults for some classes of computations that were considered

by Hong & Kung, providing optimal lower bounds for I/O

with memory hierarchies [24]. Valiant proposed a hierarchi-

cal computational model [29] that offers the possibility to rea-

son in an arbitrarily complex parameterized memory hierar-

chy model. While we use a single-level memory model in this

paper, the work can be extended in a straight forward manner

to model multi-level memory hierarchies.

Unlike Hong & Kung’s original model, several models

have been proposed that do not allow recomputation of values

(also referred to as “no repebbling”) [3–5, 9, 12, 18, 21–27].

Savage [24] develops results for FFT using no repebbling. Bi-

lardi and Peserico [5] explore the possibility of coding a given

algorithm so that it is efficiently portable across machines with

different hierarchical memory systems. without the use of re-

computation. Ballard et al. [3, 4] assume no recomputation in

deriving lower bounds for linear algebra computations. Ran-

jan et al. [22] develop better bounds than Hong & Kung for

FFT using a specialized technique adapted for FFT-style com-

putations on memory hierarchies. Ranjan et al. [23] derive

lower bounds for pebbling r-pyramids under the assumption

that there is no recomputation.

The use of Hong & Kung’s model has required algorithm-

specific reasoning to find S-partitions, even for regular graphs.

Savage’s [24] S-span model also requires problem-specific

insights. We note that Hong & Kung’s model and Savage’s

model are not strictly comparable, as noted by Bilardi et

al. [7]. The recent works of Ranjan et al. [21–23] develop

a technique inspired by FFT-style computations, r-pyramids

and binomial graphs. In addition to these works, other ap-

proaches [1, 4, 5, 13, 29] also require problem-specific in-

sights to develop bounds. In contrast, we have developed an

approach that can be used to develop I/O lower bounds for

an arbitrary CDAG without any problem-specific insights.

We note here that very recent work from U.C. Berkeley [11]

has developed a very novel approach to developing paramet-

ric I/O lower bounds that does not require problem-specific

insights. The approach is applicable/effective for a class of

nested loop computations but is either inapplicable or pro-

duces weak lower bounds for other computations (e.g., stencil

computations, FFT, etc.).

8. Open Questions

There are a number of open questions raised by the develop-

ments in this paper, that we hope may be addressed in follow-

up work.

Allowing vs. prohibiting recomputation The majority of re-

sults in this paper (with the exception of Theorem 2) only ap-

ply under the RBW pebble game model that prohibits recom-

putation of vertices in a CDAG. In contrast, Hong & Kung’s

original RB pebble game model permits recomputation of ver-

tices multiple times and thereby possibly avoid red-to-blue

and blue-to-red pebble moves. Since any valid RBW game

can be directly translated to a valid RB game, the inherent

I/O complexity of any CDAG under the RB model is lower

than or equal to that under the RBW model. Therefore any

I/O lower bound under the RB model is a valid lower bound

under the RBW model (albeit possibly a weak bound) but not

vice-versa. In some specific cases, such as the Diamond DAG,

it is possible to prove that an I/O lower bound derived under

the RBW model is also a valid lower bound under the RB

model. As is clear from the developments in Sec.3, more pow-

erful analysis techniques are feasible under the stricter RBW

model than under the less restrictive RBW model. Further, for

specific CDAGs, the bounds under the RBW model are also

valid under the RB model.

This raises a very interesting question: Are there a class of

algorithms for which the inherent I/O complexity under both

the RB and RBW models is the same, i.e., are there some al-

gorithms where allowing recomputation cannot possibly help

reduce data access costs? Is it possible to develop sufficient

conditions on the structure of a CDAG that guarantee equiva-

lence of I/O complexity under both models?

Parametric Function Fitting An interesting possibility is to

seek parametric functions within a class that effectively model

the I/O complexity of an algorithm, by performing regression

based fit from a number of concrete values generated by run-

ning the automated CDAG analysis for different problem sizes

and different values of S. We did carry out such an exercise for

the diamond DAG, attempting to perform linear regression on

log-log plots of the number of pebble moves as a function of

S, with N fixed, and vice versa. For a set of experiments vary-

ing S ranging from 4 to 256 and N ranging from 50 to 800.

The regression fit yielded slopes of -0.9, -1, -0.9, -1, -0.9, -

1.1, -1.1, for log(Q) as a function of log(S) for various fixed

values of N, and slopes of 2, 2, 1.7, 1.6, 1.7, 1.7, 1.9, respec-

tively for log(Q) as a function of log(N), for the seven differ-

ent values of S. The manually derived lower bound expression



for the Diamond DAG (Sec. 4.2) had exponents of -1, and 2,

respectively, for S, and N. Thus the experiment is suggestive

that use of linear regression on log-log plots may be useful

in characterizing parametric trends of the I/O lower-bound of

an algorithm as a function of problem size and number of red

pebbles.

Tightness of Lower Bounds An important question is whether

a generated lower bound is tight. The primary means of as-

sessing tightness of lower bounds is by forming upper bounds

using concrete algorithm implementations. But is any auto-

mated estimation feasible? In complementary work [15], we

have developed an automated CDAG analysis approach that

generates I/O upper bounds for the RBW pebble game model.

By generating both I/O upper bounds and lower bounds, the

tightness of the bounds can be gauged from the separation

between them.

9. Conclusion

Characterizing the I/O complexity of a program is a cor-

nerstone problem, that is particularly important with current

and emerging power-constrained architectures where the data

transfer cost will be the dominant energy bottleneck. Previous

approaches to modeling the I/O complexity of computations

have several limitations that we address through the devel-

opments in this paper. First, by suitably modifying the peb-

ble game model used for characterizing IO complexity, we

enable analysis of large composite computational DAGs by

decomposition into smaller sub-DAGs. Second, by develop-

ing an alternate lower bounding technique to Hong & Kung

2S-partitioning, using convex min-cut graph partitioning, we

enable tighter parametric lower bounds for some algorithms.

Finally, by developing an automated lower bound analysis ap-

proach, we enable the characterization of IO complexity of

arbitrary, irregular CDAGs.
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