
Adaptive Tracking of Cross-Thread Dependences

Ohio State CSE technical report #OSU-CISRC-7/13-TR15, July 2013

Man Cao
Ohio State University

caoma@cse.ohio-state.edu

Minjia Zhang
Ohio State University

zhanminj@cse.ohio-state.edu

Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

Abstract
OCTET is a framework for dynamic analysis that soundly
captures cross-thread dependences in parallel programs. It
optimistically assumes that most accesses do not conflict,
enabling the instrumentation to not perform synchronization
at non-conflicting accesses. However, OCTET’s performance
can suffer substantially if an application triggers more than
a small fraction of conflicting accesses: on the order of 0.1%
or more of all accesses, according to our investigations.

This paper introduces an adaptive approach to replace as
many heavyweight conflicting transitions as possible with
so-called “pessimistic” transitions. An adaptive policy deter-
mines if an object should switch from an optimistic to a pes-
simistic state, or from pessimistic to optimistic state, based
on online profiling. Experimental results show that this ap-
proach can reduce the overhead of OCTET by 30–40% for
one program, while adding low overhead for applications
that do not have many conflicting accesses.

Note to the reader. This technical report (TR) describes
recent preliminary innovations and results. In its current
form, this TR may not stand on its own, and readers may
need to read our prior work on OCTET for background [3].
Questions, suggestions, and feedback are welcome.

1. Background and Motivation
Writing and debugging parallel programs has been a long-
standing challenge. Researchers have proposed various so-
lutions for guaranteeing reliable concurrency, among which
dynamic, software-only analyses have perhaps the most po-
tential to be practical. To check and enforce concurrency cor-
rectness, these analyses rely on tracking cross-thread depen-
dences (i.e., conflicting accesses to shared memory). A fun-
damental problem is how to track cross-thread dependences
soundly and efficiently.

OCTET soundly captures cross-thread dependences in
an optimistic way: its analysis adds low overhead at non-
conflicting accesses, but conflicting accesses require expen-
sive communication between threads [3]. The analysis tracks
the “locality state” of each object; instrumentation at loads
and stores uses the state to identify conflicting accesses and
updates the state if needed. OCTET’s optimistic design opti-

Same state Conflicting Upgrading or fence
eclipse6 99.9984% 0.0011% 0.00050%
hsqldb6 99.73% 0.16% 0.11%
lusearch6 99.99971% 0.00018% 0.00011%
xalan6 99.80% 0.12% 0.080%
avrora9 99.81% 0.095% 0.098%
jython9 99.9999985% 0.0000012% 0.00000030%
luindex9 99.99982% 0.00011% 0.000065%
lusearch9 99.99985% 0.00011% 0.000040%
pmd9 99.988% 0.0068% 0.0047%
sunflow9 99.999920% 0.000036% 0.000045%
xalan9 99.84% 0.094% 0.063%
pjbb2000 99.89% 0.055% 0.052%
pjbb2005 99.16% 0.51% 0.33%

Table 1. The fraction of all accesses that trigger each kind of
OCTET state transition (including “same state” transitions).
We round each percentage x as much as possible such that x
and 100%− x each have two significant digits.

mizes the common case, based on the observation that most
accesses are compatible with the state. It slows programs
by 26% on average [3], which is significantly faster than
comparable prior work targeting commodity systems.

However, for an application that performs many conflict-
ing accesses, although these accesses are still not the major-
ity of all accesses, OCTET’s overhead increases drastically
and is much slower than the naïve pessimistic model [3] or
von Praun and Gross’s state model [8]. We find empirically
that if the ratio of conflicting transitions to all accesses is ap-
proximately at least 0.1%, the roundtrip coordinations could
incur significant overhead. Another important factor (that we
have not yet included in our model) is that some invocations
of the coordination protocol are more expensive than others,
e.g., the explicit protocol is more expensive than the implicit
protocol, and RdSh →WrEx are more expensive than other
conflicting transitions.

Table 1 shows the ratio of state transitions for each cat-
egory. We have collected these results on a 4-core system
using the same methodology as in Section 4. For the 13
applications we have tested, 12 have less than 0.2% of all
state transitions conflicting. pjbb2005 has 0.51% conflicting
transitions and OCTET experiences a 1.8X slowdown (Sec-
tion 4). Executing on another platform using 32 cores, this

1

Fast Conflicting Pessimistic
path *Ex→*Ex RdSh→

Explicit Implicit WrEx
eclipse6 2.9×101 2.8×103 1.2×102 1.5×103 1.2×102

hsqldb6 2.9×101 1.4×104 1.3×102 4.7×103 1.0×102

lusearch6 7.9×101 1.5×105 1.9×102 8.4×106 1.4×102

xalan6 3.2×101 3.5×104 2.8×102 3.6×105 9.2×101

avrora9 3.0×101 1.8×104 2.4×102 2.6×105 4.6×103

jython9 2.9×101 3.2×103 2.4×102 N/A N/A
luindex9 3.0×101 1.8×103 1.3×102 1.4×103 N/A
lusearch9 3.0×101 3.6×104 1.8×102 1.1×103 2.3×102

pmd9 3.1×101 3.9×104 1.7×102 1.4×104 1.1×102

sunflow9 3.0×101 1.5×104 1.3×102 1.6×105 4.0×102

xalan9 3.0×101 1.0×104 2.8×102 1.3×104 9.2×101

pjbb2000 3.5×101 8.9×104 1.0×102 2.4×105 1.0×102

pjbb2005 3.5×101 1.2×104 1.9×102 1.5×105 1.2×102

Table 2. Average CPU cycles for each type of state transi-
tion. Conflicting transitions are divided into transitions in-
volving just two threads (both implicit and explicit coordi-
nation protocols) and transitions involving all threads. N/A
means the program executes no transitions of that type.

slowdown is as high as 2.1X—much larger than the 1.3X for
the naïve pessimistic model [3].

We have reason to believe that applications with a high
ratio of conflicting transitions are not rare. For example, the
STAMP benchmarks [4] have a conflicting transition rate as
high as 1–4% [9].

To confirm our intuition about the relative costs of dif-
ferent state transitions, we have quantitatively measured the
time (in CPU cycles) required to perform a fast-path state
check, a conflicting transition, and a naïve pessimistic state
transition. As Table 2 shows, a conflicting transition can be
hundreds of times slower than a fast path. We have measured
these times using the hybrid model and adaptive policy in-
troduced in this paper; using a different model and policy
would lead to different state transitions and different results.

With the above observations, one can naturally ask if we
can combine the benefits of OCTET and the pessimistic state
model (or von Praun and Gross’s model [8], which turns
out to benefit from the very same pessimistic state transition
for highly conflicted applications). Certainly the happens-
before relationship [5] established by a conflicting transition
could also be established by a pessimistic transition. The key
challenge is when and how to change a conflicting transition
into an equivalent pessimistic transition, without breaking
the correctness of OCTET.

2. Adaptive State Transition Model
This section introduces a new state model that we call the
hybrid model. At a high level, we add three new states
to the OCTET state model: PessiWrExT, PessiRdExT, and
PessiRdShc. These new states are essentially the pessimistic
version of the original three optimistic states, and they carry
similar meaning. In addition, we introduce a special pes-
simistic state LOCKED, analogous to the existing interme-

diate states (WrExInt and RdExInt), which is required for the
correctness of pessimistic state transitions. The LOCKED
state indicates a thread is already executing a pessimistic
state transition on the object. We call an object in a pes-
simistic state a pessimistic object, and an object in an op-
timistic state an optimistic object. At run time, the applica-
tion’s heap contains a mix of optimistic and pessimistic ob-
jects.

The adaptive policy dynamically decides whether an ob-
ject should become pessimistic or optimistic. The policy can
choose to put an optimistic object into pessimistic state, in
order to reduce conflicting transitions. It can also convert a
pessimistic object back into optimistic state, if it decides the
pessimistic state is not beneficial for the object.

2.1 State Transitions
Table 3 shows the complete set of state transitions when
a thread attempts to perform an access. The first 10 rows
are the same as in OCTET, covering all possible transi-
tions between two optimistic states. The remaining 18 rows
are transitions that involve pessimistic states. toPessi() and
toOpti() are two decision-making functions of the adaptive
policy, which Section 2.3 describes in detail. The model sup-
ports transitions between optimistic and pessimistic state in-
dependently from the adaptive policy’s decisions.

In order to easily cooperate with the optimistic state
model, the transition between two pessimistic states has ex-
actly the same condition as the corresponding optimistic
states. For example, PessiWrExT will stay in PessiWrExT
if the access is a read or write by T; PessiRdExT1 will
change to PessiRdShgRdShCount if the access is a read by
T2. Even though dedicated pessimistic states exist for reads
(PessiRdExT and PessiRdShc), pessimistic read accesses
still synchronize with the LOCKED state. This requirement
is due to the fact that another thread could try to perform a
write access to a PessiRdShc object at any point, so a read
access must hold the lock until it finishes reading.

For transitions from a pessimistic state to an optimistic
state, our model only supports transitioning to optimistic
WrExT or RdExT, but not RdShc. The sole purpose for this
design is to simplify the model. Allowing transition from
PessiRdShc directly to RdShc is a correct alternative. The
difference between these two designs is negligible, due to
the infrequency of pessimistic-to-optimistic transitions and
the low cost of upgrading and fence transitions (compared
to conflicting transitions).

2.2 Instrumentation
Figure 1 shows the barrier for adaptive state transitions. For
simplicity, we only show the barrier for a write access. A
read barrier is more complicated because it involves han-
dling RdShc and PessiRdShc states.

The fast path (line 1) remains the same as purely opti-
mistic OCTET. The instrumentation only extends the slow
path. The method slowPath() (lines 2 and 12) returns a

2

Code Trans. Old New Sync. Cross-thread
path type state Access state needed dependence?

Fast Same state
WrExT R or W by T Same

None NoRdExT R by T Same
RdShc R by T if T.rdShCount ≥ c Same

Slow

Upgrading
RdExT W by T WrExT CAS

No
RdExT1 R by T2 RdShgRdShCount Maybe

Fence RdShc R by T if T.rdShCount < c (T.rdShCount = c) Memory fence Maybe

Conflicting

WrExT1 W by T2 WrExIntT2→WrExT2

Maybe

WrExT1 R by T2 RdExIntT2→ RdExT2
RdExT1 W by T2 WrExIntT2→WrExT2
RdShc W by T WrExIntT →WrExT Roundtrip
WrExT1 W by T2 if toPessi(o) WrExIntT2→ PessiWrExT2 coordination
WrExT1 R by T2 if toPessi(o) RdExIntT2→ PessiRdExT2
RdExT1 W by T2 if toPessi(o) WrExIntT2→ PessiWrExT2
RdShc W by T if toPessi(o) WrExIntT → PessiWrExT

Pess.

PessiWrExT R or W by T LOCKED→ PessiWrExT
CAS NoPessiRdExT R by T LOCKED→ PessiRdExT

PessiRdShc R by T if T.rdShCount ≥ c LOCKED→ PessiRdShc
PessiRdExT W by T LOCKED→ PessiWrExT CAS

No
PessiRdExT1 R by T2 LOCKED→ RdShgRdShCount Maybe

PessiRdShc R by T if T.rdShCount < c
LOCKED→ PessiRdShc CAS Maybe
(T.rdShCount = c)

PessiWrExT1 W by T2 LOCKED→ PessiWrExT2

CAS Maybe
PessiWrExT1 R by T2 LOCKED→ PessiRdExT2
PessiRdExT1 W by T2 LOCKED→ PessiWrExT2
PessiRdShc W by T LOCKED→ PessiWrExT
PessiWrExT R or W by T if toOpti(o) LOCKED→WrExT

CAS No
PessiRdExT R by any thread T′ if toOpti(o) LOCKED→ RdEx

T′

PessiRdExT W by T if toOpti(o) LOCKED→WrExT
PessiRdShc R by T if toOpti(o) LOCKED→ RdExT

Table 3. The hybrid model’s state transitions fall into five categories, including adaptively switching to and from pessimistic
states.

nonzero value if and only if the new state is from a pes-
simistic state transition.

The method slowPath() (line 12) contains two nested
loops. The outer loop (lines 14–17 and lines 34–35) and
the code after it (lines 36–42) are the same as handling
a conflicting transition in purely optimistic OCTET, except
that the toPessi() function determines if it should change
to a pessimistic state (line 42). Inside the outer loop, the
instrumentation checks if the current state is pessimistic
(line 18). If it is, the instrumentation tries to CAS it into
the LOCKED state and uses the decision from toOpti() to
perform a pessimistic state transition (lines 19–31). If the
CAS is successful, slowPath() simply returns the new state
(line 31) to be used by line 6. If the object is changed to
an optimistic state by another thread, the instrumentation
breaks out of the inner loop of the pessimistic transition, and
continues the outer loop for a conflicting transition (line 26).
Two important invariants of slowPath() are: (i) when the
current thread is about to execute line 34, oldState must be
an optimistic state; (ii) when it is about to exectute line 19,
oldState must be a pessimistic state.

2.3 Adaptive Policy
The ultimate goals for the adaptive policy are (i) to eliminate
as many conflicting transitions as possible, while (ii) contin-
uing to use optimistic states for most accesses that cannot
create a cross-thread dependence. To achieve the first goal,
the policy puts an object into a pessimistic state if it specu-
lates that there will soon be some conflicting transitions on
this object. For the second part of the goal, we apply our
cost–benefit model to approximate if a pessimistic state for a
particular object is expected to improve performance; if not,
that object is converted back into optimistic. We add extra
per-object metadata (o.adpinfo) that maintains information
needed for the adaptive policy.

In our current policy, an object can be switched from opti-
mistic to pessimistic at most once for the following reason. If
an object was switched back from pessimistic to optimistic,
then we have reason to believe that it is not worthwhile to
put the object in pessimistic state, so there is no more need
to speculate on future conflicting transitions of this object.

2.3.1 Cost–Benefit Model
We design a cost–benefit model that the adaptive policy uses
to decide if a pessimistic state is beneficial for an object. The

3

Fast path for a write access:

1 if (obj . state != WrExT) {
2 newState = slowPath(obj);
3 if (newState != 0) { // slowpath() returns a valid state
4 obj . f = ... ; // duplicate program write
5 memfence;
6 obj . state = newState; // unlock and update metadata for

pessimistic transition
7 goto L11; // jump after the original write
8 }
9 }

10 obj . f = ...; // program write
11

Slow path for a write access:

12 int slowPath(Object obj) {
13 outer :
14 do {
15 // non−blocking safe point :
16 if (requestsSeen()) { handleRequests(); }
17 oldState = obj. state ;
18 if (isPessimisticState (oldState)) {
19 while (oldState == LOCKED ||
20 !(&obj. state , oldState , LOCKED)) {
21 // non−blocking safe point :
22 if (requestsSeen()) { handleRequests(); }
23 oldState = obj. state ;
24 if (! isPessimisticState (oldState)) {
25 // Another thread has changed the object to an

optimistic state
26 continue outer;
27 }
28 }
29 newState = toOpti(o) ? WrExT : PessiWrExT ;
30 // newState is determined by the adaptive policy
31 return newState;
32 }
33 }
34 while (oldState == any intermediate state ||
35 !CAS(&obj.state, oldState , WrExIntT)) ;
36 handleRequestsAndBlock(); // start blocking safe point
37 response = request(getOwner(oldState));
38 while (! response) {
39 response = status(getOwner(oldState));
40 }
41 resumeRequests(); // end blocking safe point
42 obj . state = toPessi(o) ? PessiWrExT : WrExT ;
43 // newState is determined by the adaptive policy
44 return 0;
45 }

Figure 1. The barrier for adaptive state transitions for a
write access. obj.state is per-object metadata; toOpti() and
toPessi() are the decision-making functions of the adaptive
policy (Sections 2.3).

basic idea is to calculate the total time spent on state transi-
tions if an object becomes pessimistic versus if it stays opti-
mistic, or vice versa. A pessimistic state is beneficial if and
only if the total time spent on pessimistic state transitions is
less than the total time of optimistic state transitions.

The cost–benefit model simply counts upgrading and
fence transitions as fast path, since their quantity is low

compared to fast paths and their cost is low compared to
conflicting transitions.

We now formalize the cost–benefit model as follows:
Let Tfpath , Tconfl , and Tpessi be the average time costs

for a fast path, a conflicting transition, and a pessimistic
transition, respectively.

Let Nfpath and Nconfl be the numbers of fast paths and
conflicting transitions for an object if it is optimistic; and
Npessi be the number of pessimistic transitions if the object
is pessimistic. Clearly:

Npessi = Nfpath + Nconfl (1)

The model considers a pessimistic state to be no longer
beneficial if the following equation is satisified:

Tpessi ×Npessi ≥ Tfpath ×Nfpath + Tconfl ×Nconfl (2)

In (2), the left-hand side is the total time spent on pessimistic
state transitions if the object is pessimistic. The right-hand
side is the total time on state transitions if the object stays
optimistic, including time on fast paths and conflicting tran-
sitions.

Applying (1) into (2) and transforming the formula, we
get:

Nfpath ≥
Tconfl − Tpessi

Tpessi − Tfpath
×Nconfl (3)

We define the coefficient as K:

K =
Tconfl − Tpessi

Tpessi − Tfpath
(4)

and (3) becomes:

Nfpath ≥ K ×Nconfl (5)

For a given application on a specific hardware and OS plat-
form, it is reasonable to consider Tfpath , Tconfl , and Tpessi

as constants, which means K is also an application-and-
platform dependent constant.1 Thus if we know the value
of K, the policy can tell if a pessimistic state would be ben-
eficial by counting the number of fast paths and conflicting
transitions.

Nevertheless, it is challenging to directly apply the cost–
benefit model to decide if an object should become pes-
simistic, without affecting performance significantly. It is
expensive to perform online profiling on an optimistic ob-
ject: counting the fast paths is costly because they occur fre-
quently. Offline profiling is possible but undesirable.

Instead, we use a simple heuristic that only relies on
counting conflicting transitions to decide if an object should
become pessimistic. Then, while the object is in the pes-
simistic state, we apply the cost–benefit model to determine
whether an object should be switched back to an optimistic
state.
1 This assumption ignores the fact that different instances of the same kind
of transition—particularly conflicting transitions—can have significantly
different costs.

4

2.3.2 Transitioning to a Pessimistic State
In order to design a policy that makes predictions about fu-
ture conflicting transitions of an object at run time, we have
studied the patterns of conflicting transitions in several ap-
plications from the DaCapo, SPECjbb2000, SPECjbb2005,
and STAMP benchmarks [2, 4, 6, 7]. We have observed two
main types of locality effects with conflicting transitions:

• Object conflict locality: An object that has a lot of con-
flicting transitions in the past is likely to have conflicting
transitions in the future.

• Program site conflict locality: A site (line of code) in a
program that has caused a lot of conflicting transitions
in the past is likely to have conflicting transitions in
the future. A special case is the allocation site of an
object. Objects allocated at a particular site can have
many more conflicting transitions than objects allocated
at other sites.

Our current policy exploits only object conflict locality. At
run time, it counts the number of conflicting transitions
that ever happened on an optimistic object, and stores the
counter in per-object metadata (o.adpinfo). At every con-
flicting transition, the decision-making function toPessi()
simply checks if the following equation is satisfied:

o.adpinfo ≥ Cutoff confl (6)

Here Cutoff confl is a constant threshold value. If (6) is satis-
fied, the policy switches the object to pessimistic state. Note
that optimistic-to-pessimistic-state transitions are conflicting
transitions themselves.

This heuristic can effectively reduce the number of con-
flicting transitions for some applications, such as pjbb2005.
However, performance can be quite sensitive to Cutoff confl

for some applications because of the tradeoff between re-
ducing conflicting transitions versus sacrificing fast paths.
For example, experiments on 32 cores of a 64-core ma-
chine show that avrora9 has the best performance when
Cutoff confl is 4, while sunflow9 highly favors a Cutoff confl

of 4096. For this reason, the adaptive policy allows an object
to switch back to optimistic (Section 2.3.3).

It is possible to implement program site conflict locality
purely at run time, but it could add considerable overhead
to track conflicting transitions at either all program sites, or
only allocation sites. Furthermore, it could require dynamic
recompilation of sites in order to change their behavior.

2.3.3 Transitioning Back to an Optimistic State
The decision-making function toOpti() utilizes our cost–
benefit model (Section 2.3.1) to determine if it is beneficial
to keep an object in pessimistic state. The per-object meta-
data o.adpinfo stores the benefit value of a pessimistic ob-
ject.

When an object first becomes pessimistic, we assume
there exists sufficient evidence to believe that the pessimistic

state is likely to be beneficial, i.e., that the object will soon
experience conflicting transitions. Our model thus incorpo-
rates an “initial benefit” Inertiao into the toPessi() func-
tion.

Since the optimistic and pessimistic states both include
write-exclusive, read-exclusive, and read-shared states, pro-
filing can easily determine whether the current pessimistic
transition would take a fast path, upgrading/fence, or con-
flicting transition if the object were in an optimistic state.
In this sense, Nfpath , Nconfl are the numbers of would-be
fast paths and would-be conflicting transitions since an ob-
ject became pessimistic. Let Npessi be the actual number of
pessimistic transitions for the object.

At every pessimistic transition that is a would-be fast
path, the function toOpti() computes whether the following
formula, derived from equation (5), is satisfied:

Inertiao +K ×Nconfl −Nfpath ≤ 0 (7)

If the formula is satisfied, the policy transitions from the
pessimistic state to an optimistic state (WrExT or RdExT).

We can implement (7) efficiently using a single value:
after the first optimistic-to-pessimistic transition, assign
Inertiao to o.adpinfo; for every pessimistic transition, if
it is a would-be fast path, decrement o.adpinfo by 1; if it is a
would-be conflicting transition, increment o.adpinfo by K.

Experiments (not shown) show that the results are not
sensitive to the values of K and Inertiao . Most objects can
be distinctly classified as optimistic or pessimistic, so any
“reasonable” K (8–512) and Inertiao (8–1024) effectively
identifies suitable states for objects.

3. Implementation
We have implemented the hybrid state model and adaptive
policy on top of our OCTET prototype [3] inside Jikes RVM
3.1.3 [1].

We modify the representation of OCTET state metadata
so that it uses the lowest three (instead of two) bits to de-
note eight states: three optimistic states and the intermediate
state; and three pessimistic states and the LOCKED state.
PessiRdShc is soundly and efficiently represented using the
unused range [0x00000000, 0x3fffffff).

The implementation adds a metadata word per object and
static field (in addition to the OCTET state word) to maintain
o.adpinfo.

We have not yet implemented the fast path as shown in
Figure 1 so that the barrier unlocks the pessimistic metadata
only after the program access. Instead, the barrier currently
unlocks pessimistic metadata before the program access.

4. Evaluation
This section evaluates the performance and run-time charac-
teristics of our adaptive extensions to OCTET.

Methodology. We evaluate our modified Jikes RVM on
the DaCapo Benchmarks [2] versions 2006-10-MR2 and

5

9.12-bach (2009), and fixed-workload versions of SPECjbb-
2000 and SPECjbb2005 called pjbb2000 and pjbb2005 [2,
6, 7].2 We include only multithreaded benchmarks, and we
exclude a few benchmarks that (unmodified) Jikes RVM can-
not exeute correctly. DaCapo benchmark names from the
2006 and 2009 versions have suffixes of 6 and 9, respec-
tively.

Experiments execute on a machine with an Intel i5-2400
4-core CPU and 4GB memory, running Linux 2.6.32. We
build a high-performance configuration FastAdaptiveGen-
Immix of Jikes RVM. We let the garbage collector adjust the
heap size automatically at run time. The performance result
is the median of 25 trial runs. We also show the mean as the
center of 95% confidence intervals.

We select the following values for the parameters of the
adaptive policy, except when stated otherwise:

• Cutoff confl : 4
• K: 200
• Inertiao : 100

As mentioned previously, performance is not sensitive to
the values of K and Inertiao . We choose a low value
for Cutoff confl , so the policy transitions optimistic ob-
jects to pessimistic states aggressively, since pessimistic-
to-optimistic transitions can remedy pessimistic objects that
should actually have optimistic behavior.

4.1 State Transitions
Table 4 shows the percentage of each type of state transi-
tion in adaptive OCTET. The last two columns show the per-
centages of conflicting and same-state transitions eliminated
by our adaptive policy, compared with original OCTET (Ta-
ble 1). The more conflicting transitions eliminated, the more
performance improves, as Section 4.2 shows. The tradeoff
is that some fast paths become pessimistic transitions. Our
policy works quite well for applications that have a high
ratio of conflicting transitions. It reduces conflicting transi-
tions by 72–97% for hsqldb6, xalan6, avrora9, xalan9, and
pjbb2005. It provides little or no improvement for applica-
tions with few conflicting transitions—but these applications
incur little overhead anyway from conflicting transitions.

These results indicate that the solution derived from our
object conflict locality assumption is effective for applica-
tions with a high rate of conflicting accesses. To reduce the
number of conflicting transitions in other applications, our
future work will explore different adaptive policies.

4.2 Performance
Figure 2 compares the performance of adaptive OCTET with
alternatives that use only optimistic and pessimistic states.
Each bar shows normalized execution time, normalized to
unmodified Jikes RVM (Base).

2 http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005

The two Pure Optimistic configurations show the over-
head added by original OCTET (i.e., with optimistic states
only). Pure Optimistic w/o coord, which adds 22% overhead
on average, essentially shows only the fast-path-only over-
head (since it unsoundly skips the coordination protocol),
so it can be considered an approximate lower bound on the
overhead that the adaptive policy might be able to provide.

The two Adaptive configurations use the hybrid model
and adaptive policy to switch between optimistic and pes-
simistic states. Adaptive w/infinite cutoff sets Cutoff confl to
∞, so no object actually transitions to a pessimistic state,
so this configuration measures the cost but not the benefit
of adaptive OCTET. These costs are 1.6% (relative to base-
line execution) over purely optimistic OCTET. They come
from adding a metadata word per object, and maintaining
this word and comparing it to Cutoff confl on each conflict-
ing transition.

Adaptive uses the default values for Cutoff confl and other
constants and adds 30% overhead on average. It significantly
improves the performance of several programs that perform
poorly with a purely opimistic model. Unsurprisingly, the
benefit is greater for programs that have many conflicting
transitions eliminated by the adaptive policy, as shown in Ta-
ble 4. Adaptive OCTET reduces overhead by 42% (from 75%
to 33%) for avrora9, and by 29% (from 77% to 48%) for
pjbb2005. Adaptive OCTET also improves the performance
of xalan6. Despite reducing conflicting transitions signifi-
cantly for hsqldb6 (Table 4), adaptive OCTET does not im-
prove its performance much because most of its conflicting
transitions use the implicit protocol, which have a similar
cost to pessimistic transitions.

Our adaptive policy never significantly degrades perfor-
mance relative to purely optimistic OCTET, and it sometimes
improves performance substantially.

For completeness, Pure Pessimistic evaluates using only
pessimistic states, which prior work also shows is expen-
sive [3]. This configuration slows programs by 3.7X on av-
erage, showing that pessimistic states must be applied judi-
ciously.

5. Conclusion
We present a novel approach that adaptively switches be-
tween optimistic and pessimistic states, in order to more ef-
ficiently capture cross-thread dependences for applications
with high ratios of conflicting accesses. An evaluation of our
implementation on top of OCTET shows that it significantly
improves performance over the previous, purely optimistic
approach, especially for highly conflicting applications.

References
[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Coc-

chi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S.
McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar.
The Jikes Research Virtual Machine Project: Building an Open-

6

Transitions Reductions
Same state Conflicting Upgrading Pessimistic Optimistic to Pessimistic Conflicting Same state

or fence Pessimistic to Optimistic eliminated sacrificed
eclipse6 99.9971% 0.0011% 0.00050% 0.0013% 0.0000012% 0.0000011% 0% 0.0013%
hsqldb6 98.7% 0.045% 0.039% 1.2% 0.0021% 0.000038% 71.88% 1.03%
lusearch6 99.99965% 0.00018% 0.00010% 0.000064% 0.00000016% 0% 0% 0.000060%
xalan6 98.0% 0.0030% 0.00063% 1.9% 0.0000050% 0.00000098% 97.5% 1.80%
avrora9 99.74% 0.017% 0.027% 0.21% 0.0025% 0.00000067% 82.11% 0.07%
jython9 99.9999984% 0.0000013% 0.00000030% 0% 0% 0% 0% 0%
luindex9 99.99982% 0.00011% 0.000064% 0% 0% 0% 0% 0%
lusearch9 99.99966% 0.000081% 0.000025% 0.00023% 0.00000047% 0.000000086% 26.36% 0.00019%
pmd9 99.961% 0.0033% 0.0013% 0.034% 0.000018% 0.00000081% 51.57% 0.027%
sunflow9 99.99982% 0.000033% 0.000044% 0.0013% 0.0000012% 0.0000011% 8.33% 0.0001%
xalan9 98.5% 0.010% 0.0011% 1.5% 0.0000048% 0.0000011% 89.36% 1.34%
pjbb2000 99.49% 0.047% 0.045% 0.42% 0.0031% 0.00023% 14.55% 0.40%
pjbb2005 98.0% 0.013% 0.0050% 2.0% 0.000058% 0.000056% 97.45% 1.17%

Table 4. Adaptive OCTET state transitions statistics. The rightmost two columns are the percentages of conflicting and same-
state transitions reduced by our adaptive approach, compared with Table 1.

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

1

2

N
o

r
m

a
li

z
e
d

 E
x

e
c
u

ti
o

n
 t

im
e

Base

Pure Optimistic w/o coord

Pure Optimistic

Adaptive w/infinite cutoff

Adaptive

Pure Pessimistic

5.4 3.0 4.7 4.3 3.2 3.9 4.1 18.3 3.7 2.8 2.7 3.7

Figure 2. Run-time performance of our hybrid model and adaptive policy, compared with purely optimistic and pessimistic
states. The ranges are 95% confidence intervals centered at the mean.

Source Research Community. IBM Systems Journal, 44:399–
417, 2005.

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA,
pages 169–190, 2006.

[3] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi,
S. Biswas, A. Sengupta, and J. Huang. Octet: Capturing and
Controlling Cross-Thread Dependences Efficiently. In OOP-
SLA, 2013. To appear.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford Transactional Applications for Multi-

Processing. In IEEE International Symposium on Workload
Characterization, 2008.

[5] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM, 21(7):558–565, 1978.

[6] Standard Performance Evaluation Corporation. SPECjbb2000
Documentation, release 1.01 edition, 2001.

[7] Standard Performance Evaluation Corporation. SPECjbb2005
Documentation, release 1.04 edition, 2005.

[8] C. von Praun and T. R. Gross. Object Race Detection. In
OOPSLA, pages 70–82, 2001.

[9] M. Zhang, J. Huang, M. Cao, and M. D. Bond. LarkTM:
Efficient, Strongly Atomic Software Transactional Memory.
Submitted.

7

