
Technical Report OSU-CISRC-6/13-TR14

Department of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210-1277

Ftpsite: ftp.cse.ohio-state.edu

Login: anonymous

Directory: pub/tech-report/2013

File: TR14.pdf

Website: http://www.cse.ohio-state.edu/research/techReport.shtml

Investigation of speech separation as a front-end for noise robust

speech recognition

Arun Narayanan

Department of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210, USA

narayaar@cse.ohio-state.edu

DeLiang Wang

Department of Computer Science and Engineering & Center for Cognitive and Brain Sciences

The Ohio State University, Columbus, OH 43210, USA

dwang@cse.ohio-state.edu

Abstract – Recently, supervised classification has been shown to work well for the task of speech

separation. We perform an in-depth evaluation on such techniques as a front-end for noise

robust automatic speech recognition (ASR). The proposed separation front-end consists of two

stages. The first stage removes additive noise via time-frequency masking. The second stage

addresses channel mismatch; in order to undo the distortion that it introduces, a non-linear

function is learned that maps the masked spectral features to their clean counterpart. Results

show that the proposed front-end substantially improves ASR performance when the acoustic

models are trained in clean conditions. We also propose a constrained feature discriminant

linear regression (cFDLR) adaptation that can be performed on a per-utterance basis for ASR

systems employing deep neural networks and HMM. Results show that cFDLR consistently

improves performance in all test conditions. Surprisingly, the best average results are obtained

when cFDLR is applied to models trained using noisy log-Mel spectral features from the multi-

condition training set. With no channel mismatch, the best results are obtained when the

proposed speech separation front-end is used along with multi-condition training using log-

Mel features followed by cFDLR adaptation. Both these results are among the best on the

Aurora-4 dataset.

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

Index Terms – Time-frequency masking, feature mapping, robust ASR, deep neural networks,

Aurora-4.

2

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

1 Introduction

Automatic speech recognition systems are finding applications in an array of tasks, e.g., in mo-

bile devices. Although these systems have become fairly powerful, the inherent variability of

an acoustic signal can still pose challenges. The sources of variability are many, ranging from

speaker idiosyncrasies to recording channel characteristics. A problem that has been widely

studied is the variability caused by background noise; ASR systems that work well in clean

conditions suffer from a drastic loss of performance in the presence of noise. Performance

degradation, in most cases, is caused by the mismatch in training and testing/deployment

conditions. Techniques have been developed to handle this mismatch problem. Some focus

on feature extraction using robust features like RASTA [16] and AFE [10], or feature nor-

malization [2]. In feature-based methods, an enhancement algorithm modifies noisy features

so that they more closely follow the distributions of the training data [29], [7]. Alternatively,

one could train models using features extracted from multiple ‘noisy’ conditions. Feature-

based techniques have the potential to generalize well, but do not always produce the best

results. In model-based approaches, the ASR model parameters are adapted to match the

distribution of noisy or enhanced features [12, 42]. Model-based methods work well when

the assumptions are met, but typically involve significant computational overhead. The best

performances are usually obtained by combining feature-based and model-based approaches

(e.g., an uncertainty decoding framework [6]).

We study feature-based methods to improve ASR performance. Feature-based methods can

be classified into two groups depending on whether or not they make use of stereo training

data1. When stereo data is unavailable, prior knowledge about speech is typically used to

perform feature enhancement. Examples include spectral reconstruction based missing feature

methods [29], direct masking methods described in [15, 25], and feature enhancement methods

[1]. When stereo data is available, methods like SPLICE [5] and recurrent neural networks

[22] have been used. Even though generalization to unseen conditions is a challenge when

using stereo training data, such methods typically work well when the training and test noises

are not too different.

Stereo training data is also used by supervised classification based speech separation algo-

rithms [30, 33, 19, 14, 40]. Such algorithms typically estimate the ideal binary mask (IBM)

– a binary mask defined in the time-frequency (T-F) domain that identifies speech domi-

nant (labeled ‘1’) and noise dominant (labeled ‘0’) T-F units [37]. Our recent work extends

this approach to estimate the ideal ratio mask (IRM) [26]. The IRM represents the ratio of

speech to mixture energy at each T-F unit [35]. Results show that using the estimated IRM

as a front-end to perform feature enhancement significantly improves ASR performance, and

works better than using the estimated IBM. Only additive noise is addressed in [26]. In this

work, we explore the idea further by addressing both additive and convolutional distortion due

1By stereo we mean noisy and the corresponding clean signals.

3

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

IRM Estimation Feature Mapping

Feature extraction

for mask estimation

Log-Mel

transformation

T-F

Masking

DNN-based acoustic models

GMM-based acoustic

models

IRM

Cepstral

transformation

Cepstral

transformation

Senone
posteriors

Senone
likelihoods

Figure 1: Block diagram of the proposed speech separation front-end. The different stages of the front-end,
namely time-frequency masking and feature mapping, and their corresponding inputs are shown in the figure.
The ASR module may be implemented either using GMMs or DNNs.

to recording channel mismatch. They are dealt with in two separate stages: Noise removal

followed by channel compensation. Noise is removed via T-F masking using the IRM. To

compensate for channel mismatch, we learn a non-linear mapping function that undoes the

distortion. Estimation of the IRM and learning the mapping function are both accomplished

using deep neural networks (DNNs) [18].

In feature-based robust ASR methods, the enhanced features are passed on to the back-

end ASR system for final decoding. Acoustic modeling in ASR systems has traditionally

been done using Gaussian mixture models (GMMs). Our first set of evaluations uses GMM

based acoustic models to measure how the proposed separation front-end effects performance.

As DNN based acoustic models have shown much better performance compared to GMMs

[4], we additionally report performance using such DNN-based systems. We also propose a

feature adaptation technique for DNN-based systems. Unlike previous adaptation techniques,

like feature discriminant linear regression (FDLR) [32], the proposed method can be used on

a per-utterance basis. As shown in our results, feature adaptation can partly address the

generalization issue of supervised learning systems like the DNNs.

The rest of the paper is organized as follows. The components of our system are described

in detail in the next section. Evaluation results are presented in Section 3. We discuss in

Section 4 our results and future research directions.

2 System Description

A block diagram of the proposed system is shown in Figure 1. The IRM is estimated using

a group of features extracted specifically for the purpose. As shown, feature mapping is done

using both the log-mel transformed noisy features and the features obtained after masking.

The mapped feature may or may not be transformed to the cepstral domain, depending on the

4

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

type of acoustic models used. The acoustic models are implemented either using GMMs or

DNNs. The different stages of the system are described in detail in the following subsections.

2.1 Time-frequency masking

We perform T-F masking in the mel-frequency domain unlike some of the recent systems

that operate in the gammatone feature domain [14, 39]. This has two advantages. Firstly,

we do not have to resynthesize the signal after masking to extract ASR features. Since the

mel-domain lies in the pathway of MFCC/log-mel feature extraction stage, masking adds a

single step (point-wise matrix multiplication). Secondly, the number of frequency bands used

in the mel-domain (20–26) is typically lower than those in the gammatone domain (32–64).

This reduces the number of values that the algorithm has to estimate.

To obtain the mel-spectrogram of a signal, it is first pre-emphasized and transformed to

the linear frequency domain using a 320 channel fast Fourier transform (FFT). A 20 msec

Hamming window with 10 msec overlap between neighboring windows is used. The 161-

dimensional spectrogram is then converted to a 26-channel mel spectrogram using triangular

mel filters that span frequencies in the range of 50 Hz to 7000 Hz. We use the RASTAMAT

toolkit to perform these operations [9].

We use DNNs to estimate the IRM as they perform really well and can be efficiently trained

on large datasets [40]. Below we describe the three components of this supervised learning

method: the IRM, the features, and the learning strategy.

2.1.1 Target signal

The ideal ratio mask is defined as the ratio of the clean signal energy to the mixture energy

at each time-frequency unit. We assume that speech and noise are uncorrelated and that the

mixture energy can be approximated as the sum of clean and noise energy. This limits the

values in the IRM in the range [0, 1]. Further, the IRM can now be defined in terms of the

instantaneous signal-to-noise ratio (SNR) at each T-F unit:

IRM(t, f) =
10(SNR(t,f)/10)

10(SNR(t,f)/10) + 1
, (1)

SNR(t, f) = 10 log10(X(t, f)/N(t, f)).

Here, X(t, f) and N(t, f) denote the instantaneous speech and noise energy, respectively, at

time frame t and frequency channel f . SNR(t, f) denotes the instantaneous SNR in dB. As

can be seen, there is a one-to-one correspondence between IRM(t, f) and SNR(t, f). In our

earlier work, we observed that estimating a transformed version of the SNR, instead of the

IRM directly, works better [26]. This is probably because the transformation gives a better

representation to the SNR values in the range close to 0 dB. The sigmoidal transformation

5

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

that we use is of the following form:

d(t, f) =
1

1 + exp(−α(SNR(t, f) − β))
. (2)

d(t, f) denotes the desired target that is used during training. α and β are the parameters that

control the slope and the bias, respectively, of the sigmoid. Indirectly, they control the range

of SNR to be focused during training. Following our preliminary work, we set α to roughly

have a 35 dB SNR span2 centered at β, which is set to -6 dB (see [38]). During testing, the

values output from the DNN are mapped back to their corresponding IRM values using the

inverse of Eqs. 2 and 1. The resulting mask is used for T-F masking.

2.1.2 Features

Feature extraction is performed both at the fullband (signal) level, and at the subband level.

To extract subband features, the original fullband signal is filtered using a 26-channel mel

filterbank that spans frequencies from 50 Hz to 7000 Hz. The filterbank is implemented using

sixth order Butterworth filters, with the same cutoff frequencies used when transforming the

signal to its mel-spectrogram. Note that the output of filterbank is the continuous subband

signals sampled at the same frequency as the input signal.

We use a combination of features to train the DNN, similar to that used in [39] for IBM

estimation. The following base features are extracted:

• 31 dimensional mel frequency cepstral coefficients (MFCCs). A frame length of 20 msec

and an overlap of 10 msec are used. MFCC features are extracted for both subband and

fullband signals.

• 13 dimensional RASTA filtered PLP cepstral coefficients (RASTA-PLPs). A frame length

of 20 msec and an overlap of 10 msec are used. RASTA-PLP features are extracted for

both subband and fullband signals.

• 15 dimensional amplitude modulation spectrogram (AMS) features. AMS features are

extracted only for subband signals. Features are extracted after downsampling the sub-

band signals to 4000 Hz. A frame length of 32 msec with 22 msec overlap (corresponding

to 10 msec hop size) is used.

Using these base features, the following derived features are obtained:

• Fullband features : The fullband features are derived by splicing together fullband MFCCs

and RASTA-PLPs, along with their delta and acceleration components, and subband

AMS features. The dimensionality of this feature is 522 ((31×3) + (13×3) + (15×26)).

2We define SNR span as the difference between the instantaneous SNRs corresponding to the desired target values of 0.95 and
0.05.

6

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

• Subband features : The subband features are derived by splicing together subband MFCCs,

RASTA-PLPs, and AMS features. Delta and acceleration components are added to

MFCCs and RASTA-PLPs; temporal and spectral deltas are added to the AMS features.

The dimensionality of this feature is 177 ((31×3)+(13×3)+(15×3)). Note that subband

features are obtained for each of the 26 subband signals.

Both fullband and subband features are normalized using the global mean and variance of

the training set. We also apply a second order moving average smoothing [2] to improve

robustness.

2.1.3 Supervised learning

(a)

Fr
eq

ue
nc

y
(H

z)

0 1 2 3 4
118

930

2550

5780

(b)
0 1 2 3 4

(c)
0 1 2 3 4

Fr
eq

ue
nc

y
(H

z)

Time (s)
(d)

0 1 2 3 4
118

930

2550

5780

Time (s)
(e)

0 1 2 3 4
Time (s)

(f)

0 1 2 3 4

Figure 2: (Color online) Example of T-F masking. (a) Mel spectrogram of a clean signal from the Aurora-4
corpus. (b) Mel spectrogram of the same signal mixed with babble noise. (c) Map of the true instantaneous
SNRs, expressed in dB. (d) Instantaneous SNRs estimated using subband features and the corresponding
DNNs. The mean absolute SNR estimation error for this mask is 2.9 dB. (e) Instantaneous SNRs estimated
using fullband features. SNR estimation error for this mask is 2.5 dB. (e) Instantaneous SNR estimates
obtained after combining the masks in (d) and (e). It can be noticed that the mask in (f) is smoother than
those in (d) and (e). SNR estimation error for this mask is 2.1 dB. Note that the SNR estimates are rounded
to the range [−15, 10] dB before calculating the mean absolute error.

IRM estimation is performed in two stages. In the first stage, multiple DNNs are trained

using fullband and subband features. The final estimate is obtained using an MLP that

combines the output of the fullband and the subband DNNs.

The fullband DNN is trained using the fullband features and learns to estimate the desired

target (see Eq. 2) corresponding to the 26 frequency channels. The DNN uses 2 hidden

layers, each with 1024 nodes. The output layer consists of 26 nodes corresponding to the

7

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

26 mel-frequency channels. Sigmoid activation function is used for both hidden and output

nodes. We use the standard recipe to train the DNN [18]. The weights of the hidden units are

initialized layer-by-layer using restricted Boltzmann machine (RBM) pretraining. A learning

rate of 0.01 is used for the first hidden layer; it is set to 0.1 for the second hidden layer. A

momentum of 0.9, and a weight decay of 0.0001 are used. Each layer is pretrained for 50

epochs. The output layer is then added to the network and the weights of the full network are

fine-tuned using supervised back-propagation. While fine-tuning, we use adaptive gradients

with a global learning rate of 0.05 [8]. Momentum is initially set to 0.5 and then increased

to 0.9 after the network trains for half the total number of epochs, which is set to 100. The

cross-entropy error criterion is used. Throughout the training procedure we use minibatch

gradient descent with the minibatch size set to 2048.

The subband DNNs are individually trained for each of the 26 frequency channels. Each of

these DNNs consists of 2 hidden layers just like the fullband DNNs, but has only 200 nodes

per layer. The output layer consists of only 1 node. The training schedule is the same as for

training the fullband DNN.

Although the outputs from the fullband and the subband DNNs strongly correlate, we

expect both these networks to learn useful information not learned by the other. The fullband

DNNs would be cognizant of the overall spectral shape of the IRM and the information

conveyed by the fullband features, whereas the subband DNNs are expected to be more

robust to noise occurring at frequencies outside their passband. Therefore, to make the final

prediction we combine the outputs of the fullband and the subband classifiers. An additional

purpose of this combination is to utilize the information contained in the neighboring T-F

units surrounding the current unit in an explicit fashion. Note that the fullband and the

subband DNNs estimate the output at each unit mostly using temporally local features. We

train a simple multilayer perceptron to perform this combination. This MLP has 26 output

nodes, corresponding to the 26 frequency channels, and 512 hidden nodes. Its input is created

by splicing together the outputs of the fullband and the subband DNNs from five leading and

five trailing frames surrounding the current frame for which the final output is to be estimated.

This results in a 572 dimensional input feature (26×11×2). The MLP is trained for 250 epochs

to minimize the cross-entropy error, as before. Instead of using adaptive gradients, we use a

more conventional method to set the learning rate – it is linearly decreased from 1 to 0.001

over the training time.

All networks are trained using the noisy subset of the training set of the Aurora4 corpus.

Of the 2676 utterances in this subset, 2100 are used for training and the remaining for cross

validation; the network that gives the least mean squared error on the cross validation set is

chosen in each case.

Figure 2 shows an example of T-F masking. As can be seen, the mask estimated by the

fullband and the subband DNNs look similar, but the one estimated by the fullband DNN is

spectrally smoother. As expected, the output obtained by combining the two masks results

8

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

in a temporally smooth mask. The local SNR estimation error is also lower by about 0.4 dB

for the combined mask.

2.2 Feature mapping

Time-frequency masking only addresses the problem of additive noise. As we will show in

Section 3.1, even after T-F masking, channel mismatch can still significantly impact perfor-

mance. This happens for two reasons. Firstly, our algorithm learns to estimate the ratio mask

using mixtures of speech and noise recorded using the same microphone, and does not address

channel distortions. Secondly, because channel mismatch is convolutional, speech and noise,

which now includes both background noise and convolutive noise, are clearly not uncorrelated.

So even if the training set used to estimate the IRM included examples with channel distor-

tions, the masking function will still be ill-defined. Figure 3 illustrates this problem. As can

be seen in the figure, the residual noise obtained after subtracting the clean signal from the

noisy channel-mismatched signal has speech-like characteristics. Further, while recent studies

(a)

Fr
eq

ue
nc

y
(H

z)

0 1 2 3 4
118

930

2550

5780

Time (s)
(b)

Fr
eq

ue
nc

y
(H

z)

0 1 2 3 4
118

930

2550

5780

Figure 3: (Color online) Example of convolutional distortion. (a) Mel spectrogram of a mixture of babble noise
and clean speech signal shown in Figure 2(a) recorded using an alternative microphone. (b) Mel spectrogram
of the residual signal obtained after subtracting the clean signal in Figure 2(a) from the above mixture.

in speech perception have shown that binary masking can be used to improve intelligibility

of noisy reverberant mixtures [31], it is not straightforward to set the target in our case since

we assume no access to the clean signals recorded using every microphone in our dataset.

Therefore, we use an alternative strategy to deal with channel mismatch that directly maps

the noisy/masked signals to their ‘clean’ version. The clean version here corresponds to the

signals in the clean datasets of the corpus.

9

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

Feature mapping has already been used for enhancing noisy features for speech recognition

[5, 22] and speech separation [41]. In this work, however, we use DNNs to learn a function

that undoes channel distortion. Our feature mapping function operates in the log-mel spectral

domain, unlike the earlier works which operate in the cepstral or other feature domains. The

target, the features, and the learning strategy are described below.

2.2.1 Target signal

The goal of mapping is to transform the input spectra to its clean log-mel spectra. This

sets the target to be the clean log compressed mel spectrogram (LMS). The ‘clean’ LMS here

corresponds to those obtained from clean signals recorded using a single microphone in a single

filter setting. Since we use Aurora-4 for our experiments, this corresponds to the data in the

clean training set of the corpus recorded using a Sennheiser microphone and processed by a

P.341 filter. Instead of using the LMS directly as the target, we apply a linear transform to

limit the target values to the range [0, 1] to allow us to use the sigmoidal transfer function for

the output layer of the DNN. This makes training easier as learning a DNN with unbounded

target values can be more difficult. The transformation, which is scale invariant, has the

following form:

Xd(t, f) =
ln(X(t, f)) − min(ln(X(·, f)))

max(ln(X(·, f))) − min(ln(X(·, f)))
. (3)

Here, Xd(t, f) is the desired target while learning, ln(X(t, f)) corresponds to the log-mel

spectral energy at time frame t and frequency channel f . The min and max operations are

over the entire training set. During testing, the output of the DNN is mapped back to the

dynamic range of the utterances in training set using the inverse of the above transformation.

2.2.2 Features

As features we use both the noisy and the masked LMS. This was found to work better than

using either the noisy LMS or the masked LMS. Since the DNNs that estimate the IRM

are trained using signals recorded using a single microphone, it is possible that T-F masking

introduces unwanted distortions in the presence of a channel mismatch. We believe that using

both the noisy and masked LMS as input helps the DNN learn a mapping function robust

to such distortions. We also append the log-mel features with their delta components. The

final feature at a particular time frame is obtained by splicing together the spectrogram and

the deltas of the current frame with those of five leading and trailing frames. This results in

a 1144 ((26×2)×11×2) dimensional input. The features are normalized using the mean and

variance of the training set.

10

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

2.2.3 Supervised learning

For learning the mapping function, we use a three-layer DNN with 1024 nodes in each layer.

The output layer consists of 26 nodes which corresponds to the total number of frequency

channels. Unlike the DNNs used for IRM estimation, the hidden layers of the DNN for this

task use rectified linear units (ReLU) [24]. ReLU has been shown to work well in a number of

vision tasks [21], and has also been used in ASR [3]. We found ReLU to work at least as well

as the sigmoidal units even without any pretraining; they also converged faster. The output

layer uses sigmoid activations. The learning rate is linearly decreased from 1 to 0.001 over

50 epochs. A momentum of 0.5 is used for the first 10 epochs after which it is set to 0.9. A

weight decay of 0.00001 is also used. The network is trained to minimize the squared error

loss. We use all the utterances, 7138 of them, in the multi-condition training set of Aurora4

for training. A cross-validation set, which was created by randomly sampling 100 utterances

in each condition from the development set of Aurora4, is used for early stopping – we chose

the model that gave the least mean squared error on the cross-validation set during training.

Fr
eq

ue
nc

y
(H

z)

(a)
0 1 2 3 4 5 6

118

930

2550

5780

(b)
0 1 2 3 4 5 6

Fr
eq

ue
nc

y
(H

z)

Time (s)
(c)

0 1 2 3 4 5 6
118

930

2550

5780

Time (s)
(d)

0 1 2 3 4 5 6

Figure 4: (Color online) Example of feature mapping. (a) Mel spectrogram of the clean signal recorded
using a Sennheiser microphone and processed with P.314 filter. (b) Mel spectrogram of the signal recorded
using an alternative microphone and mixed with babble noise. The microphone attenuates the high frequency
components of the signal. (c) The mel spectrogram after T-F masking. Noise has largely been removed but
the high frequency components are still attenuated. (d) The mel spectrogram after feature mapping. As can
be seen, the high frequency components are reconstructed reasonably well.

Figure 4 shows an example of how feature mapping reduces channel distortion. It can

be clearly seen that, even though T-F masking removes some noise, the masked LMS still

contains distortions. The LMS obtained after feature mapping looks much closer to the clean

spectrogram; feature mapping is able to reconstruct the high frequency spectral components

that are masked in the original signal. It should be noted that the microphone used to record

the example shown in Figure 4(b) is not used while training the DNN; in other words, the

DNN does a reasonable job at generalizing to unseen microphones.

11

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

2.3 Acoustic modeling

Our acoustic models are trained using the Aurora-4 dataset [27]. Aurora-4 is a 5000-word

closed vocabulary recognition task based on the Wall Street Journal database. The corpus

has two training sets, clean and multi-condition, both with 7138 utterances. The clean training

set consists of signals recorded using a Sennheiser microphone and processed using a P.314

filter. The multi-condition set consists of clean signals, noisy mixtures at SNRs between 10

and 20 dB, clean signals with channel mismatch, and noisy mixtures with channel mismatch.

Utterances with channel mismatch are recorded using one of 18 different microphones. The

test set consists of 14 subsets, each with 330 utterances. Sets 1 to 7 and 8 to 14 contain

utterances with and without channel mismatch, respectively. Sets 2 to 7 and 9 to 14 are

noisy, whereas 1 and 8 are clean. Six noise types are considered: car, babble, restaurant,

street, airport, and train. The noise types are the same as those used in the training set,

but they are mixed at lower SNRs; the SNR range in the test sets is between 5 and 15 dB.

The microphones used to create mixtures in sets 8 to 14 are different from those used in the

training set.

We explore two types of acoustic models to implement the ASR system: the traditional

GMM-HMM based systems and the more recent DNN-HMM based hybrid systems [4]. They

are described in the following subsections.

2.3.1 Gaussian Mixture Models

The GMM based systems are trained using 12th order MFCCs, which are obtained after

applying the discrete cosine transform and liftering to the LMS. The static MFCCs are aug-

mented with their delta and acceleration coefficients after which they are normalized using the

sentence level mean and variance. Normalizing the variance in addition to the mean signifi-

cantly improves performance when using cepstral features [25]. The acoustic models consist

of state-tied cross word triphones modeled as a 3-state HMM. The observation probability

is implemented as a 16-component GMM with diagonal covariances. The training recipe is

adapted from [36]. Based on the tree pruning parameters used for state-tying, the final models

have 3319 tied-states or senones [4]. The HMMs and the GMMs are initially trained using the

clean training set. The clean models are then used to initialize the multi-condition models;

both clean and multi-condition models have the same structure and differ only in transition

and observation probability densities.

2.3.2 Deep Neural Networks

The DNN based models are derived from the clean GMM-HMM system. We first align the

clean training set to obtain senone labels at each time-frame for all utterances in the training

set. DNNs are then trained to predict the posterior probability of senones using either clean

features or features extracted from the multi-condition set.

12

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

We experimented with DNNs trained using cepstral and log-mel features. For either of

those features we look at the following alternatives:

• Features extracted from the clean training set. While we expect models trained using

clean features to generalize poorly, this will clearly show how effective the proposed speech

separation front-end is. The input is formed by adding the cepstral/log-mel features

with their delta and acceleration coefficients, and splicing together the features of 11

contiguous frames (5 leading and trailing frames surrounding each frame). This results

in a 429-dimensional representation when the features are defined in the cepstral domain,

and an 858-dimensional representation when they are defined in the log-mel domain.

• Features extracted from the multi-condition training set. These features are created just

like the clean features, but since they are extracted from the multi-condition set they

are expected to generalize much better. They have the same dimensionality as the clean

features.

• Features generated after speech separation (masking followed by feature mapping) con-

catenated with noisy features from the multi-condition training set. To generate these

features we perform speech separation on all utterances from the multi-condition training

set using the models described in the previous sections. We found that adding the noisy

features to the features after separation results in better performance compared to using

only the latter. This trend is similar to that found while learning the feature mapping

function (see Section 2.2). The dimensionality of this feature is 858 when it is defined in

the cepstral domain, and 1716 when defined in the log-mel domain.

The cepstral features are mean and variance normalized at the sentence level, like before.

The log-mel features are mean normalized at the sentence level; an additional global variance

normalization is also applied as suggested in [45]3.

The DNNs trained using cepstral features have an architecture similar to that described

in [4]. It consists of 5 hidden layers, each with 2048 hidden units. The output layer has 3319

nodes. All hidden nodes use sigmoidal activation function. The output layer uses the softmax

function. The weights of the hidden layers are initialized using RBM pretraining. The first

hidden layer is pretrained for 100 epochs, the subsequent layers are pretrained for 35 epochs

each. The learning rate for the first layer is set to 0.004. It is set to 0.01 for the remaining

layers. The momentum is linearly increased from 0.5 to 0.9 over 10 epochs, and kept at 0.9

for the remaining epochs. Weight decay is set to 0.0001. After pretraining, the network is

fine-tuned for 20 epochs using a learning rate of 0.08 for the first 10 epochs and 0.002 for the

remaining ones. The momentum is set in the same way as in pretraining. The cross-entropy

error criterion is used. Minibatch gradient descent with a batch size of 256 is used all through.

A development set is used for early stopping based on the frame-level classification error. The

3Note that the global mean will be 0 if all utterances are already mean normalized at the sentence level.

13

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

network always stopped within the last 2-3 epochs; therefore early stopping did not affect

performance.

The DNNs in the log-mel domain are trained using the recipe in [45]. The networks have

7 layers, each with 2048 nodes. The output layer has 3319 nodes, as before. For weight

initialization, RBM pretraining is used. The first layer is pretrained for 35 epochs, and the

remaining layers for 8 epochs. A constant learning rate and weight decay of 0.004 and 0.0001,

respectively, are used. The minibatch size is set to 256. The network is fine-tuned based on

the cross-entropy error criterion for 25 epochs with no early stopping. The minibatch size is

set to 256 for the first 5 epochs. For the remaining 20 epochs, it is set to 1024. The learning

rate is set to 0.08 for the first 5 epochs, 0.32 for the next 10 epochs and then reduced to 0.008

for the final 10 epochs. Momentum is fixed to 0.9 in the pretraining and fine-tuning stages.

It should be pointed out that training procedures have not been fully optimized for either of

the networks, mainly due to the huge parameter search space and the amount of training/cross

validation time required to evaluate each setting. A better way to choose parameters, e.g.

using a Bayesian search strategy [3], could potentially be used in the future. Nevertheless,

the performance trends obtained using the above networks are in line with those reported in

other studies in the literature.

The senone posteriors estimated by the DNN are converted to likelihoods by normalizing

using their priors calculated from the training set. The likelihoods are then passed on to the

HMMs for decoding.

For both GMM-HMM and DNN-HMM systems, we use the CMU pronunciation dictionary

and the standard bigram language model during decoding. The ASR systems are implemented

using the HTK [44], which is adapted to additionally function as a hybrid system.

2.4 Constrained Feature Discriminant Linear Regression

Feature adaptation techniques for DNN-HMM systems have largely been aimed at develop-

ing speaker-specific transforms. This generally requires a speaker-specific adaptation set with

multiple utterances. While most studies try to reuse the adaptation methods developed for

GMM-HMM systems like fMLLR (feature space maximum likelihood linear regression) and

VTLN (vocal tract length normalization) with limited success [32, 45], DNN-specific adapta-

tions like feature discriminant linear regression have also been proposed [32]. FDLR essentially

learns an affine transformation of the features, like fMLLR, by minimizing the cross-entropy

error of the labeled adaptation data. When FDLR is used on a per-utterance basis, it will

likely cause overfitting as the number of parameters to learn is almost in the same range of,

and sometimes greater than, the number of labeled examples available. Here, we propose a

constrained version that gives us performance improvements in almost every test condition.

The motivation for developing cFDLR is to address the problem of generalization to unseen

microphone conditions in our dataset. As mentioned, test sets 8 to 14 of Aurora-4 contain

14

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

utterances recorded using microphones not seen during training. These are the conditions

where the DNN-HMM systems perform the worst. cFDLR is a semi-supervised feature adap-

tation technique. To apply cFDLR, we first obtain an initial senone-level labeling for our

test utterances using the unadapted models. Features are then transformed to minimize the

cross-entropy error in predicting these labels. The adaptation takes the following form:

Ôt(f) = wf ·Ot(f) + bf ; t = 1. . .T, f = 1. . .F, (4)

min
∑

t
E(st,Dout(Ôt−5. . .Ôt+5)).

Here, Ôt(f) is the feature obtained after transforming Ot(f), the original features. t indexes

the time frame and f the feature dimension. T and F are the total number of time frames

and features dimensions, respectively. E is the error function to be minimized, which is cross-

entropy in our case. st is the the senone label obtained in the first step of the adaptation

process. Dout(O) is the output of the DNN when its input is O. wf and bf are the parameters

of the transformation. As can be seen, cFDLR simply scales and offsets the unadapted feature.

Note that when the input to the DNN consists of multiple feature streams, like in the case

of DNNs that use features obtained after speech separation concatenated with noisy features,

separate transforms are learned for each stream.

The parameters can easily be learned within the DNN framework by adding a layer between

the input layer and the first hidden layer of the original DNN. We initialize wf and bf , for

f = 1. . .F , to 1 and 0, respectively, and run the standard back-propagation algorithm for 10

epochs to learn these parameters. During back-propagation, weights of the original hidden

layers are kept unchanged and only wf and bf are updated. Note that the parameters are tied

across the 11 frames that are spliced together to create the input feature for the DNN. The

parameter matrix and their updates have a form similar to the block diagonal weight matrices

used by FDLR, but every block in itself is additionally diagonal in cFDLR. The learning rate

and the momentum are set to 0.1 and 0.9, respectively, while learning these parameters. A

batch update is used; the gradients are averaged across the frames of the sentence for which

adaptation is being performed.

3 Evaluation Results

3.1 Gaussian mixture models

The averaged word error rates (WER) obtained using the GMM-HMM systems are tabulated

in Table 1. Using the models trained in clean conditions we obtain an average WER of 32.8

percent across the four conditions. Using the auditory front-end (AFE), an ETSI standardized

feature representation that is widely used [10], performance improves to 29.2 percent. AFE has

a feature enhancement module to counter noise to an extent. Using a DNN that maps noisy

15

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

Table 1: Word error rates on the Aurora-4 corpus using the GMM-HMM systems. The columns Clean,
Noisy, Clean + Channel, and Noisy + Channel correspond to the WER averaged on test sets 1, 2 to 7,
8, and 9 to 14, respectively. The best performance in each condition is marked in bold.

System Clean Noisy
Clean + Noisy +

Average
Channel Channel

Clean Training
Noisy 9.1 27.0 22.9 44.3 32.8
AFE 9.0 23.2 29.9 38.4 29.2
Feature mapping 9.8 16.3 14.3 29.6 21.4
T-F masking 9.4 15.3 23.1 36.4 24.5
+ feature mapping 9.7 15.2 14.1 28.9 20.6

Multi-condition Training
Noisy 10.6 17.2 17.7 31.8 23.0
AFE 10.3 18.4 20.0 30.4 23.1
Feature mapping 11.7 15.9 14.7 27.5 20.5
T-F masking 10.7 14.3 20.1 31.7 21.9
+ feature mapping 11.8 16.0 14.5 27.2 20.4

log mel features directly to clean features gives a significant improvement in performance,

reducing the WER to 21.4 percent. Using T-F masking alone results in an average WER of

24.5 percent, but performs better than only using feature mapping when there is no channel

mismatch. Using the proposed front-end with both masking and feature mapping, as described

in Section 2, gives the best average performance of 20.6 percent, a 37.2% relative improvement

over the noisy baseline.

Using the multi-condition models results in a much better baseline of 23 percent. AFE does

not provide any performance improvements in this case. This is expected as the mean-variance

normalized MFCC features are fairly robust as noted in our earlier studies [25]. Direct feature

mapping and the proposed front-end now have similar performance, which in turn is similar

to the WER obtained using the clean models with the proposed front-end. Compared to the

noisy baseline, the proposed front-end obtains a relative improvement 11.3%. Interestingly,

the best performance in noisy conditions is obtained when only T-F masking is used (14.3

percent, which is a 16.8% relative improvement compared to the baseline in that condition).

Although not directly comparable because of modeling differences, we note that the re-

sults obtained by the proposed front-end are significantly better than those obtained using

MMSE/MMI-SPLICE on this corpus [7]. The ASR models used in [7] are similar to ours.

Feature enhancement is performed by learning transformations using the stereo training data;

the transformation is constrained to be a simple offset. The results in [7] show that MMSE

SPLICE improves clean and averaged noisy performance from 8.4 to 8.3 and 33.9 to 29.2 per-

cent, respectively, when using clean models. MMI SPLICE, which works better than MMSE

SPLICE, improves clean and noisy performance from 14.0 to 13.4 and 19.2 to 18.8 percent,

respectively, when using multi-condition models. Results on sets 8 to 14 are not presented in

[7].

16

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

Table 2: Word error rates on the Aurora-4 corpus using the DNN-HMM systems trained in clean conditions.
The best performance in each condition is marked in bold.

System Clean Noisy
Clean + Noisy +

Average
Channel Channel

Cepstral features
Noisy 5.3 19.2 18.6 36.1 25.4
+ cFDLR 5.2 19.6 17.5 35.9 25.4
Feature mapping 5.4 9.9 9.5 22.9 15.1
+ cFDLR 5.4 9.7 8.8 22.3 14.7
Proposed 5.6 9.3 9.5 22.0 14.5
+ cFDLR 5.4 9.2 9.1 21.4 14.1

log-mel features
Noisy 5.2 22.9 21.3 41.6 29.5
+ cFDLR 5.1 22.7 20.5 41.4 29.3
Feature mapping 5.3 10.7 9.6 25.2 16.4
+ cFDLR 5.3 10.3 8.7 24.5 15.9
Proposed 5.2 9.5 9.6 24.0 15.4
+ cFDLR 4.9 9.2 9.0 23.3 14.9

Table 3: Word error rates on the Aurora-4 corpus using the DNN-HMM systems trained on the multi-condition
set. The best performance in each condition is marked in bold.

System Clean Noisy
Clean + Noisy +

Average
Channel Channel

Cepstral features
Noisy 6.7 10.9 10.4 21.9 15.3
+ cFDLR 6.7 11.0 9.8 21.4 15.1
Proposed 5.6 8.9 9.4 20.5 13.6
+ cFDLR 5.4 8.7 8.8 20.0 13.3

log-mel features
Noisy 5.3 8.5 9.0 18.2 12.5
+ cFDLR 5.1 8.5 8.4 17.6 12.1
Proposed 4.9 8.4 8.3 20.4 13.3
+ cFDLR 4.8 8.2 8.1 20.0 13.0

3.2 Deep neural networks

We first present the results obtained using models trained in clean conditions. The results are

shown in Table 2. The table shows results obtained using models trained using cepstral and

log-mel features, with and without cFDLR adaptation. Using cepstral features, the baseline

performance improves by 22.6% compared to GMMs. This improvement is similar to those

reported in other DNN studies. Using cFDLR improves the baseline WER when there is

channel mismatch, but the average performance remains unchanged. Using feature mapping

alone improves the WER to 15.1 percent. The proposed front-end improves it further to 14.5

percent. cFDLR improves performance in every condition and further reduces the WER to

14.1 percent. Compared to the baseline, this is a 44.5% relative improvement. Similar trends

are observed when the models are trained using log-mel features. An average WER of 14.9

17

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

percent is obtained using the proposed front-end with cFDLR adaptation, a 49.5% relative

improvement compared to the baseline. It can also be noticed that the models trained using

cepstral features work better than those trained using log-mel features.

The performance obtained using the models trained from the multi-condition set are shown

in Table 3. The table shows results using models trained directly using the noisy features,

and those trained using the features obtained after speech separation concatenated with noisy

features. When using cepstral models, the proposed front-end improves performance from

15.3 percent to 13.6 percent. Using cFDLR improves it further to 13.3 percent, a 13.1%

relative improvement compared to the baseline. Contrary to the above trends, when models

are trained in the log-mel domain, the noisy baseline performs better than the proposed front-

end. The average improvement is mainly due to the strong performance on test sets 9 to 14

that have both additive noise and channel mismatch. On those sets, the WER of the noisy

baseline is 2 percentage points better than the proposed system, on average. In all other

conditions, the proposed front-end works slightly better. The trend remains unchanged after

applying cFDLR. To the best of our knowledge, the average WER of 12.1 percent obtained by

the noisy baseline after cFDLR adaptation is the best published result on Aurora-4. Further,

our results in clean, noisy and noisy+channel mismatched conditions (marked in boldface in

the table) either match or outperform the best previously published results on these subsets.

4 Discussion

The best performing systems on Aurora-4 typically use strategies like multiple iterations of

model adaptation to account for channel and noise mismatch, speaker specific adaptation using

batch updates [42], and discriminative training of GMM-HMM systems [11]. Our systems

compare well with such methods even without using the proposed cFDLR feature adaptation.

To the best of our knowledge, the only studies that evaluate DNN based acoustic models on

this task are [45, 34]. These very recent studies obtain performance close to those reported in

the current work using a recently introduced training strategy for the DNNs called dropout

training [17]. Although the performance obtained by our system is slightly better, we expect

dropout to further improve performance of the systems described in this work.

Several interesting observations can be made from the results presented in the previous

section. Firstly, the results clearly show that the speech separation front-end is doing a good

job at removing noise and handling channel mismatch. In most cases, when the proposed

front-end is used, the performance obtained with clean models is close to those obtained

with models trained from the multi-condition data. When using GMMs, the difference in

performance is only 0.2 percent. With DNNs this difference is a little larger: 0.7 percent with

cepstral features and 1.9 percent with log-mel features. Secondly, with no channel mismatch,

T-F masking alone worked well in removing noise as can be inferred from the results in Table 1.

Even though masking improves performance compared to the baseline in the presence of both

18

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

noise and channel mismatch, its performance is found to be insufficient. In such conditions,

feature mapping provides significant gains. Finally, directly performing feature mapping from

noisy features to clean features performs reasonably, but it does not perform as well as the

proposed front-end that performs feature mapping additionally using the masked features. We

have also observed in experiments not reported here that directly using the masked features

as input to perform feature mapping or acoustic modeling does not perform as well as using

them in conjunction with the noisy features. We believe this is because of the distortions

introduced by masking, especially in the presence of channel mismatch, and possibly the

reduced variability in the training data as noted in [34].

One surprising result from our experiments is that when the DNN models are trained in

clean conditions, cepstral features worked better than log-mel features. This trend is reversed

when the models are trained using the multi-condition training set. It is likely that in the

presence of severe mismatch in training and testing conditions, cepstral features generalize

better. Other studies have observed that in matched conditions, log-mel features work better

[23, 34].

It has been noted in prior work that DNN-HMM systems work really well when the training

and testing conditions do not differ much [45]. We believe that robust feature representations

and enhancement techniques will be really helpful if a mismatch in training and testing con-

ditions is anticipated and cannot be directly handled at the time of training the acoustic

models. Background noise can be highly unpredictable and can pose such problems to well

trained ASR systems. The proposed front-end will be useful in these scenarios. It should be

pointed out that although the speech separation front-end is trained, in this work, using the

same dataset as used by the acoustic models, it can also be trained independently using a

separate set. Such a training set will not need word-level transcriptions, unlike the data used

to train the ASR models.

Generalization to unseen conditions is a perennial issue for supervised learning algorithms,

and exists in both acoustic modeling and speech separation. In the case of supervised separa-

tion, this problem has been addressed in previous studies and is vigorously pursued currently

[20, 40]. Advances on this topic would clearly help improve performance of feature-based

systems like the one described in this work.

This work leads to several interesting research directions. Clearly, better DNN training

strategies like dropout and network architectures like maxout [13] are expected to improve

performance of all components of the proposed system. From the results in Table 3, it can

be seen that feature mapping introduces some distortion in the presence of both noise and

channel mismatch, resulting in a drop in performance using log-mel features. Future work

should focus on developing better feature mapping strategies, e.g., using recurrent neural

networks or bidirectional long-short term memories [43]. Finally, the different components

of our system are all trained independent of each other. It is possible to treat the whole

framework, including T-F masking, feature mapping, and acoustic modeling, as a single deep

19

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

network interconnected through layers with static weights. The static layers correspond to

operations like mel filtering, cepstral transformation, calculation of delta components, and

mean-variance normalization. With such a formulation, it may be possible to adjust the

weights of the entire network, leading to a system that learns to handle the errors made by

the layers preceding it. Initial attempts at training the feature mapping function and the

acoustic model jointly resulted in improved frame classification performance, but it did not

translate to improved WER. One could potentially use posterior modeling [28] to translate the

frame level improvements into ASR performance. Future work will explore this idea further.

To conclude, we have proposed a speech separation front-end based on T-F masking and

feature mapping that significantly improves ASR performance. A semi-supervised feature

adaptation technique called cFDLR is proposed which can be applied on a per-utterance

basis. The final system produces state-of-the-art performance on the Aurora-4 medium-large

vocabulary recognition task. The results show that supervised feature-based ASR techniques

have considerable potential in improving performance.

Acknowledgment

The authors would like to thank Yuxuan Wang for useful discussions and Dong Yu for pro-

viding details about DNN training. This research was supported in part by an AFOSR grant

(FA9550-08-1-0155) and the Ohio Supercomputer Center. A preliminary version of this work

was presented at ICASSP-2013 [26].

References

[1] R. Astudillo and R. Orglmeister, “Computing MMSE estimates and residual uncertainty

directly in the feature domain of ASR using STFT domain speech distortion models,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 5, pp. 1023–

1034, 2013.

[2] C.-P. Chen and J. A. Bilmes, “MVA processing of speech features,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 15, no. 1, pp. 257–270, 2007.

[3] G. E. Dahl, T. N. Sainath, and G. Hinton, “Improving deep neural networks for LVCSR

using rectified linear units and dropout,” in Proceedings of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, 2013, pp. 8609–8613.

[4] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep neural

networks for large-vocabulary speech recognition,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 20, no. 1, pp. 30–42, 2012.

20

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

[5] L. Deng, A. Acero, L. Jiang, J. Droppo, and X. Huang, “High-performance robust speech

recognition using stereo training data,” in Proceedings of the IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, 2001, pp. 301–304.

[6] L. Deng, J. Droppo, and A. Acero, “Dynamic compensation of HMM variances using the

feature enhancement uncertainty computed from a parametric model of speech distor-

tion,” IEEE Transactions on Speech and Audio Processing, vol. 13, no. 3, pp. 412–421,

2005.

[7] J. Droppo, “Feature compensation,” in Techniques for Noise Robustness in Automatic

Speech Recognition, T. Virtanen, B. Raj, and R. Singh, Eds. West Sussex, UK: John

Wiley & Sons, 2012, ch. 9, pp. 229–250.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and

stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp. 2121–2159,

2010.

[9] D. P. W. Ellis, “PLP and RASTA (and MFCC, and inversion) in Matlab,” 2005,

online web resource. [Online]. Available: http://www.ee.columbia.edu/∼dpwe/resources/

matlab/rastamat/

[10] ETSI, ES 202 050 V1.1.4. (2005) Speech processing transmission and quality aspects

(STQ); Distributed speech recognition; Advanced front-end feature extraction algorithm;

Compression algorithms.

[11] F. Flego and M. J. F. Gales, “Discriminative adaptive training with VTS and JUD,” in

Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding,

2009, pp. 170–175.

[12] M. J. F. Gales, “Maximum likelihood linear transformations for HMM-based speech recog-

nition,” Computer speech and language, vol. 12, no. 2, pp. 75–98, 1998.

[13] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout

networks,” Journal of Machine Leanring Research Workshop and Conference Proceedings,

vol. 28, no. 3, pp. 1319–1327, 2013.

[14] K. Han and D. L. Wang, “A classification based approach to speech segregation,” Journal

of the Acoustical Society of America, vol. 132, no. 5, pp. 3475–3483, 2012.

[15] W. Hartmann, A. Narayanan, E. Fosler-Lussier, and D. L. Wang, “A direct masking ap-

proach to robust ASR,” IEEE Transactions on Audio, Speech, and Language Processing,

2013, in press.

[16] H. Hermansky and N. Morgan, “RASTA processing of speech,” IEEE Transactions on

Speech and Audio Processing, vol. 2, no. 4, pp. 578 –589, 1994.

21

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Im-

proving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint

arXiv:1207.0580, 2012.

[18] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,”

Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[19] G. Kim, Y. Lu, Y. Hu, and P. Loizou, “An algorithm that improves speech intelligibility

in noise for normal-hearing listeners,” Journal of Acoustical Society of America, vol. 126,

no. 3, pp. 1486–1494, 2009.

[20] W. Kim and R. Stern, “Mask classifcation for missing-feature reconstruction for robust

speech recognition in unknown background noise,” Speech Communication, vol. 53, pp.

1–11, 2011.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in Advances in Neural Information Processing Systems 25,

2012, pp. 1106–1114.

[22] A. L. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and A. Y. Ng., “Recurrent

neural networks for noise reduction in robust ASR,” in Proceedings of Interspeech, 2012.

[23] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using deep belief networks,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 14

–22, 2012.

[24] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proceedings of the 27th International Conference on Machine Learning, 2010, pp. 807–

814.

[25] A. Narayanan and D. Wang, “Coupling binary masking and robust ASR,” in Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2013,

pp. 6817–6821.

[26] ——, “Ideal ratio mask estimation using deep neural networks for robust speech recog-

nition,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2013, pp. 7092–7096.

[27] N. Parihar and J. Picone, “Analysis of the Aurora large vocabulary evalutions,” in Pro-

ceedings of the European Conference on Speech Communication and Technology, 2003,

pp. 337–340.

[28] R. Prabhavalkar, T. N. Sainath, D. Nahamoo, B. Ramabhadran, and D. Kanevsky, “An

evaluation of posterior modeling techniques for phonetic recognition,” in Proceedings of

22

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2013,

pp. 7165–7169.

[29] B. Raj and R. Stern, “Missing-feature approaches in speech recognition,” IEEE Signal

Processing Magazine, vol. 22, no. 5, pp. 101–116, 2005.

[30] N. Roman, D. L. Wang, and G. J. Brown, “Speech segregation based on sound localiza-

tion,” Journal of Acoustical Society of America, vol. 114, no. 4, pp. 2236–2252, 2003.

[31] N. Roman and J. Woodruff, “Intelligibility of reverberant noisy speech with ideal binary

masking,” Journal of the Acoustical Society of America, vol. 130, no. 4, pp. 2153–2161,

2011.

[32] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-dependent deep

neural networks for conversational speech transcription,” in Proceedings of the IEEE

Workshop on Automatic Speech Recognition and Understanding, 2011, pp. 24–29.

[33] M. L. Seltzer, B. Raj, and R. M. Stern, “A Bayesian classifer for spectrographic mask

estimation for missing feature speech recognition,” Speech Communication, vol. 43, no. 4,

pp. 379–393, 2004.

[34] M. L. Seltzer, D. Yu, and Y.-Q. Wang, “An investigation of deep neural networks for

noise robust speech recognition,” in Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2013, pp. 7398–7402.

[35] S. Srinivasan, N. Roman, and D. L. Wang, “Binary and ratio time-frequency masks for

robust speech recognition,” Speech Communication, vol. 48, pp. 1486–1501, 2006.

[36] K. Vertanen, “HTK Wall Street Journal training recipe,” 2005, online web resource.

[Online]. Available: http://www.keithv.com/software/htk/

[37] D. L. Wang, “On ideal binary masks as the computational goal of auditory scene analysis,”

in Speech Separation by Humans and Machines, P. Divenyi, Ed. Boston, MA: Kluwer

Academic, 2005, pp. 181–197.

[38] D. L. Wang, U. Kjems, M. S. Pedersen, J. B. Boldt, and T. Lunner, “Speech intelligibility

in background noise with ideal binary time-frequency masking,” Journal of Acoustical

Society of America, vol. 125, pp. 2336–2347, 2009.

[39] Y. Wang, K. Han, and D. Wang, “Exploring monaural features for classification-based

speech segregation,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 21, pp. 270–279, 2013.

[40] Y. Wang and D. Wang, “Towards scaling up classification-based speech separation,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 21, pp. 1381–1390, 2013.

23

OSU Dept. of Computer Science and Engineering Technical Report #14, 2013

[41] Y. Wang and D. L. Wang, “Feature denoising for speech separation in unknown noisy

environments,” in Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing, 2013, pp. 7472–7476.

[42] Y.-Q. Wang and M. J. F. Gales, “Speaker and noise factorization for robust speech

recognition,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,

no. 7, pp. 2149–2158, 2012.

[43] F. Weninger, J. Geiger, M. Wllmer, B. Schuller, and G. Rigoll, “The Munich feature

enhancement approach to the 2nd CHiME challenge using BLSTM recurrent neural net-

works,” in Proceedings of the 2nd CHiME workshop on machine listening in multisource

environments, 2013, pp. 86–90.

[44] S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey,

V. Valtchev, and P. Woodland, The HTK Book. Cambridge University Publishing De-

partment, 2002, [Online]. Available: http://htk.eng.cam.ac.uk.

[45] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature learning in deep neu-

ral networks - studies on speech recognition tasks,” in Proceedings of the International

Conference on Learning Representations, 2013.

24

