
Randomized Skip Lists-Based Private Authentication for
Large-Scale RFID Systems

Kazuya Sakai1 Min-Te Sun2 Wei-Shinn Ku3 Ten H. Lai1 Athanasios V. Vasilakos4

1Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio 43210
2Department of Computer Science and Information Engineering, National Central University, Taoyuan 320, Taiwan

3Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama 36849
4Department of Computer and Telecommunications Engineering, University of Western Macedonia,Greece

sakai.16@buckeyemail.osu.edu, msun@csie.ncu.edu.tw,
weishinn@auburn.edu, lai@cse.ohio-state.edu, vasilako@ath.forthnet.gr

ABSTRACT
The performance of key authentication and the degree of pri-
vacy in large-scale RFID systems are considered by many
researchers as tradeoffs. Based on how keys are managed in
the system, the privacy preserving tag authentications pro-
posed in the past can be categorized into tree-based and group-
based approaches. While a tree-based approach achieves
high performance in key authentication, it suffers from the
issue of low privacy should a fraction of tags be compro-
mised. On the contrary, while group-based key authenti-
cation is relatively invulnerable to compromise attacks, it
is not scalable to the large number of tags. In this paper,
we propose a new private tag authentication protocol based
on skip lists, named Randomized Skip Lists-based Authenti-
cation. Without sacrificing the authentication performance,
our scheme provides a strong privacy preserving mechanism.
Both theoretical and simulation results demonstrate that the
proposed scheme meets its design goals and outperforms ex-
isting solutions.

1. INTRODUCTION
Radio Frequency Identification (RFID) is widely used

to smooth the way of various applications, such as li-
brary managements [12], transportation payment, nat-
ural habitat monitoring, indoor localization [7,15], and
so on. In these systems, the administrator manages and
monitors a large number of objects by reading passive
RF tags attached to the objects with an RF reader. To
protect the tag’s content, low-cost cryptographic op-
erations [6] are conducted during singulation process.
Hence, on receiving the tag’s reply, the reader must scan
all keys to find the corresponding key in order to decrypt
the content. When it comes to a large-scale RFID sys-
tem, the authentication process can take a long time.
To accommodate this issue, a number of private tag

authentication protocols with structured key manage-
ment have been proposed. In these approaches, a unique
key and a set of group keys are assigned to each tag.
The group keys are shared among several tags and used

to confine the search space of the unique key corre-
sponding to a tag’s reply. Based on how group keys
are managed, they are categorized into two types: tree-
based [3,8,10–12,17] and group-based protocols [1,4]. In
a tree-based protocol, tags are mapped to leaf nodes in
the tree and keys are assigned to internal nodes. Each
tag has its unique key and a set of shared keys associated
with the nodes from the leaf to the root. By traveling
the tree, the reader can securely singulate tags. This
results in high authentication efficiency, but discloses
a large amount of information once tags in the system
are compromised. On the contrary, in a group-based
protocol, each tag has two kinds of keys: a unique key
and a group key. With this approach, even if one of the
group members is compromised, tags in other groups
are intact. However, the authentication efficiency of
this approach is low.
Therefore, for large-scale RFID systems, the perfor-

mance and privacy/security of key authentication are
commonly seen as tradeoffs. In this research, we pro-
pose a scheme that provides both good performance and
a high level of privacy/security for a large-scale RFID
system. Since both tree-based and group-based struc-
tures have pros and cons, we take a different approach
based on skip lists [13], a data structure with which
operations are performed in a logarithmic order like a
balanced tree. In our proposed scheme, an interroga-
tor authenticates a tag by traveling skip lists from top
to bottom with a random rotation at each level. The
analysis and simulation results prove that the proposed
scheme is both efficient on authentication complexity
and resistant against compromise attacks. In summary,
the contributions of this paper are as follows.

• We propose a new private tag authentication pro-
tocol, named Randomized Skip Lists-based Au-
thentication (RSLA), which provides strong pri-
vacy protection and high performance of authen-
tication like the tree-based approach.

• We design the key-updating and system mainte-

1

Figure 1: Tree-based. Figure 2: Group-based. Figure 3: An Example of skip lists.

nance mechanisms for RSLA to adapt to dynamic
environments, where existing tags update their keys,
and new tags join or leave the system.

• We conduct performance and security analyses to
demonstrate that RSLA achieves its design goals:
a high level of security/privacy and good perfor-
mance.

• We evaluate the proposed RSLA by simulations,
and validate that RSLA outperforms the existing
solutions.

The rest of this paper is organized as follow. Section 2
reviews the existing works. In Section 3, we propose
RSLA. Section 4 provides the analyses of the proposed
scheme, and Section 5 demonstrates the simulation re-
sults. Section 6 concludes this paper.

2. RELATED WORKS

2.1 Private Authentication
Private RFID authentication protocols are classified

into two categories: non-encryption-based and encryption-
based. Non-encryption-based authentication [2, 9, 14]
can be applied to some particular contexts, but not to
large-scale RFID systems such as RFID library and su-
per markets. In these applications, it is natural that
the provider of the RFID system issues keys to tags be-
fore the tag deployment. Therefore, in this paper we
focus on encryption-based private authentication. The
encryption-based authentication protocols can be fur-
ther divided into unstructured, tree-based and group-
based, which will be elaborated on in the following sub-
sections.

2.1.1 Unstructured Authentication
Due to the computational power constraints of pas-

sive tags, traditional cryptographic operations are not
practical. Many studies put forth low-cost encryption [6],
which relies on only simple functions such as hash, con-
catenation, and XOR.Weis et al. proposed Hash-lock [16]
which uses a hash value to identify tags. However, such
an approach requires an RF reader to try all keys in the
database to decrypt or compute hash values to validate
a tag’s reply, which leads to a slow authentication speed
proportional to the number of tags in the system. This

motivates private authentication to have a structured
key management.

2.1.2 Tree-Based Authentication
In tree-based authentication schemes [3, 12], unique

keys are mapped to the leaf nodes of a balanced tree,
and group keys are mapped to non-leaf nodes. In addi-
tion, each tag in the system is associated with a leaf
node. A tag obtains its keys on the path from the
associated leaf to the root. Thus, each tag has one
unique key and a set of group keys, denoted as sk and
GK = {gk1, gk2, ...}, respectively. A tag computes a
set of hash values with gi and nonce at each level i of
the tree. Starting from the root, an RF reader tries all
group keys associated with the children of each non-leaf
node. When the reader reaches the bottom of the tree,
it applies sk corresponding to the leaf node. Thus, a
tree-based protocol runs in O(logkN), where k is the
balancing factor of the tree and N is the number of
tags.
While the tree-based approach is fast, it sacrifices

privacy against compromise attacks. Figure 1 illus-
trates the key structure with a binary tree, in which
8 tags are mapped to the leaf nodes. For example,
Tag 3 has a unique key sk3 and the group keys GK3

= {gk1,1, gk2,2}. Should Tag 3 be compromised, an ad-
versary will have all keys that Tag 3 has. Hence, replies
from other tags will be partially disclosed. In addi-
tion, tags are divided into 3 disjoint groups, i.e., {1, 2},
{4}, and {5, 6, 7, 8} as shown in Figure 1. As a result,
anonymity of each tag decreases.
Tree-based protocols have good performance but re-

sult in low anonymity should some tags be compro-
mised. This motivates a number of studies to improve
the privacy protection mechanism of tree-based authen-
tications. To alleviate compromise attacks, Lu et al. [10]
proposed SAP that augments the tree-based authentica-
tion with a dynamic key-updating in which shared keys
in the tree are periodically updated. In [8], Li et al.
successfully reduce the communication overhead based
on cryptographic encodings by having tags reply partial
bits of the path indicator.
Other studies utilize a tree in different ways. Lu et

al. [11] used a sparse tree to reduce the dependency
of shared keys. A path indicator is assigned to each
tag for fast authentication. However, as pointed out

2

by [8], the possible space of path indicators is small
and therefore their protocol is vulnerable to the brute
force attack against hash values of the path indicator
in a tag’s reply. In Yao et al. [17], tags do not share
any key with other tags, and non-leaf nodes are used
as anchors to the corresponding leaf node. By finding
the anchor using the random tree walk, a reader will
find a valid tag’s key. Although Yao et al. claimed that
their approach reduces the authentication complexity
to O(1), tags are required to perform randomized hash
functions, which is not suitable for passive tags with low
computational power.

2.1.3 Group-Based Authentication
In group-based authentication schemes [1,4], tags are

divided into disjoint groups. Each tag has two keys, a
unique key sk and a group key gk. A tag’s reply consists
of two components encrypted by gk and sk, respectively.
A reader first scans all group keys to decrypt the first
component, and then applies the unique keys associated
with the group to the second component.
In group-based authentication, if only a few tags are

compromised, tags in other groups are intact. For ex-
ample, in Figure 2, 8 tags are divided into 4 groups,
each with 2 members. Assume Tag 3, which has sk3
and gk2 is compromised. Although Tag 4’s identity is
disclosed, the other tags are still indistinguishable, i.e.,
Tags 1, 2, 5, 6, 7, and 8, have the anonymity set size of
6.
While group-based protocols improve the anonymity

if only a small portion of tags are compromised, they
result in low authentication efficiency. The possible au-
thentication complexity is O(

√
N).

To improve the privacy protection with a group-based
scheme, Hoque et al. proposed AnonPri [4] where each
tag obtains a set of pseudo IDs from the key issuer.
Then, a tag replies with one of the pseudo IDs that
it has. A reader first scans all group keys to obtain
a pseudo ID in tag’s reply, and then tries all unique
keys associated with the pseudo ID. To guarantee that
AnonPri works, each tag must share every pseudo ID it
has with at least two tags in the same group. By do-
ing so, AnonPri slightly improves the privacy preserving
mechanism. However, the low authentication efficiency
of the group-based approach has not been addressed.

2.2 Skip Lists
Skip lists [13] are a probabilistic data structure that

consists of a set of ordered lists as shown in Figure 3.
At the lowest level (labeled by Level 2), the list contains
all nodes in increasing order of their keys. A node in
the list at a level i > 0 appears at level i − 1 with
probability p. Each node in a list has two pointers to
the node in the left and right directions. The number of
lists in skip lists is log1/pN , where N is the input size,

and the number of nodes scanned at each level is 1
p on

average. Thus, search, insert, and delete operations are
performed in O(log1/pN) and the space complexity is
O(N). Theoretically, skip lists can be considered as an
alternative to a balanced tree.
For example, in Figure 3, to find Key 13, we start

from the top level list. The list at Level 0 has only one
node with Key 15. Since 13 < 15, we travel toward the
left at Level 1. At Level 1, we reach the node with Key
8 which is greater than 13, and then we travel toward
the right at Level 2. Finally, we find node with Key 13.

3. PRIVATE AUTHENTICATION PROTOCOL

3.1 Protocol Overview
In this paper, we propose Randomized Skip-Lists based

Authentication (RSLA) which consists of four compo-
nents: key issuing (initialization), private authentica-
tion, key-updating, and system maintenance.
In the key issuing process, the system generates skip

lists. RF tags are randomly assigned to nodes in the
lowest level list. A unique key and a set of group keys
are assigned to each tag by traveling from a node at the
bottom to the top level list. In the authentication, an
RF reader scans group keys to narrow the search space
of the corresponding unique key for a tag by traveling
from the top list to the bottom list. The key-updating
mechanism makes RSLA more invulnerable, and system
maintenance deals with tags enrollment and removal.

3.2 Definitions and Assumptions
In our assumptions, an RFID system consists of N

tags and a reader, which is connected to the back-end
server. For simplicity, it is assumed that the reader and
the back-end server can securely communicate, and thus
the reader is the final destination of a tag’s data.
nr and nt represent nonce randomly selected by the

reader and a tag, respectively. For a given keyK and an
input x, the hash function H(x) is assumed to be colli-
sion resistant, and an encryption function E(K,x) is im-
plemented by low-cost cryptographic operations [6]. A
reader is assumed to have enough computational power
to run a decryption function D(K,x) with a key K and
an input x.

3.3 Construction of Skip Lists
To construct skip lists for key management, we mod-

ify the construction process as follows. Instead of ran-
domly selecting nodes that appear at the list in the
upper levels, we deterministically select nodes to keep
the number of nodes at each level consistent.
Let Li be the list at the i-th top level. Each list

consists of a set of nodes. A node i, denoted as vi, has
pointers to left and right nodes in the same list, which
are denoted by vi.left and vi.right. The left pointer

3

Figure 4: An example of key issuing.

of the first node and the right pointer of the last node
are null. In addition, the pointers to the first and last
nodes of list Li are kept in Li.head and Li.tail.
We generate skip lists that contain η + 1 lists. Each

list Li contains k
i nodes, where η is defined as ⌈logk(N)⌉

so that we can map all tags to the nodes in the lowest
level list. Note that if there are more than N nodes,
some nodes are not assigned a tag. Given the number
of tags N and a balancing factor k, a list Lη with kη

nodes is first created. Then, node vi is added into Lη−1

if i mod k = 0. For each level j, node vi (0 ≤ j ≤ η−1)
is added into Lj if i mod kη−j = 0. This process is
repeated from η to 0. The top level list always has one
node, i.e., L0 = {v0}, since the number of nodes at the
lowest level list is kη.
Each node in skip lists has a set of keys. We define

vi.key[j] as the variable to store node vi’s key for Level
j. If vi does not appear in Lj , vi.key[j] is empty. As-
suming Tag t is mapped to vi, the unique key skt of Tag
t is located at vi.key[η]. Let us denote gki,j the group
key, which is stored at vi.key[j]. Thus, all nodes in skip
lists have a unique key in v.key[η], and group keys for
Level j (1 ≤ j ≤ η − 1) in v.key[j] if v appears in Lj .
We do not assign any key to the node in the top level
list L0, since L0 has only one node. Thus, v0.key[0] is

Table 1: Definition of notations.
Symbols Definition

k The balancing factor of skip lists
N The number of tags in the system
η The height of skip lists, ⌈logkN⌉
Li The list at Level i in skip lists (0 ≤ i ≤ η)
vi Node i in a list
ski Tag i’s unique secret key
GKi A set of group keys of Tag i, {gk1, gk2, ..., gkη−1}
Ri A set of random numbers of Tag i, {r1, r2, ..., rη−1}

nt, nr Nonces from a tag and a reader
β Tag’s reply, {β1, β2, .., βη}
Nc The number of compromised tags in the system
Ng The number of compromised tags in a group

E(.), D(.) The encryption and decryption functions
H(.) The hash function
A System anonymity
Si Anonymous set that Tag i belongs to

empty.
Since the construction of skip lists is deterministic,

our skip lists with factor k work in similar fashion as a
k-balanced tree. The reason why we employ skip lists
instead of a balanced tree is that the link among the
nodes in the same level is utilized for random rotation.
Thus, we do not have to modify the data structure of
skip lists to achieve the design goals.

3.4 Key Issuing
In RSLA, Tag t has three variables, the unique secret

key skt, a set of group keys GKt, and a set of random
numbers Rt. Each tag t is randomly assigned to a node,
say vi, in the lowest level list Lη. Starting from vi,
the key issuer traverses to L0 by shifting to the left
for rj nodes at each Lj (1 ≤ j ≤ η − 1), where rj is
randomly chosen between 0 and |Lj | − 1 (i.e., kj − 1).
By doing this, the key of the selected node for each level
is assigned to a tag.
At vi in Lη, Tag t obtains the unique key from vi.key[η],

and then the pointer moves to Lη−1. When vi in Lη does
not appear in Lη−1, the pointer first moves to node vj
where j = i− i mod k, and then moves to Lη−1. In gen-
eral, for the current node vi in Lm, the pointer moves to
vj where j = i−i mod kη−m+1, and then goes to Lm−1.
Thus, this can be seen as a parent and children relation
of a k-balanced tree, i.e., vj in Lm−1 has k children vi
in Lm (j ≤ i ≤ j + k − 1).
Every time, the pointer arrives at a upper level list,

for instance Lj , the key issuer takes the left shift by rj
at Lj (1 ≤ j ≤ η − 1). Here, rj is randomly selected
between 0 and |Lj | − 1, and added to set Rt. Note
that the left shift is not taken at the Lη and L0. The
shifting can be done by moving the pointer via vi.left.
If vi.left = null, i.e., vi is the first node in Lj , the
pointer moves to Lj .tail, i.e., the last node in Lj . Let
vi be the node in Lj after shifting. Tag t obtains the
group key from vi.key[j]. Then, the pointer moves to
the upper level. This process continues until the key
issuer reaches L0.
At the end of this process, Tag t has one unique key,

4

η − 1 group keys, and η − 1 random numbers. The
pseudo code of the key issuing is given in Algorithm 1.

Algorithm 1 Key Issue

1: /* Key Issuer does following */
2: Issuer locates all tags t to node vi
3: /* For each tag i Key Issuer does following */
4: for for each tag t in the system do
5: KeyIssue(i, vi)
6: end for
7: /* The function to assign keys to Tag t */
8: KeyIssue(t, vi)
9: /* vi is the current node */
10: Rt = ϕ /* Initialize the random numbers list */
11: GKt = ϕ /* Initialize the grop keys list */
12: / * At the lowest level list Lη */
13: skt ← vi.key[η]
14: vi ← vm where m = i− i mod k
15: for (j from η − 1 to 1) do
16: /* Random shifting by r and add a group key */

17: r
uniform←−−−−−− [0, |Lj | − 1]

18: Add r to Rt

19: vi ← shift to the left by r
20: Add v.key[j] to GKt

21: /* Move to upper level */
22: vi ← vm where m = i− i mod kη−j+1

23: j = j − 1
24: end for

Example Consider an RFID system with 8 tags that
uses skip lists with k = 2 and η = 3 for key assignment
as shown in Figure 4. Tags are mapped to the t-th node
in L3. We illustrate how the key issuer assigns group
keys and random numbers to a tag, for instance Tag 3.
Starting from v3, the key issuer traverses to the top level
list. First, Tag 3 obtains sk3 stored at v3.key[3], and
the pointer moves to Level 2 via v2. Because v3 does
not appear in L2, the pointer goes to v2 (3−3 mod k =
2), and then moves to Level 2. Assume the key issuer
randomly selects r2 = 3 and the pointer shifts to the left
by 3. At the same time, 2 is added to R3. The current
pointer is now at v4 in L2. The issuer assigns gk4,2
stored in v4.key[2] to Tag 3. This process continues
until the issuer reaches L0. Assume Tag 3 selects r1 = 1
at Level 1. It obtains sk3, GK3 = {gk0,1, gk4,2}, and
R3 = {1, 3}.

3.5 Authentication
After issuing keys, the reader can securely communi-

cate with tags. In RSLA authentication protocol, the
reader first sends a query with nonce nr, then a tag
generates a reply message with nonce nt, and then the
reader decrypts the tag’s reply.
Assume Tag t has one unique key skt, a set of group

keys GKt = {gk1, gk2, ..., gkη−1}, and a set of random
numbers Rt = {r1, r2, ..., rη−1}. On receiving a query
with nonce nr from the reader, Tag t generates a re-
ply message with nonce nt. Let β = {β1, β2, ..., βη−1}

be the reply message. Here, βi (i ≤ 1 ≤ η) consists
of a hash value βi.hash and encrypted number βi.num
at each level i. The hash value βi.hash is obtained by
H(gki||ri−1||nt||nr) with the base r0 = empty. In other
words, β1.hash = H(gk1||nt||nr) because there is no ro-
tation at L0. The reason that we include the number
at the previous level, i.e., ri−1 for βi.hash, is to enforce
dependency between the levels to keep high anonymity.
The random number βi.num is encrypted by E(gki, ri).
For the last element βη, the hash value βη.hash is de-
fined by H(skt||rη−1||nt||nr) where the unique key is
used, and βη.num is empty. Finally, the tag sends nt

and β to the reader. Note that β contains η elements.
One is computed by sk; the other η − 1 are computed
by gk. The pseudo code of the replying process is illus-
trated in Algorithm 2.

Algorithm 2 ReplyToReader(nr)

1: /* Assume Tag t has skt, GKt, and Rt */
2: /* where GKt = {gk1, gk2, ..., gkη−1} */
3: /* and Rt = {r1, r2, ..., rη−1} */
4: Generate nonce nt

5: for i from 1 to η − 1 do
6: βi.hash← H(gki||ri−1||nt||nr) /* r0 = empty */
7: βi.num← E(gki, ri)
8: Add βi to β
9: end for
10: βη.hash = H(skt||rη−1||nt||nr)
11: reply nt and β

On receiving Tag i’s reply, the reader scans group
keys associated to nodes from the top level list. At the
beginning, the pointer is at node v0 in L0. In L1, there
are k nodes, and one of them has the group key vi.key[1]
(vi ∈ L1) that matches the group key used for β1.hash.
After finding the corresponding key used for β1.hash,
the reader decrypts β1.num with the key. Then, we first
move the pointer to L1 form L0, and shift the pointer
to the right by β1.num. If the pointer reaches the tail
during shifting, it moves to the head of the same list.
Note that the left shift was taken for key assignment
by traveling from the lowest level, and on the contrary,
the authentication process takes the right shift since the
reader travels skip lists from the top. Assume vi is the
current node after shifting right by r1. The list L2 has
k2 nodes, but only k nodes vj (i ≤ j ≤ i + k) need to
be scanned. This is because one of the k nodes has the
group key for β2. This process continues until the reader
reaches the bottom. Since the key at Lη is unique for
a tag, the reader singulates the tag from β. The reader
scans no more than k keys at each level 1 ≤ i ≤ η,
hence our skip lists imitate the search operation of a k-
balanced tree. During this process, should the reader be
unable to find a group key at any level, the tag’s reply
is invalid and the reader returns a FAIL message. The
pseudo code of the authentication process is provided
in Algorithm 3.

5

Figure 5: An example of authentication.

Algorithm 3 Authentication(nr, nt, β)

1: /* β = {β1, β2, ..., βη}*/
2: v0 ← head /* the pointer to the current node */
3: for j from 1 to η do
4: /* Scan v.key[j] for k nodes from vi */
5: for m from 1 to k do
6: /* Note that the base r0 = empty */
7: if H(vi.key[j]||rj−1||nr||nt) = βj .hash then
8: if j == η then
9: Identify Tag t by the unique key vi.key[j]
10: else
11: r ← D(vi.key[j], βj .num)
12: vi ← shift to the right by r
13: j ← j + 1
14: end if
15: end if
16: m← m+ 1
17: end for
18: if The key is not found for Lj then
19: return FAIL
20: end if
21: end for
22: return t

Example We provide an example to demonstrate how
the reader authenticates Tag 3 as shown in Figure 5.
Tag 3’s parameters are sk3, GK3 = {gk0,1, gk4,2}, and
R = {1, 3}. Thus, the reply of Tag 3 β as follows:

β1 = H(gk0,1||nt||nr), E(gk0,1, 1) (1)

β2 = H(gk4,2||1||nt||nr), E(gk4,2, 3) (2)

β3 = H(sk3||3||nt||nr), empty (3)

On receiving the tag’s reply nt and β, the reader trav-
els skip lists as shown in Figure 5. First, the reader
scans v1.key[1] and v4.key[1] in L1, i.e., gk0,1 and gk4,1,
to compare the obtained hash value with β1.hash. As
the key gk0,1 works, the reader appliesD(gk0,1, β1.num)
and obtains r1 = 1. The reader takes the right shift
by 1, and moves to v4. For Level 2, the reader scans
two nodes as k = 2 in this example, i.e., v4.key[2] and
v6.key[2]. The reader will validate that gk4,2 works for
β2.hash and obtains r2 = 3 from β2.num. This process
continues until the reader reaches the lowest level list
L3. At Level 3, the reader scans the unique keys stored

at v2.key[3] and v3.key[4]. The hash value obtained
with sk3 returns the same value with β3.hash. Since v3
corresponds to Tag 3, the reader finally concludes the
reply comes from Tag 3.

3.6 Key Update
Secure RFID systems should periodically update shared

keys to avoid tag compromise attacks. In SPA [10], the
reader first updates keys at a tag when it accesses the
tag, and then updates the corresponding keys in the key
tree.
However, our RSLA updates keys in the opposite or-

der to simplify the key updating mechanism. First, the
reader updates all the keys in all of the skip lists, and
updates tags’ side upon accessing tags. The new key
is obtained by H(r, v.key[i]) (0 ≤ i ≤ η) where r is a
random number. The old key at a node, for instance
v.key[i] (1 ≤ i ≤ η), is kept as n.old key[i], so that
tags with old keys can be singulated. For tags’ side,
the reader updates a tag’s unique key, group keys, and
random numbers by Algorithm 1 when it accesses a tag.
Therefore, our key-updating mechanism successfully re-
news the keys in the system while the reader can still
access tags with old keys. The pseudo code is given in
Algorithm 4.

Algorithm 4 KeyUpdate

1: Generate a random number r
2: for for each i from 0 to η do
3: v ← Li.head
4: while v.right ̸= null do
5: v.old key[i]← v.key[i]
6: v.key[i]← H(r, v.key[i])
7: v ← v.right
8: end while
9: end for

3.7 System Maintenance
In RFID applications, it is natural that new tags join

and leave the system. Thus, RSLA also provides tag
enrollment and removal mechanisms.
When a new tag joins the system, the system first

6

tries to find a node in the lowest level list Lη such that
no tag is assigned to. If found, the key issuer assigns
a unique key, group keys, and random numbers, by Al-
gorithm 1. If there is no such node, a new set of skip
lists with the same size as the original one will be cre-
ated and assign keys to the new tag. Thus, the reader
needs to scan 2k nodes at the beginning. There are k
keys in the original skip lists; the other k keys are in
the new skip lists. After this, the reader narrows the
search space to either skip lists. This does not affect
authentication efficiency, since only k more keys need
to be scanned by the reader only for the first element
of the reply, i.e., β1.
The tag removing process is simple. The system re-

moves the tag from the corresponding node in Lη.

3.8 Implementation Issue
One of the implementation issues is the small domain

of the random numbers R = {r1, r2, ...}, as each ele-
ment ri is randomly selected between 0 and ki − 1. To
avoid the brute force attack, the domain should be large
enough. Thus, we can select ri between 0 and 232 (ri
will be 32 bits for all i), and then take ri mod ki shift
at Level i. This virtually protects a tag’s replies from
the brute force attack.

4. ANALYSIS

4.1 Performance Analysis
Theorems 1 and 2 show the upper bound and the

average time complexity of authentication in RSLA,
respectively. The authentication running time is de-
termined by the computations of hash and decryption
functions by a reader.

Theorem 1 Given the number of tags N and the bal-
ancing factor k, RSLA runs in O(logkN).

Proof: The number of lists in skip lists is η = ⌈logkN⌉
≤ logkN + 1. The reader scans k nodes for βi.hash
at Level i, and decrypts βi.num. Thus, the number of
computations is at most (k+1)(logkN +1). Therefore,
RSLA singulates a tag in O(logkN).

Theorem 2 Given N and k, the average running time
of RSLA is k+3

2 logkN .

Proof: Let Xi be the random variable which represents
the number of times a reader computes the hash values
at Level i. Since the reader scans at most k nodes in
Li where 1 ≤ i ≤ η, we have 1 ≤ X ≤ k. Thus, the
expected value E[X] is obtained by

∑i=k
i=1

i
k = k+1

2 .
The reader applies the decryption function to obtain

the random number, and thus the average number of
computations at each level equals k+1

2 +1. There are η

lists excluding the top level list where there is no com-
putation. η can be approximated by logkN . Therefore,
the average running time is k+3

2 logkN . This completes
the proof.

We deduce Theorems 3 and 4 for key storage cost of
the system and tags.

Theorem 3 Given the number of tags N and the bal-
ancing factor k, the number of keys in the system is
bounded by O(N).

Proof: Skip lists have η levels, and |Li| = ki number
of nodes for each level i. Since the node n0 in L0 does
not have a key for Level 0, i.e., n0.key[0] = empty, the
number of keys in the system is

∑η
i=1 ki = kN−1

k−1 − 1.

Note that k
k−1 and 1

k−1 are constants because k is a
constant. Therefore, the key storage cost is O(N).

Theorem 4 Given the number of tags N and the bal-
ancing factor k, the storage cost for tags is bounded by
O(logkN).

Proof: A tag has one unique key, η−1 group keys, and
η − 1 random numbers. As η ≤ logkN + 1, the storage
cost for tags is O(logkN). This concludes the proof.

4.2 Unlinkability
In this subsection, we demonstrate unlinkability of

RSLA. Unlinkability is defined as a state that two or
more tags are no more or no less related after observing
tags’ replies. That is, the probability for adversaries to
identify (or relate) tags’ authenticity from two or more
tags’ replies does not increase by observing the tags’
replies.

Lemma 5 Without having the key to βi, an interroga-
tor (a reader or an adversary) cannot find the corre-
sponding key to βi+1.

Proof: The proof is by contradiction. For a given set
of keys GK = {gk1, gk2, ..., gkη−1} and β, assume an
interrogator can find the key gki+1 for βl+1 without the
key gki for βi. Recall that βi+1.hash is computed by
H(gki+1||ri||nt||nr). This indicates that even if the ad-
versary has the key gki+1, she cannot conclude the key
is valid for βi+1.hash without the random number ri,
which can only be obtained by decrypting βi.num with
the key gki. Hence, the interrogator must have gki to
find gki+1 for βi+1. This is a contradiction. Therefore,
the claim must be true.

7

Theorem 6 Given a compromised tag t and uncompro-
mised tag t′, the unlinkability of two tags holds as long
as GKt ̸= GKt′ , where GKt = {gk1, gk2, ..., gkη−1} and
GKt′ = {gk′1, gk′2, ..., gk′η−1}

Proof: The proof is by contradiction. Assume an ad-
versary can tell the location of the nodes in Lη that
Tags t and t′ are mapped to when GKt ̸= GKt′ . Note
that we have η − 1 = |GKt| = |GKt′ |. If there exists
the case such that gki ̸= gk′i for some gki ∈ GKt and
gk′i ∈ GKt′ , the adversary cannot distinguish gkη−1 and
gk′η−1 by Lemma 5. This is a contradiction. Therefore,
the unlinkability of two tags holds as long as GK ̸=
GK ′. This concludes the proof.

By Theorem 6, two tags, say t1 and t2, are indis-
tinguishable as long as GKt1 ̸= GKt2 . This means
that even if Tag t1 is compromised, the anonymous set
size of t2 remains N − 1. On the other hand, should
GKt1 = GKt2 , the adversary can conclude the node,
to which t2 is mapped in Lη, is one of k nodes. Note
that this group with k nodes in skip lists is similar to a
branch with k children in a tree. Thus, the anonymity
set size of Tag t2 is k − 1 if it is in the same group as
Tag t1. Otherwise, the anonymity set size is k. How-
ever, the probability is very small. This results in a high
anonymity under fast authentication.

4.3 Analysis for Compromise Attacks
A privacy protection mechanism against the compro-

mise attack can be measured by anonymity. Anonymity
is a state of not being identifiable within an anonymous
set. Let Si be the anonymous set that Tag i belongs to.
According to [4], the system anonymity, denoted as A,
can be formulated as Equation 4.

A =
1

N2

∑
i

|Si|2 (4)

When no tag is compromised, |Si| for any tag i equals
N and therefore A equals 1. The system anonymity
decreases as the number of compromised tags increases.
When a tag is compromised, the adversary will have

the unique key, group keys, and random numbers. Since
RSLA takes a random shift at each level of skip lists,
any pair of two tags cannot be linked unless they have
all their group keys in common. Let Tc be the set of
compromised tags, and Nc (1 ≤ Nc ≤ N − 1) be |Tc|.
A compromised tag t in Tc always has |St| = 1. On
the other hand, we can obtain |St′ | which an uncom-
promised tag t′ (t′ /∈ Tc) belongs to as follows. By the
definition of search over skip lists, the nodes in the low-
est level are divided into a number of groups with each
having k nodes (which is similar to branches in a bal-
anced tree). If there is at least one compromised tag t
in Tc that has all group keys in common as Tag t′, the
adversary knows the group that t′ belongs to. Let Ng

(0 ≤ Ng ≤ k − 1) be the number of compromised tags
in the same group as t′. We can derive two cases as
follows.

1. If ∃ t ∈ Tc s.t. GKt = GKt′ , |St′ | = k −Ng.

2. If ∀ t ∈ Tc GKt ̸= GKt′ , |St′ | = N −Nc.

Note that P [∃t∈Tc s.t. GKt=GKt′] is 1−(1− 1
kη−1)

Nc

and thus is very small. By computing an anonymous set
size for each tag, we can obtain the system anonymity
by Equation 4.

Example Assume tag 3 is compromised in Figure 5,
where N = 8 and k = 2. Tag 2’s anonymous set size
will be 1 in Case 1, and 7 in Case 2. The anonymous
set size of other tags (Tag 0, 1, and 4 to 7) will be 2 in
Case 1, and 7 in Case 2.

Next, we formulate the average anonymous set size
of a tag when Nc tags are compromised. Let us say σ
= (1− 1

kη−1)
Nc . The expected anonymous set size of an

uncompromised tag E[|S|] is computed by Equation 5.

E[|S|] = (1− σ)(k − E[Ng]) + σ(N −Nc) (5)

Here, E[Ng] can be obtained by

E[Ng] =
k−1∑
i=0

(k − i)

(
Nc

i

)
(
k

N
)i(

N − k

N
)k−1−i. (6)

4.4 Qualitative Security Analysis
In this subsection, we analyze how RSLA achieves the

security/privacy requirements.
Privacy - Privacy of tags preserved by encrypting data
with a tag’s unique key.
Untraceability - With key-updating mechanism and
nonces by the reader and a tag, the result of a tag’s re-
ply change from time to time. Hence, adversaries can-
not distinguish two different replies from the same tag
by one-way properties of a hash function with different
keys. Therefore, adversaries cannot track tags.
Cloning attack resistance - In this attack, an adver-
sary obtains a tag’s reply and then sends it to a reader,
i.e., cloning tag’s reply. Similar to existing works, the
use of nonces by the reader and a tag avoids cloning
attacks.
Forward security - This requirement prevents an
adversary from obtaining the contents in the previous
interrogations by the current keys of a compromised tag.
Our key-updating mechanism guarantees the forward
security, since adversaries cannot deduce the old key
from the current key of compromised tags.

5. PERFORMANCE EVALUATION
To evaluate the performance of the proposed RSLA,

simulations are conducted with existing solutions, in-
cluding static tree [12], SPA [10], group-based [1], and
AnonPri [4].

8

5.1 Simulation Configuration
In the simulations, an RFID system contains one RF

reader and a number of tags. The number of tags ranges
from 256 (28) to 16384 (214), or is set to be 4096 if
specified. During simulations, Nc tags are randomly
selected as being compromised, where Nc ranges from
0 to 512.
The parameters for each protocol is set to be as fol-

lows. Unless specified, the balancing factor k in RSLA is
set to be 2, i.e., the skip lists behave like a balanced bi-
nary tree. For fair comparison, the static tree and SPA
is implemented with a balanced binary tree. In group-
based protocols, the size of each group is 64, which is the
same setting as [4]. For AnonPri, the size of pseudo IDs
pool in the system and the number of pseudo IDs that
each tag has are set to be 1000 and 10, respectively. In
addition, we assume that AnonPri always succeeds, i.e.,
we initialize key issuing to guarantee that a tag shares
its pseudo ID with at least two members in the group.
We consider three scenarios, static systems, dynamic

systems, and the optimization of skip lists.
Static Systems - In the static system scenario, tags do
not update their keys. To assess the degree of privacy,
the system anonymity is computed under the assump-
tion that the adversary obtains the unique key as well
as all the group keys from the compromised tags. In ad-
dition, the singulation efficiency and cost are measured
by the average authentication speed for a tag and the
number of keys in the system, respectively. Authenti-
cation speed is defined as the number of executions of a
hash and encryption functions. Note that SPA provides
a key updating mechanism, and the other parts are the
same as the static tree. Therefore, we compared our
RSLA without the key-updating with the static tree,
the group-based, and AnonPri.
Dynamic Systems - In the dynamic systems sce-
nario, tags periodically update their keys. First, Nc

tags are randomly selected as being compromised. Sec-
ond, we measure the system anonymity. Third, another
set of Nc tags is randomly selected and they update
their keys. Nc ranges from 1 to 512. Note that the
system anonymity is measured before tags update their
keys, since the system is more vulnerable when tags are
just compromised. In addition, static tree, group-based,
and AnonPri do not have a key updating mechanism,
and thus we exclude them from the consideration in this
scenario.
The Optimization of Skip Lists - To investigate
how the balancing factor k affects the performance, we
conducted simulations of RSLA with the k-balanced
skip lists, where k = 2, 4, 8, 16.

5.2 Simulation Results of Static Systems
Figure 6 illustrates the system anonymity with re-

spect to the number of compromised tags. Clearly,

RSLA achieves much higher anonymity than other pro-
tocols, and significant improvement from the existing
solutions can be seen. As indicated in [5], the anonymity
of AnonPri and the group-based protocol is similar.
Figure 7 demonstrates the authentication speed with

respect to the number of tags. Since skip lists and a
tree structure run in logkN , both RSLA and the static
tree can quickly singulate a tag. In addition to com-
puting a hash function, RSLA is required to decrypt
a random number at each level of skip lists, and so it
incurs slightly high overhead compared with the static
tree. In contrast, AnonPri and the group-based proto-
col take a much longer time for authentication as the
scale of the system increases.
Figure 8 presents the number of unique keys and

group keys in the system. RSLA has the same amount
of key storage cost as the static tree, since the construc-
tion of our skip lists creates the same number of nodes
as a balanced tree. Although AnonPri and the group-
based protocol do not require that much storage cost
compared with ours, the difference is small.

5.3 Simulation Results of Dynamic Systems
Figure 9 shows the anonymity of RSLA and SPA with

respect to the number of compromised tags. From the
figure, we can see that RSLA improves the anonymity
compared with SPA, especially when a large number of
tags are compromised. Therefore, we can say that our
RSLA is the best alternative for a tree-based authenti-
cation protocol.

5.4 The Optimization of Skip Lists
Figure 10 depicts the anonymity of RSLA with dif-

ferent balancing factors with respect to the number of
compromised tags. By Theorem 6, two tags t and t′ are
indistinguishable as long as GKt ̸= GKt′ . Thus, the
balancing factor k should minimize P [GKt = GKt′].
As η = ⌈logkN⌉ = logkN + c where 0 ≤ c ≤ 1, we can

derive P [GKt = GKt′] =
1

kη−1 = k1−c

N . Since k ≥ 2,
the optimal value is k = 2 for high anonymity, and
anonymity decreases as k decreases. This figure vali-
dates our analysis.
Figure 11 shows the authentication time and the num-

ber of keys in the system required by RSLA with dif-
ferent balancing factors with respect to the number of
tags. Although the balancing factor affects authentica-
tion speed, the increase of authentication time is small.
On the contrary, the value of k is critical to the key
storage cost. For example, the number of keys is large
when k = 14. Recall in this simulation, N is set to be
4096. We have 143 < 4096 < 144 and thus skip lists
must contain 4 lists. This indicates that the system has
7050 keys (2744 shared keys and 4096 unique keys). On
the contrary, When k = 16, 163 = 4096 and the num-
ber of keys in the system will be 4368. This implies

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

Sy
st

em
 A

no
ny

m
ity

Number of Compromised Tags

Static Tree
Group-based

AnonPri
RSLA

Figure 6: System anonymity.

 0

 50

 100

 150

 200

 250

 256 512 1024 2048 4096 8192 16384

A
ut

he
nt

ic
at

io
n

T
im

e

Number of Tags

Static Tree
Group-based

AnonPri
RSLA

Figure 7: Authentication speed.

102

103

104

105

 256 512 1024 2048 4096 8192 16384

K
ey

 S
to

ra
ge

 C
os

t

Number of Tags

Static Tree
Group-based

AnonPri
RSLA

Figure 8: Storage cost.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

Sy
st

em
 A

no
ny

m
ity

Number of Compromised Tags

SPA
RSLA

Figure 9: System anonymity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

Sy
st

em
 A

no
ny

m
ity

Number of Compromised Tags

k=2
k=4
k=8

k=16

Figure 10: Anonymity with dif-
ferent k values.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 8 16
 0

 2000

 4000

 6000

 8000

 10000

A
ut

he
nt

ic
at

io
n

T
im

e

K
ey

 S
to

ra
ge

 C
os

t

Number of Branches

Authentication time
Number of keys

Figure 11: Performance with dif-
ferent k values.

that the balancing factor has a significant impact on
the authentication speed and the degree of privacy.

6. CONCLUSION
Large-scale RFID systems always have tradeoffs be-

tween performance and security/privacy. The private
authentication protocols proposed in the past are either
slow or vulnerable to active attacks. In this paper, we
propose RSLA which provides both high authentication
efficiency and a strong privacy protection mechanism.
RSLA relies on skip lists, a different data structure from
the existing solutions. In addition, performance and se-
curity/privacy analyses are conducted. Our simulations
demonstrate that our RSLA outperforms existing solu-
tions in terms of authentication speed and degree of
privacy. We believe the proposed skip lists-based ap-
proach is the most suitable authentication scheme for
the next generation RFID systems.

7. REFERENCES
[1] G. Avoine, L. Buttyan, T. Holczer, and I. Vajda.

Group-based Private Authentication. In WoWMoM, pages
1–6, 2007.

[2] A. Czeskis, K. Koscher, J. R. Smith, and T. Kohno. RFIDs
and Secret Handshakes: Defending against
Ghost-and-Leech Attacks and Unauthorized Reads with
Context-Aware Communications. In CCS, pages 479–490,
2008.

[3] T. Dimitriou. A Secure and Efficient RFID Protocol that
cold make Big Brother (partially) Obsolete. In PerCom,
pages 269–275, 2006.

[4] M. E. Hoque, F. Rahman, and S. I. Ahamed. AnonPri: An
Efficient Anonymous Private Authentication Protocol. In
PerCom, pages 102–110, 2011.

[5] C. Huang and H. Min. A New Method of Synchronization
for RFID Digital Receivers. In ICSICT, pages 1595–1597,
2006.

[6] A. Juels. Minimalist Cryptography for Low-Cost RFID
Tags. In SCN, pages 149–164, 2004.

[7] W.-S. Ku, K. Sakai, and M.-T. Sun. The Optimal
k-Covering Tag Deployment for RFID-Based Localization.
Special Issues of JNCA on RFID Technology, Systems, and
Applications, 34(3):914–924, 2011.

[8] T. Li, W. Luo, Z. Mo, and S. Chen. Privacy-Preserving
RFID Authentication based on Cryptographical Encoding.
In Infocom, pages 2174–2182, 2012.

[9] T.-L. Lim, T. Li, and S.-L. Yeo. Randomized Bit Encoding
for Stronger Backward Channel Protection in RFID
Systems. In PerCom, pages 40–49, 2008.

[10] L. Lu, J. Han, L. Hu, Y. Liu, and L. M. Ni. Dynamic
Key-Updating: Privacy-Preserving Authentication for
RFID Systems. In PerCom, pages 13–22, 2007.

[11] L. Lu, J. Han, R. Xiao, and Y. Liu. ACTION: Breaking the
Privacy Barrier for RFID Systems. In Infocom, pages
1951–1961, 2009.

[12] D. Molnar and D. Wagner. Privacy and Security in Library
RFID Issues, Practices, and Architectures. In CCS, pages
210–219, 2004.

[13] W. Pugh. Skip Lists: a Probabilistic Alternative to
Balanced Trees. Comms. of the ACM, 33(6):668–676, 1990.

[14] K. Sakai, W.-S. Ku, R. Zimmermann, and M.-T. Sun.
Dynamic Bit Encoding for Privacy Protection Against
Correlation Attacks in RFID Backward Channel. IEEE
Transactions on Computers, 62(1):112–123, 2013.

[15] S. Wagner, M. Handte, M. Zuniga, and P. J. Marron. On
Optimal Tag Placement for Indoor Localization. In
PerCom, pages 162–170, 2012.

[16] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels.
Security and Privacy Aspects of Low-Cost Radio Frequency
Identification Systems. In SPC, pages 201–212, 2003.

[17] Q. Yao, Q. Qi, J. Han, J. Z. X. Li, and Y. Liu. Randomized
RFID Private Authentication. In PerCom, pages 1–10,
2009.

10

