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Abstract

Blue noise sampling is an important component in many graphics
applications, but existing techniques consider mainly the spatial po-
sitions of samples, making them less effective when handling prob-
lems with range features, such as color and geometry. Inspired by
bilateral filtering, we propose a bilateral blue noise sampling strat-
egy. Our key idea is a new sample-distance measure that considers
not only samples’ spatial domain locations but also their underlying
range features. This measure is easy to implement and compatible
with most previous sampling techniques. Based on this, we present
bilateral blue noise synthesis algorithms and we perform a quality
analysis on their results. We demonstrate the effectiveness of our
method in a number of applications, including geometry sampling,
dynamic stippling, and nonlinear filtering.

Keywords: bilateral, blue noise, sampling, filtering, stippling, do-
main, range, geometry, image, video

1 Introduction

Sampling is a fundamental component for a variety of computa-
tional tasks. Given a fixed number of samples, the goal is to
best represent a given sample domain and its corresponding feature
range. While the notion of “best representation” is application de-
pendent, it often consists of two main components: spatial domain
blue noise and range feature preservation. Here, blue noise refers
to sample distributions that are uniform and yet random, resulting
in reduced noise and aliasing [Cook 1986; Ulichney 1987]. For ex-
ample, in image stippling [Balzer et al. 2009; Li et al. 2010; Fattal
2011], the domain is a 2D pixel grid, the range is the pixel color,
and the goal is to distribute the stipples as spatial blue noise and yet
depicts the underlying image colors. As another example, in geom-
etry sampling [Öztireli et al. 2010], the domain is a 3D point cloud,

the range is the surface normal, and the goal is to sub-sample the
points so that the output can reproduce smooth and sharp regions of
the underlying surface. While different applications have different
range features, it is difficult to preserve both domain blue noise and
range feature, since they conflict with each other in many cases.
Although researchers have carried extensive research on preserving
either of them, no existing techniques can handle both well as far as
we know. Without considering range features, the results will lose
interesting details as the left column in Figure 1 shows.
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Figure 1: Domain versus bilateral sampling. We propose a new sample-
distance measure that considers both spatial domain blue noise and range
feature, for uniform and non-uniform sampling problems. Our result
demonstrates the effectiveness of this method in multiple cases, including
uniformity of the sub-sampled point clouds, fidelity of the filtered image col-
ors, or clarity of the stippled video contours. Sample point colors in (a) and
(b) indicate whether the points are on front or back surfaces.

We present bilateral blue-noise sampling, a general method whose
sampling results preserve both domain blue noise and range fea-
tures. Our basic idea is a sample-distance measure that incorpo-
rates both sample domain positions and range features. This idea is
inspired by bilateral filtering [Tomasi and Manduchi 1998], a sim-
ple yet elegant technique that has been widely in graphics, vision,



and image processing applications (e.g., [Paris et al. 2009] and ref-
erences within). Our idea shares similar simplicity and generality,
and it can be readily combined with prior blue noise sample analy-
sis and synthesis algorithms.

In this paper, we demonstrate scenarios that can benefit from our
method, including geometry sampling, dynamic stippling, and non-
linear filtering. For the uniform geometry point-cloud sampling
case, traditional blue noise that considers only Euclidean distances
can easily mix up samples that are spatially close but with oppo-
site normal directions, as Figure 1a shows. By considering both
Euclidean distance and point normals, our method can produce de-
sired uniform spatial sampling as shown in Figure 1b. For the bilat-
eral image filtering case, placing filter taps via uniform spatial blue
noise [Banterle et al. 2012] can increase filtering efficiency but miss
image content potentially, such as broken lines on the music sheet
in Figure 1c. Our method, by considering both spatial positions and
image colors, can preserve such content while retaining benefits of
spatial blue noise as in Figure 1d. For the adaptive video stippling
case, our method preserves contours better than traditional dynamic
blue noise [Vanderhaeghe et al. 2007], as shown in Figure 1f and 1e.

2 Previous Work

Bilateral filtering Bilateral filtering is a simple yet effective
feature-preserving smoothing algorithm. It has been applied to a
variety of image and mesh problems [Tomasi and Manduchi 1998;
Jones et al. 2003; Paris et al. 2009; Huang et al. 2012]. Similar to
bilateral filtering, our bilateral blue noise sampling method can pre-
serve range features well, especially when compared with previous
blue noise techniques.

Blue noise sampling Blue noise sampling generates random
samples with uniform distribution. It is known for its uniformity in
the spatial domain, low noise/aliasing in the spectrum domain, and
its robustness when used in numerical applications [Lloyd 1983;
Dippé and Wold 1985; Cook 1986; Mitchell 1987; Turk 1992;
Glassner 1994; Alliez et al. 2002; Dutre et al. 2002; Pharr and
Humphreys 2004; Ostromoukhov et al. 2004; Kopf et al. 2006; Os-
tromoukhov 2007; Fu and Zhou 2008; Balzer et al. 2009; Wei 2010;
Öztireli et al. 2010; Fattal 2011; Ebeida et al. 2011; Kalantari and
Sen 2011; Schlömer et al. 2011; de Goes et al. 2012]. Unfortu-
nately, many existing blue noise sampling techniques were devel-
oped without taking feature preservation into consideration. While
some recent ones [Pang et al. 2008; Chang et al. 2009; Li et al.
2010; Kalantari and Sen 2011] incorporate features into their for-
mulae, they are limited to specific problems, such as regular grids
for halftoning [Pang et al. 2008; Chang et al. 2009], or thin image
features through maximal point set and min-conflict metric [Kalan-
tari and Sen 2011]. In some cases, it may become a tradeoff be-
tween blue noise properties and feature preservation, as Li and col-
laborators showed [Li and Mould 2010; Li and Mould 2011].

Importance sampling Even though non-uniform blue-noise al-
lows samples to be distributed with density proportional to the im-
portance of domain regions (see e.g. [Balzer et al. 2009; Li et al.
2010; Fattal 2011; de Goes et al. 2012]), this is not the same as fea-
ture preservation. For one, importance sampling is likely to miss
a sharp or thin feature with near zero area, even if a very high im-
portance value is given. For two, if the importance changes dra-
matically as it often does in images and geometry models, sam-
ples in less importance areas may squeeze out nearby samples over
sharp features. It is desirable to have a feature-preserving blue-
noise sampling method without these problems. See Figure 1 and
6 for comparisons. In addition, importance sampling cannot help
uniform sampling that requires to consider both domain and range
properties, since it is not intuitive to specify “importance” as shown
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Figure 2: The effect of σv . When σp = 1, a smaller σv can cause more
samples to be placed near features, such as ridges and corners. Setting
σv = ∞ reduces our method to traditional blue noise sampling. We use
normal direction as feature v in this example.

in Figure 1. That being said, importance, and general non-uniform
sampling, is orthogonal to our bilateral method and they can com-
bined for better sampling results.

Feature-aware sampling Feature-aware sampling methods have
been designed for various applications, such as stippling [Kim et al.
2008; Li and Mould 2011], half-toning [Li and Mould 2010], and
meshing [Lévy and Liu 2010]. However, they usually do not pre-
serve blue noise properties, which are desired by the corresponding
applications. The spectral sampling in [Öztireli et al. 2010] is a
notable exception in that it also attempts to keep some blue noise
properties as a by-product of feature-preservation. Our method can
better preserve both blue noise characteristics and surface features.
Furthermore, most of these methods are designed for one particular
application and they are not generic enough as ours.

3 Bilateral Sampling

Given a target domain, such as an image, video, or mesh, our goal
is to generate a set of blue noise samples that are representative to
the underlying range features. The blue noise property can be eval-
uated by a unified approach, such as power spectrum and spatial
uniformity [Wei and Wang 2011]). How representative the samples
are to the features is a more application-dependent problem and we
will study it using different measures, including surface reconstruc-
tion for geometry sampling, visual perception for image filtering,
or temporal coherence for dynamic stippling.

The basic idea behind bilateral blue noise sampling is to define a
distance d between any two samples s and s′:

d2(s, s′) = d2
p(s, s

′) + d2
v(s, s′)

=

∥∥∥∥p(s)− p(s′)

σp

∥∥∥∥2

+

∥∥∥∥v(s)− v(s′)

σv

∥∥∥∥2

(1)

, in which p is the sample’s position vector, v is the sample’s fea-
ture vector, and σp and σv are the weights. Intuitively, p and v
correspond to the domain and range parts of bilateral filtering. dp
is the spatial sample distance in traditional blue noise sampling,
either Euclidean (e.g. image sampling) or Riemannian (e.g. sur-
face sampling). dv is the application-specific feature distance. For
example, in geometry sampling, we can have v = n, the surface
normal. In image stippling, we can have v = c, the pixel colors.
The coefficients σp and σv provide a balance between blue noise
and feature preservation. When σv = ∞, our method is reduced
to conventional blue noise sampling, and when σv gets smaller, our
method puts more emphasis on features than blue noise, as Figure 2
shows. In our experiment, we set σp = 1 and σv ∈ [7, 11].

Equation 1 will be used in both synthesis and analysis. For synthe-
sis, we will generate random samples in a given domain Ω, such
that the samples are uniformly distributed according to the distance
measure in Equation 1. For analysis, we will evaluate Equation 1



using quality measures, including spatial measures (such as mini-
mum spacing ρ [Lagae and Dutré 2008]) and spectrum measures
(such as differential domain analysis [Wei and Wang 2011]).
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Figure 3: Manifold interpretation. Given a spatial domain Ω (horizontal
axis) with features v (vertical axis), if we perform a uniform sampling (•)
in the corresponding manifold M embedded in a higher dimensional space
Ψ, the corresponding samples (•) manifested in Ω can have non-uniform
distributions induced by the features.

If we assume that p and v form a large vector in a higher-
dimensional space Ψ, Equation 1 basically calculates the distance
between two samples in Ψ. Bilateral sampling generates random
samples over an embedded manifold M in Ψ, and the result is their
projections to a lower-dimensional space, as Figure 3 shows. Under
the simplest case of uniform analysis/synthesis with v as the only
source of non-uniformity, we are essentially performing a uniform
sampling of M for synthesis, and gauging the distribution unifor-
mity over M during analysis.

Approximation Direct sampling over a high dimensional mani-
fold M , even though possible, can be daunting both algorithmically
and computationally. We can avoid this and keep all computations
in the original domain Ω through the anisotropic approximations
described in [Li et al. 2010]. Intuitively, we absorb all anisotropy
introduced by features v between Ω and M into local Jacobian ma-
trices J, and use these as local linear approximations for conducting
analysis or synthesis on Ω. We compute J following the approach
of [Li et al. 2010], treating Equation 1 as a global map/warp ϕ from
a high dimensional ( p

σp
, v
σv

) (uniform) domain Ω′ to the p only
(non-uniform anisotropic) domain Ω.

For domain Ω , the corresponding Jacobian J can be derived as
follows. For notational simplicity, let

p̂ =
p

σp
, v̂ =

v

σv
(2)

. We have

J(ϕ−1) =

(
Jp(p̂)
Jp(v̂)

)
(3)

, where Jx(y) indicates the jacobian of y relative to x. Note that
Jp(p̂) = 1

σp
I (with I indicating the identity matrix) only if the

domain Ω is (spatially) Euclidean.

For clarify, in the following we treat σp and σv as global constants;
the derivations can be easily extended for varying σp and σv .

4 Synthesis

Our method can be applied to prior sampling methods by simply
replacing the traditional position-only distance with our bilateral
distance as described in Section 3. Below, we provide concrete
examples for two popular algorithms, dart throwing and relaxation.

4.1 Dart Throwing

Dart throwing [Dippé and Wold 1985; Cook 1986] produces indi-
vidual samples stochastically subject to the constraint that no two
samples s and s′ can be closer to each other than a pre-determined
distance threshold r(s, s′). All we need to do is to plug in our bilat-
eral distance d from Equation 1 in lieu of the spatial-only distance
in traditional dart throwing. By using different r(s, s′) representa-
tions, our method can be orthogonally applied for various sampling
scenarios, including uniform (r is a constant), isotropic (r(s, s′)
depends on the distance between s and s′ but not their relative di-
rection), and anisotropic (an accurate directional function r(s, s′)
or the Jacobian approximation in [Li et al. 2010]).

4.2 Relaxation

Lloyd relaxation [Lloyd 1983] is another classical method that has
been applied to generating blue noise samples. Unlike dart throw-
ing which generates samples from scratch, relaxation starts from
a given sample distribution and gradually improves its uniformity.
Let S be a set of samples (or “sites” in the jargon of [Balzer et al.
2009]) whose distribution we wish to optimize for. The uniformity
of S can be measured by the following energy function:

E(S,V) =
∑
i

∫
s′∈Vi

d2(s′, si)ds
′ (4)

, where V is the Voronoi tessellation generated from S, Vi the
Voronoi region corresponding to site si ∈ S, s′ a point in the do-
main Ω. The major difference here is that we are using our bilateral
distance measure for d in Equation 1 instead of a pure spatial do-
main distance. Lloyd relaxation minimizes this energy function by
iterating between the following two steps, Voronoi and centroid,
until sufficient convergence:

Voronoi For each point s′ ∈ Ω, find the site s(s′) that is the clos-
est to s′ among all sites in S:

s(s′) = arg min
s∈S

d2(s′, s) (5)

. Our bilateral distance can be directly plugged in here without
changing the underlying search algorithm.

Centroid Move each site si ∈ S to the centroid mi of the cor-
responding Voronoi region Vi ∈ V to minimize the corresponding
energy term: ∫

s′∈Vi
d2(s′, si)ds

′ (6)

. This can be achieved over the embedded manifold M (see our
manifold interpretation in Section 3 and [Du et al. 2002]), or in the
original domain Ω via the Jacobian approximation [Li et al. 2010]
as follows:

mi =

(∫
Vi

JTJ(s′)ds′
)−1 ∫

Vi

JTJ(s′)s′ds′ (7)

, where J is the Jacobian computed via Equation 3.

Note that even though our centroid step is only approximate, it
works well when the sampling density is sufficient (relative to do-
main variations), as discussed in [Li et al. 2010]. Also, unlike [Li
et al. 2010] whose Voronoi step is also approximate, our Voronoi
step uses exact d without any approximation. This is usually a
good tradeoff, as the Voronoi step tends to involve longer spaced



site/point pairs than the centroid step, especially during the earlier
stages of the iterations.

Our method can also be directly extended for non-uniform relax-
ation [Li et al. 2010] and various forms of capacity constraints
[Balzer et al. 2009; Chen et al. 2012; de Goes et al. 2012]. De-
tails can be found in the supplementary materials.

5 Analysis

Sample distributions can be analyzed through a variety of criteria,
including both qualitative visual comparisons as well as quanti-
tative measures, including spatial uniformity ρ [Lagae and Dutré
2008] and differential-domain spectrums (DDA) [Wei and Wang
2011] for blue noise, and Hausdorff distance H for geometry fea-
ture preservation. Some of these methods can be applied directly
(e.g. H), while others (e.g. ρ and DDA) need to incorporate our
bilateral distance measure (Equation 1). Below we provide a con-
crete example for [Wei and Wang 2011], a general method for ana-
lyzing non-uniform distributions using spatial statistics with direct
connection to Fourier spectrums.

Exact computation over M In general, sample distributions
produced by our methods in Section 4 can be anisotropic due to the
presence of the feature term in Equation 1, even though the domain
Ω itself is uniform without considering the features. Conceptually,
we can follow the manifold interpretation in Section 3 and perform
exact analysis by warping every sample s in the original domain Ω
into the higher dimensional M , and perform spatial and spectrum
analysis there. For example, we can use the following formula for
the differential domain analysis in [Wei and Wang 2011]

χ(d) = ϕ−1(s)− ϕ−1(s′) (8)

, where d = s − s′ is the differential between s and s′ in Ω, χ is
the differential transformation, and χ(d) is the transformed d in Ψ.

However, in order to do the above, we will need to define a global
orientation field over M (analogous to the analysis of surface sam-
pling in [Wei and Wang 2011]). This is doable for lower dimen-
sional M (e.g. for stippling gray scale images for which M is a
2-manifold embedded in a 3D Ψ), it is not clear to us how to com-
pute such orientation fields for higher dimensional cases (e.g. a
2-manifold M embedded in a 6D Ψ for sampling 3D surfaces). For
such cases, we resort to approximations described below.

Approximation in Ω We can avoid directly dealing with higher
dimensional manifolds M and keep all analysis computations in the
original domain Ω using the anisotropic analysis method in [Wei
and Wang 2011] with the Jacobian approximation described in Sec-
tion 3. However, the Jacobian in Equation 3 above might not be
square due to the presence of v. This can cause issues for analy-
sis methods that require square Jacobians such as [Wei and Wang
2011] which needs to preserve the dimension of d after χ. We
can address this following the approach described in the extended
version of [Wei and Wang 2011] based on the simple observation:
since the distance measure in [Li et al. 2010] depends on only JTJ,
not J itself, all we need is to derive a square J′ so that

JTJ = J′TJ′ (9)

. This can be achieved by the standard matrix square root method:

JTJ = VTDV (10)

, where V is an orthonormal matrix and D a diagonal matrix. Note
that since JTJ is positive definite, D will contain only non-negative

diagonal elements. Thus, we have

J′ = VT
√
DV (11)

. Following Equation 15 of [Wei and Wang 2011] for anisotropic
sampling, we have d = s− s′, and

χ(d) =
1

E (λ)

(
J′−1(s) + J′−1(s′)

2

)−1

(s− s′)T (12)

, whereE (λ) is the mean of the eigenvalues of J ′(.) over Ω. Notice
the use of J′ instead of J allows us to compute different domain
spectrum with the same dimensionality as the sample space Ω.

6 Results

In this section, we present our results in three applications: geome-
try sampling, dynamic stippling, and nonlinear filtering.

6.1 Geometry Sampling

Geometry sampling is important for graphics and simulation, and
can benefit from sample distributions that preserve both features
and blue noise properties. In particular, allocating samples at fea-
tures such as tips and creases are critical in preserving the original
geometry, while distributing samples with blue noise properties can
avoid undesirable aliasing or bias in computations involving surface
samples [Turk 1991; Turk 1992; Fu and Zhou 2008]. Our method
can be of help here by simply using geometry information (e.g. sur-
face normal n) as the feature v in Equation 1.

Here, we use point cloud down-sampling as a specific example
[Öztireli et al. 2010]. Similar to [Öztireli et al. 2010], we assume
the input consists of a point cloud with per vertex position and nor-
mal direction (which can be estimated through various methods as
discussed in [Öztireli et al. 2010; Huang et al. 2012]). Our method
can use geometry measures other than surface normal n (which
tends to be noisy) as the feature v, but we will focus on n for easy
presentation and comparison with [Öztireli et al. 2010]. Because
the underlying surface of the input geometry is unknown, it is im-
possible to use accurate geodesic distances among samples. Thus,
Euclidean distance is commonly used as an approximation, which
is usually adequate with sufficiently dense input samples.

Traditional blue noise sampling, by considering only sample po-
sitions, might incorrectly handle samples that have close spatial
proximity but differ sufficiently in normal directions, such as sam-
ples lying on the opposite sides of a thin feature. The spectrum
method in [Öztireli et al. 2010] considers both position and normal
and thus provides better results, but our method is much simpler
and produces even better results. We illustrate these in Figure 4
& 5, comparing the two main sampling methods for dart throwing
and relaxation, which correspond to the sub-sampling and gradient-
ascent methods in [Öztireli et al. 2010], respectively. As shown,
bilateral dart-throwing/relaxation can produce more effective dis-
tributions (more uniform and better feature preservation) than sub-
sampling/gradient-ascent, resulting in better surface reconstruction
quality. Notice the thicker ring on the top of the bow lip and the
hole on the apex of the moose horn.

6.2 Dynamic Stippling

Bilateral blue noise sampling can be applied to a variety of dy-
namic effects, such as sprite-based animation [Yu et al. 2009], video
stippling [Chen et al. 2012], and hybrid point distribution [Van-
derhaeghe et al. 2007]. The key, as stated in [Vanderhaeghe et al.
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Figure 4: Point cloud resampling results. Here, we compare traditional dart-throwing/relaxation, [Öztireli et al. 2010] sub-sampling/gradient-ascent, and
our bilateral dart-throwing/relaxation. (Each relaxation/gradient-ascent result is produced from the corresponding dart-throwing/sub-sampling result.) Within
each bowl/moose case are the point clouds (top row) and reconstructed surfaces (bottom row), except for the first column which shows the original models in
full (top) or in the demonstrated subset (bottom). As shown, bilateral sampling methods achieve a more uniform sample distribution and hence more accurate
surface reconstruction (using RIMLS in [Öztireli et al. 2009]). For the bowl/moose case, the input point cloud has ∼400K/800K samples and each output
result has ∼6K/20K samples.

2007], is to maintain the balance between 2D spatial blue noise,
1D temporal coherence, and 2D (video) or 3D (object) motion de-
piction. This is a challenging problem due to multiple spatial and
temporal constraints. Here, we describe two particular applications:
cross-dimensional sampling for 2D stylization of dynamic 3D ob-
jects and spatial-temporal sampling for video stylization. Both are
described in [Vanderhaeghe et al. 2007]. The basic idea is to per-
form bilateral blue noise sampling for the first frame, advect the
samples according to the scene motions (e.g. 3D object motions
or 2D video optical flows), and maintain blue noise properties by
removing/adding samples from/to crowded/sparse regions. (Please
refer to the accompany video of Figure 6 & 7 for animation effects.)

Feature v For video stylization, we simply use colors c as v.
For cross sampling (2D stylization of 3D objects), we define the
v(s) for each 2D screen space sample s as a combination of the 2D
screen space shading c(s) and the 3D object space normal n(s′):

s′ = raycast(s), v(s) =
(
αc(s),n(s′)

)
(13)

, where α is the relative weight between c and n, s′ the 3D ob-
ject surface point corresponding to s (obtained through ray casting
from the eye point), and n the 3D object normal in the eye coor-
dinate system. (If raycast(s) does not hit the object surface, we
set n(s′) to 0.) This choice allows us to emphasize both shading
and projected geometry features better than considering only 3D
geometry or 2D image features. Some examples include interior
and exterior silhouettes (e.g. the genus 3 model in Figure 7) and

shallow ridges that might not be very prominent on the original 3D
geometry but can be enhanced due to projection and shading (e.g.
the claw model in Figure 7).

Video stylization Figure 6 demonstrates our spatial-temporal
sampling application for video stylization. This can be considered
as a generalization of stippling static images to dynamic videos with
the need to consider motion depiction and temporal coherence sim-
ilar to the cross sampling application. Here, the motions are com-
puted through video optical flow, and the feature v is the underlying
RGB video pixel color c. As shown in Figure 6, our method pre-
serves features better than non-bilateral blue noise [Vanderhaeghe
et al. 2007] while maintains its other advantages including motion
depiction, temporal coherence, and screen space blue noise.

Cross-dimensional sampling Figure 7 provides examples for
applying our method for cross dimensional sampling, i.e. placing
stipples on a 2D plane to render dynamic 3D objects. There, we
compare our bilateral cross sampling method against the original
cross dimensional (non-bilateral) blue noise sampling in [Vander-
haeghe et al. 2007]. As shown, our method provides better quality
in describing features in both image and object spaces. For tone
reproduction, we set the local adaptive-sampling radius r(s) ac-
cording to the shading value.
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Figure 5: Differential domain analysis for surface sampling. Here we
show the DDA [Wei and Wang 2011] spectrum, radial mean, and radial
anisotropy for the point sets in Figure 4. Compared to the methods in
[Öztireli et al. 2010] (left), our methods (right) have better blue noise
properties, such as more uniform distributions in dart throwing versus sub-
sampling (upper group) and the lower amount of anisotropy in general.
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Figure 6: Spatial-temporal sampling for video stylization. Notice the
better feature preservation of our method, such as the gecko mouth and
eye, and the doll face and clothing. Each frame of gecko/Alma contains ∼
2200/19000 samples.

6.3 Nonlinear Filtering

Nonlinear filtering, such as bilateral and medial filtering, has a va-
riety of important applications. However, it tends to be relatively
slow compared to linear filtering. Various acceleration methods
have been proposed (see e.g. [Weiss 2006; Chen et al. 2007; Adams
et al. 2009; Gastal and Oliveira 2012]).

Among these accelerations, sub-sampling has shown to be a vi-

(a) cross blue noise (b) cross bilateral

Figure 7: Cross-dimensional dynamic sampling for 2D
stylization of 3D objects. Here we compare our cross di-
mensional bilateral blue noise sampling to the non-bilateral
method in [Vanderhaeghe et al. 2007]. As shown, our method
preserves features better in both object and image spaces
(such as object silhouettes, geometry ridges, and shading
variations), while retains the benefits of the original method,
such as temporal coherence and screen-space blue noise.
Each case of genus3/claw contains∼ 4500/8000 visible sam-
ples. The input models are shown on the left.

able approach for filters that can function well with a sub-set of
taps, such as bilateral filtering [Banterle et al. 2012]. Banterle et
al. [2012] further demonstrated that, among various sub-sampling
schemes, blue noise offers unique advantages such as reduced noise
and absence of aliasing. However, their method uses a global con-
stant sampling rate for each image. This content-oblivious ap-
proach might not adapt well to the underlying image content, where
complex areas may require more samples whereas simple areas may
suffice with less. This naturally leads to a content-aware subsam-
pling method, whose sampling rate varies according to the underly-
ing image region complexity.

(a) uniform + global (b) bilateral + global

Figure 8: Filter sample distributions around the upper-left corner of the
music sheet in Figure 9. Notice the better preservation of features for the
bilateral method. Here, all samples lie on a discrete grid and are colored
through the underlying pixels.

Our approach offers a potential content-aware sub-sampling
method for nonlinear filtering. In a nutshell, we perform bilat-
eral blue noise sampling based on the underlying image content, by
treating image color c as the feature v in our Equation 1, and use
these samples for filtering. We propose two flavors of our method
to meet different speed/memory considerations: local, in which
sample pattern within a filter kernel is generated independent for
each output pixel (as originally proposed by [Banterle et al. 2012]);
and global, in which sample pattern of the entire output image is
produced as a pre-process (Figure 8), from which samples falling
within individual output kernels are used during filtering.

In the following, we compare uniform/bilateral× local/global sam-
pling methods for bilateral filtering via quality (Figure 9 & Fig-
ure 10) and performance (Table 1). Based on these, we have found
that the bilateral + global method offers the best tradeoff.
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Figure 9: Subsampling-accelerated bilateral filtering. Here we compare uniform/bilateral × local/global subsampling schemes with full bilateral filtering.
With each case are the full image (top) and the zoom-in (bottom). Notice the better quality of bilateral sampling for both the local and global settings, i.e. less
noise for the former and less bias (in the form of large missing chunks) in the latter. In the music-sheet/city-bay case, the sub-sampling results are generated
with kernel size K=15/30 pixels and average samples-per-kernel Ns = 0.5K.
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Figure 10: Accuracy evaluation of different sub-sampling methods versus
different kernel sizes K. Shown here are the RMSE relative to the ground
truth full bilateral filtering of uniform/bilateral× local/global , respectively,
over the music sheet/city bay input in Figure 9. The left/right columns are
computed with different samples-per-kernel Ns=0.5K/2K. As shown, un-
der identical sample counts, the bilateral method tends to have a lower error
rate than the uniform method, whereas the global method tends to have a
lower error rate than the local method.

Quality Bilateral sampling tends to produce better quality than
uniform sampling, especially under sparse sample distributions.
This is illustrated in Figure 9 for perceptual image quality, and Fig-
ure 10 for numerical error measurements under a variety of images
and parameter settings. As a rule of thumb, bilateral sampling can
achieve similar quality to uniform sampling with fewer samples,
usually 75/60% for local/global sampling.

Global sampling tends to be less noisy than local sampling, both
visually and numerically. This is because in a global method, two
adjacent output pixels can have overlaps in their filter tap/sample
sets, providing extra coherence than the case where the filter sets
are produced independently. We have observed that such sample
set coherence may cause bias in a very sparse sampling setting (e.g.
large missing chunks in Figure 9e), but in most cases, it outperforms
a local sampling method without such coherence.

Performance Table 1 shows the timing information of various
methods under equal quality settings, with major steps separated for
clarity, such as sampling, filtering, and Voronoi cell area computa-
tion which is needed for unbiased filtering under bilateral sampling.
Compared to uniform sampling, bilateral sampling tends to take
more time in sampling and less time in filtering. Global sampling
tends to be faster than local sampling due to amortized sampling
workload among output pixels. Note that global-bilateral sampling
is faster than uniform sampling (both local and global), even as-
suming zero sampling time for the latter (e.g. using pre-computed
tiles as in [Banterle et al. 2012]). So far, we did all of our measure-
ments on a single CPU (Intel Core i7 machine with 4GB memory).
Due to the parallel nature of blue noise sampling [Wei 2008] and
filtering, we believe the entire process can be further accelerated
for multi-/many-core CPUs/GPUs.

Parameters For the kernel size K and per-kernel sample count
Ns, we recommand to use K

Ns
= 0.5 ∼ 2.0 in general by consider-

ing both quality and speed. For fair comparison between local and
global methods, we use following rule to compute the total sam-
ple count for the global method: Ms = |Ω|

K2 · Ns, where |Ω| is the
domain size and K the filter kernel size.

We set σv
σp

differently for local and global methods. For the local-

bilateral method, our experiments indicate that σv
σp

= 2.0·|Ω|−
1
2 ∼



8.0 · |Ω|−
1
2 will give optimal outcomes in both visual and accu-

racy evaluation, across different kernel sizes K and different sam-
ple counts Ns. For the global bilateral method, our experiments
suggest to use σv

σp
= 3.0 · |Ω|−

1
2 ∼ 10.0 · |Ω|−

1
2 . Among this

range, we further suggest a lower σv
σp

for a smaller kernel size (e.g.
K < 40) and a relatively higher σv

σp
for a larger kernel size.

kernel size K = 10/20/40 pixels
uniform (local∗ and global†)

Ns = 1K Ns = 2K Ns = 3K

sampling∗ 0.83/1.52/2.26 1.15/2.56/4.93 1.74/2.96/7.89
sampling† 0.94/0.30/0.07 2.00/0.67/0.26 4.37/1.19/0.41

filtering 3.96/8.33/16.45 8.37/16.00/33.20 12.18/25.26/49.54
total∗ 4.79/9.85/18.71 9.52/18.56 /38.13 13.93/28.23/57.43
total† 4.90/8.63/16.52 10.37/16.67 /33.46 16.55/26.45/49.95

local bilateral
Ns = 0.75K Ns = 1.5K Ns = 2.25K

sampling 4.59/8.59 /14.11 8.82/19.49/36.94 13.56/34.68/61.99
Voronoi 5.19/11.55/23.86 11.10/23.00/46.91 15.22/34.24 /71.70
filtering 3.11/6.48/12.78 6.22/12.41/24.00 9.59/18.37/36.43

total 12.90/26.62/50.74 26.14/54.90/107.8 38.37/87.30/170.1

global bilateral
Ns = 0.6K Ns = 1.2K Ns = 1.8K

sampling 0.30 /0.15/0.04 0.93/0.33/0.11 1.74 /0.59/0.19
Voronoi 0.22/0.15/0.04 0.44/0.26/0.10 0.74/0.37/0.18
filtering 2.74/5.30/9.48 5.26/9.85/19.34 7.74/14.96/28.53

total 3.26/5.60/9.56 6.63/10.44/19.55 10.23/15.93/28.90

Table 1: Timing information for sub-sampling accelerated bilateral filter-
ing. Here we show the timing information of various methods, with kernel
size K = 10, 20, and 40 pixels, and various sample counts under equal-
quality settings (75/60% of samples-per-kernel for bilateral local/global
sampling relative to uniform sampling as described in the main text). The
measurement units is 10−3sec/Kpixel. For uniform sampling, the local and
global methods differ only in sampling time and share very similar filtering
time.

7 Limitations and Future Work

Currently we determine the parameters σp and σv empirically and
would like to pursue more rigorous analytical methods. In addition,
all our current results are produced with uniform σp and σv , and we
believe varying them spatially may benefit certain applications.

We still rely on Jacobian approximations for various synthesis (e.g.
centroid step for relaxation) and analysis (e.g. DDA [Wei and Wang
2011]) algorithms. It would be great to devise precise solutions
to cleanly use our bilateral formulation in Equation 1. Our cur-
rent analysis method is derived from [Wei and Wang 2011], which
shares distance measure and approximations for some of the syn-
thesis and analysis parts. A potential future work is to examine
alternative analysis methods that are standalone and independent of
any sample synthesis algorithms. In our formulation we have been
using either Euclidean or Riemannian positional distance dp, but
only Euclidean feature distance dv . Even though this suffices so
far, we wonder if there are scenarios that can benefit from a non-
Euclidean dv .

We have not yet attempted to combine our bilateral sample distance
with a maximal sampling method such as [Cline et al. 2009; Gamito
and Maddock 2009; Ebeida et al. 2011; Kalantari and Sen 2011].
Such combination should be doable, and could preserve features
even better.

Our current implementation adopted prior acceleration methods
based on spatial measures only, such as grids for dart throwing [Wei

2008]. Further refinements in acceleration methods will help the
performance of bilateral sampling.

We believe for geometry sampling, in addition to surface normal
as the feature, our method can also be directly extended for other
geometric measures, which may offer more robustness. For non-
linear filtering, in addition to bilateral filtering, our method could
be well applied to other methods such as median filtering [Weiss
2006].

Finally, we would like to extend our idea to other sampling patterns
[Zhou et al. 2012; Öztireli and Gross 2012] and applications such
as rendering [Spencer and Jones 2009] and fluids [Ando et al. 2012;
Schechter and Bridson 2012].

Acknowledgements We would like to thank Hua Li for answer-
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GRAPH reviewers for their valuable comments.

References

ADAMS, A., GELFAND, N., DOLSON, J., AND LEVOY, M. 2009.
Gaussian kd-trees for fast high-dimensional filtering. In SIG-
GRAPH ’09, 21:1–12.

ALLIEZ, P., MEYER, M., AND DESBRUN, M. 2002. Interactive
geometry remeshing. In SIGGRAPH ’02, 347–354.

ANDO, R., THUREY, N., AND TSURUNO, R. 2012. Preserving
fluid sheets with adaptively sampled anisotropic particles. TVCG
99.

BALZER, M., SCHLOMER, T., AND DEUSSEN, O. 2009.
Capacity-constrained point distributions: A variant of lloyd’s
method. In SIGGRAPH ’09, 86:1–8.

BANTERLE, F., CORSINI, M., CIGNONI, P., AND SCOPIGNO, R.
2012. A low-memory, straightforward and fast bilateral filter
through subsampling in spatial domain. Computer Graphics Fo-
rum 31, 1, 19–32.
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LÉVY, B., AND LIU, Y. 2010. Lp centroidal voronoi tessellation
and its applications. In SIGGRAPH ’10, 119:1–11.

LI, H., AND MOULD, D. 2010. Contrast-aware halftoning. Com-
put. Graph. Forum, 273–280.

LI, H., AND MOULD, D. 2011. Structure-preserving stippling by
priority-based error diffusion. In GI ’11, 127–134.

LI, H., WEI, L.-Y., SANDER, P., AND FU, C.-W. 2010.
Anisotropic blue noise sampling. In SIGGRAPH Asia ’10,
167:1–12.

LLOYD, S. 1983. An optimization approach to relaxation labeling
algorithms. Image and Vision Computing 1, 2.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. In SIGGRAPH ’87, 65–72.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004.
Fast hierarchical importance sampling with blue noise proper-
ties. In SIGGRAPH ’04, 488–495.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. In SIG-
GRAPH ’07, 78.
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Supplementary Materials

A Method

Here we provide further details about our method.

Figure 11: Proximal surface illustration. We show the difference between
bilateral blue noise sampling (b)(c)(d) and the traditional blue noise sam-
pling (e)(f)(g) in dart throwing. (a) is the input point cloud, where thick
light gray curve indicates the hidden surface; dashed circle in (b),(c),(e)
and (f) indicates the Poisson disk of the red center sample. Orange dots in
(b) and (e) are samples inside the Poisson disk of the red center sample. In
traditional blue noise, all of them will be removed, causing an empty area
in the left hidden surface. Bilateral blue noise sampling avoids this issue by
considering also features such as surface normal.

A.1 Relaxation

Non-uniformity The descriptions in Section 4.2 assume uniform
sampling aside from the feature v part. For additional non-
uniformity, such as adaptive or anisotropic sampling for the p
and/or v part, we can incorporate the additional r(.) (for local
isotropic adaptivity as in [Wei 2008]) or J̇ (for local anisotropy as
in [Li et al. 2010], a square matrix with dimension equals to the
dimension of p + v, different from J in Equation 3) information
on top of our bilaterally derived d and J above. Specifically, for
isotropic sampling over the p + v manifold (Section 3), we multi-
ply both d(s, s′) in Equation 1 (for the Voronoi step) and J(s) from
Equation 3 (for the centroid step) by 1

r(s)
. Similarly, for anisotropic

sampling, we multiply both d(s, s′) and J(s) by J̇(s).

Capacity constraint We can also incorporate capacity con-
straints CCVT [Balzer et al. 2009] into our method above to avoid
the potential semi-regular distributions commonly seen in Lloyd re-
laxation. CCVT modifies the Voronoi step of classical Lloyd relax-
ation, by ensuring that the number of points affiliated with each site
remains unchanged throughout the iterative process. Since CCVT
is orthogonal to our bilateral d, they can be naturally combined.

A.2 Jacobian

Here we show that the approximation in Equation 3 will be in-
finitely closer to Equation 1 under sufficient sampling rates and
accurate computation of all derivatives.

Let s and s′ are nearby samples, denote:

δp(s) = p(s′)− p(s) (14)

δv(s) = v(s′)− v(s) (15)

. First, following Equation 1, we have:

δd(s) =

(
δp(s)

σp

δv(s)

σv

)
(16)

. Then, following Equation 3, we have

Jδp(s) =

(
δp(s)

σp

δv(s)

σv

)
(17)

. Note that Equation 16 and Equation 17 produce the same results
under the assumption that δp is small, thus:

δd = Jδp (18)

.

A.3 Derivatives

(a) wrong (b) right

Figure 12: Derivative comparison.

A core component of our algorithms is computing derivatives. Care
has to be taken to ensure they are accurately estimated to avoid ar-
tificial distortions such as anisotropically warped different domain
spectrum results (see Figure 12).

The basic idea is to fit a smooth surface over the feature field before
taking derivatives, for robustness reasons. In our experiments, we
have found it suffice to fit a locally quadratic function ṽ(p) of sam-
ple positions p. A first order (linear) function may have discontin-
uous derivatives, while higher order functions (3 or more) are more
expensive to compute without visible quality improvements. To
make sure the fitting is robust (over instead of under constrained),
we use a local neighborhood of size 3-5 rings for regularly sampled
Euclidean domains (e.g. height fields).

A.4 Relationship to [Li et al. 2010]

As described above, the application of our bilateral distance in
Equation 1 to prior sampling algorithms can benefit from a Jacobian
approximation as in Equation 3. A similar Jacobian approximation
is also adopted in [Li et al. 2010].
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Figure 13: Comparisons between adaptive and bilateral sampling. Shown
here are sampling results for geometry and images. Results within each row
are produced with similar number of samples (∼2800/17900 for geome-
try/image). Notice that our method preserves features better (e.g. geometry
edges, image contours).

However, despite this similarity, the two methods differ fundamen-
tally in several important aspects:

Concept The basic idea of [Li et al. 2010], as illustrated in their
Equation 1, is to transform everything into spatial anisotropy
(encoded in their square JTJ matrix) and subsequently con-
sider only the resulting anisotropic spatial domain during
sampling. In contrast, our Equation 1 directly considers both
spatial and feature domains without any such intermediation.

Computation The fundamental conceptual difference above has
important consequences in the application to various sampling
algorithms: [Li et al. 2010] has to rely on the Jacobian ap-
proximation everywhere, whereas our method can use a direct
and accurate distance measure. In particular, their distance
measure needs to be computed approximately both in dart-
throwing and relaxation. We use Jacobian only in the centroid
step of Lloyd relaxation for computational convenience (to
avoid high dimensionality). Both our dart throwing and the
Voronoi step of relaxation do not use any approximation.

In sum, our method uses [Li et al. 2010] as part of the machinery,
but is not an extension of it.

A.5 Parameters

σv and σp The main parameters our method are σp and σv . We
usually set σp = 1 so that our method would reduce to traditional
(non-bilateral) blue noise sampling with σv = ∞. σv needs to be
low enough to preserve features while high enough to maintain blue
noise properties (see Figure 2). Even though it is entirely possible
to pick custom values depending on particular application needs,
through extensive experiments with different domains (both analyt-
ical and discrete), we have found that a good range is [7 11], with a
good default value 9 which we have used for all our results (unless
stated otherwise).

Complexity Our method simply increases the dimension of sam-
ples from np to np + nv , where np and nv are the dimensions
for spatial positions and features. This information can be eas-
ily plugged into various analysis and synthesis algorithms to de-

rive speed and storage complexity. For example, the speed of dart
throwing and the Voronoi step of relaxation will be slowed by a
rough constant factor of 1 + nv

np
, and the centroid step of relaxation

roughly (1 + nv
np

)2 (squared due to the Jacobian). The exact perfor-
mance depends on particular applications, but as a ballpark number,
our current implementation generates about tens of thousands sam-
ples per second on a single commodity PC core.

(a) full bilateral (b) uniform local (c) bilateral local

Figure 14: Subsampling bilateral filtering, local bilateral vs. local uni-
form. We compare our local bilateral blue noise sampling method with local
uniform blue noise sampling method [Banterle et al. 2012] in a sparse sam-
pling case, K = 10 pixel, Ns = 0.3K . The bilateral-local method (c)
can preserve features better with less noise and blurs than the uniform-local
method (b).

B Image Stippling

Stippling refers to techniques that use small primitives (e.g. dots)
to illustrate images [Secord 2002; Balzer et al. 2009; Li et al. 2010;
Fattal 2011]. The primitives are usually of the same color (e.g.
black) or from a small palette of colors [Wei 2010]. Since human
visual systems tend to blend multiple dots in local spatial regions,
stippling with limited colors can still faithfully reproduce continu-
ous image tones. Such trick for trading off spatial for color resolu-
tions has also been taken advantage of in image halftoning where
samples lie on discrete regular pixel grids [Pang et al. 2008; Chang
et al. 2009; Li and Mould 2011].

For both stippling (continuous domain sample location) and
halftoning (discrete domain sample location) applications, it is well
known that sample sets with blue noise properties are more visu-
ally pleasing. In addition to blue noise, it could also be desirable
to maintain image structures or features [Pang et al. 2008; Chang
et al. 2009; Li and Mould 2011].

However, to our knowledge, prior methods that consider both blue
noise and features have certain limitations. They may sacrifice blue
noise properties to preserve features (e.g. contrast aware halftoning
[Li and Mould 2010; Li and Mould 2011]), they might not offer
flexible enough controls to tune the relative weights of blue noise
and feature preservation (e.g. [Chang et al. 2009; Li and Mould
2011]), and most of them operate in discrete grids (e.g. [Pang et al.
2008; Chang et al. 2009]) and might not be suitable for continu-
ous domain applications such as stippling. ([Li and Mould 2011]
demonstrated impressive stippling results via error diffusion; how-
ever, sufficiently large neighborhoods have to be used. See [Wei
2010] for relevant discussions about other potential issues for pro-
ducing continuous domain effects via discrete domain sampling.)

Our method can be applied for such feature-aware blue noise image
stippling or halftoning by simply using gray-scale image color c
as features v in Equation 1. It is applicable to both discrete and
continuous domains, and very easy to combine with prior blue noise
stippling algorithms [Balzer et al. 2009; Li et al. 2010; Fattal 2011]
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Figure 15: Subsampling-accelerated bilateral filtering. Here we compare uniform/bilateral × local/global subsampling schemes with full bilateral filtering.
Notice the better quality of bilateral filtering for both the local and global settings, i.e. less noise for the former and less bias (in the form of large missing
chunks) in the latter. In the light/boatman/spicy, the sub-sampling results are generated with kernel size K=20/20/20 pixels and average samples-per-kernel
Ns = 0.5K.

by simply plugging the distance measure in Equation 1. As shown
in Figure 1 and Figure 19, our method preserves features and blue-
noise-properties better than prior techniques.

Note that the only difference between traditional stippling and our
method is the presence of the feature term in Equation 1, where the
former can be considered as a special case with σv = ∞. In par-
ticular, our bilateral distance measure in Equation 1 is orthogonal
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Figure 16: Accuracy evaluation of different sub-sampling methods ver-
sus different kernel sizes K. Shown here are the mean error relative to
the ground truth full bilateral filtering of the local-uniform [Banterle et al.
2012], local-bilateral, global-uniform, and global-bilateral blue noise sub-
sampling methods, respectively, over the music sheet/city bay input in Fig-
ure 9. The left/right columns are computed with different samples-per-
kernel Ns=0.5K/2K. As shown, under identical sample counts, the bi-
lateral method tends to have a lower error rate than the uniform method,
whereas the global method tends to have a lower error rate than the local
method.

with other aspects of blue noise sampling, such as using intensity
as the importance field to define local r(.) fields.

To preserve tones, we set our stipple radius proportional to dp(s)

d(s)
,

i.e. the ratio of the local average distance at sample s computed by
traditional position-only method and our bilateral distance in Equa-
tion 1. (We compute this through the ratio of the eigen-values of the
Jacobian matrices from d and dp.) Users can also optionally cap the
ratio (and thus the corresponding d) of the smallest to largest pos-
sible stipple sizes for additional control (e.g. artistic reasons). We
have found that uniform stipple size adequate for many cases, but
variable stipple size beneficial for sufficiently complex images.

(a) uniform stipple size (b) variable stipple size

Figure 17: Stippling with variable dot sizes. Notice the
better structure and tone reproduction of (b) versus (a). The
source image is shown on the left.

(a) input (b) mean conflict

(c) min conflict (d) bilateral

Figure 18: Distance metric comparison. Here, we compare our bilateral
distance metric with alternative measures including mean [Wei 2008] and
min [Kalantari and Sen 2011] conflicts. Each case contains about 35K sam-
ples produced by dart throwing. Notice that mean conflict metric can pro-
duce noticeable knock-out effects (e.g. lower-middle of the second right col-
umn) and a max conflict metric can produce even worse results (not shown
here but see [Kalantari and Sen 2011] Figure 8). Min-conflict metric pro-
duces less knock-out effects, but still preserves features less well than our
bilateral method (e.g. compare the boundaries of the rectangular paintings
and circular objects on the wall behind the columns).

B.1 Metric Comparison

Figure 18 compares our bilateral distance with other conflict met-
rics such as mean-conflict [Wei 2008] and min-conflict [Kalantari
and Sen 2011] for dart throwing. As shown, our result has the best
quality, especially around features. This is a further confirmation
(beyond Figure 1) that our method is better than traditional adaptive
sampling for simultaneous blue noise and feature preservations.

C Surface Sampling

Our method introduced in Section 6.1 can also be applied for direct
surface sampling. Here we demonstrate sampling results over a va-
riety of models with different geometric and topological properties,
and analyzed both their blue noise and feature preservation proper-
ties. For the former we measure the differential domain spectrum
[Wei and Wang 2011] and ρ [Lagae and Dutré 2008] directly over
the original surfaces, while for the latter we first reconstruct sur-
faces (via Tight-Cocone [Dey and Goswami 2003]) from the sam-
ples followed by Hausdorff distance H and qualitative compari-
son. As shown in Figure 25, Figure 26, Table 2 and Figure 27, our
method can preserve both features and blue noise properties. Note
that in these figures and tables, we are comparing our method with a
state-of-the-art feature-preserving geometry sampling method pro-
posed in [Öztireli et al. 2010], which we will describe in more detail
next.
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Figure 19: Image stippling results. We compare our method against traditional adaptive importance blue noise sampling and [Li and Mould 2011], a state of
art stippling method that considers structure, blue noise, and tone reproduction. As shown, our method outperforms adaptive importance sampling in feature
preservation, and [Li and Mould 2011] in tones and structures (e.g. better boundary between the chin and background in the lower left corner of old man face)
and blue noise properties (e.g. more uniform sample distributions).

case # samp ρ H(10−5)

d s r g d s r g
genus-3 2.89K 0.75 0.50 0.75 0.43 59.39 64.42 58.27 66.01
bumpy 18.65K 0.75 0.48 0.75 0.003 17.54 22.52 17.30 22.77
head 32.08K 0.75 0.54 0.75 0.01 8.41 9.50 8.7 8.19

Table 2: Statistics for for geometry sampling results in Figure 25
& 26. The measures include ρ (the larger the better up to ∼
0.85) for spatial uniformity and Hausdorff distance H (the smaller
the better) for feature preservation. (All surface areas are normal-
ized to 1 for comparable H computation.) d\s\r\g represents dart-
throwing\subsampling\relaxation\gradient-ascent, respectively. Each
case is computed by averaging 10 sets except for “head” for which only
3 sets are used. σn/σp = 14 for head, and 9 otherwise. Note that ρ for
[Öztireli et al. 2010] can be very small.

Spectral manifold sampling Here we compare our method with
[Öztireli et al. 2010], a state of art geometry sampling method that
aims primarily at feature preservation but also retains some blue
noise properties. [Öztireli et al. 2010] performs manifolds sam-
pling based on a feature measure µ̃ derived from the current output

sample set S = {si}:

µ̃(s) = 1− kTK−1k/k(s, s) (19)

, where k(s, s′) is a Gaussian kernel measuring the distances be-
tween two samples s and s′ considering both position and nor-
mal similar to our bilateral distance, k a vector with component
ki = k(s, si), and K a matrix with component Kij = k(si, sj).
µ̃(s) is a quantity between 0 and 1; intuitively, the higher the value,
the more “feature” s represents relative to S.

[Öztireli et al. 2010] provides two sampling algorithms based on
µ̃: (1) randomized linear scan (referred to as subsampling in the
figures and tables), which sub-samples an input point set by se-
quentially picking samples with µ̃ greater than a certain threshold
ε, and (2) iterative gradient ascent, which optimizes the location of
a sample set by maximizing the individual µ̃ values locally. The
sub-sampling and gradient ascent parts are analogous to our bilat-
eral versions of dart throwing and relaxation, respectively.



ol
d

m
an

source adaptive [Li and Mould 2011] our method

Figure 20: More image stippling results with variable stipple size. Similar to Figure19, but using variable stipple sizes.
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Figure 21: Spatial-temporal sampling for video stylization. Notice the better feature preservation of our method, such as the gecko mouth and eye, and the
doll face and clothing. Each frame of gecko\Alma contains ∼ 2200\19000 samples. Please refer to the accompany video for animation effects.

Compared to [Öztireli et al. 2010], our method is much simpler and
easier to implement. Our method also provides explicit controls for
both feature preservation and blue noise, and can be easily hooked
up with prior sampling methods (e.g. dart throwing and relaxation).
Mostly importantly, our method preserves both features and blue
noise properties better.

The corresponding results are shown in Table 2 and Figure 25 &
26. Notice that our method has comparable numerical measures for
feature preservation (H in Table 2) and better blue noise properties
(higher ρ in general, more uniform spectrum profiles in Figure 25,
and less anisotropy in Figure 26). We have set the parameters for
both their sub-sampling and gradient ascent methods to be compat-
ible with our dart throwing and relaxation parts. In particular, we
pick their kernel sizes according to our r, and number of gradient
ascent iterations to be identical to our relaxation.

In Figure 27 we provide a qualitative visual comparison for recon-
struction quality from sample sets produced by [Öztireli et al. 2010]
and our method. As shown, for models with regular initial sampling

(e.g. filigree) our dart throwing slightly outperforms their subsam-
pling while our relaxation performs similarly to their gradient as-
cent; however for models with less regular initial sampling (e.g.
genus-3) both our methods perform noticeably better.

case # samp ρ H(10−5)

d s r g d s r g
uniform 2.89K 0.75 0.47 0.75 0.79 0 0 0 0
1d-sine 6.50K 0.75 0.44 0.75 0.76 13.26 17.06 12.83 16.60
2d-sine 6.50K 0.75 0.36 0.75 0.67 44.09 58.15 41.36 61.62

Table 3: Statistics for for geometry sampling results in Figure 30 & 31.
See Table 2 for more details.
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original model traditional dart throwing [Öztireli et al. 2010] subsampling bilateral dart throwing

Figure 22: Resampling point clouds through dart throwing. Our bilateral blue noise sampling method can achieve a uniform sample distribution even in the
case of proximal surfaces. We compare our results with traditional blue noise (only considers spatial information) and the subsampling method discussed in
[Öztireli et al. 2010]. In both the bowl and moose cases, bilateral blue noise sampling achieves a more uniform sample distribution and hence a more accurate
surface reconstruction (using RIMLS in [Öztireli et al. 2009]). For the bowl/moose case, the input point cloud has∼ 400K/∼ 800K samples and each output
result has ∼ 6K/∼ 20K samples.
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Figure 23: Resampling point clouds through relaxation following the dart throwing results in Figure 22.
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Figure 24: Differential domain analysis for surface sampling. Here we show the DDA [Wei and Wang 2011] spectrum, radial mean, and radial anisotropy
for the point sets in Figure 22 and Figure 23. Compared to the methods in [Öztireli et al. 2010], our methods have better blue noise properties, such as more
uniform distributions in dart throwing versus sub-sampling (upper group) and the lower amount of anisotropy in general.
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[Öztireli et al. 2010] subsampling dart throwing

Figure 25: Blue noise properties of geometry sampling via dart throwing. Shown here are sampling results of different domains with varying topological and
geometrical properties. Detailed statistics for each case can be found in Table 2. Shown in each group are the spatial samples, DDA spectrum, and its radial
mean and anisotropy [Wei and Wang 2011]. Notice the more uniform distributions of our results (larger inner ring of the DDA spectrums).
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[Öztireli et al. 2010] gradient ascent relaxation

Figure 26: Blue noise properties of geometry sampling via relaxation/gradient-ascent following the results from Figure 25. We run 10 iterations of CCVT
[Balzer et al. 2009] for relaxation. Notice the lower amount of anisotropy in our results.
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Figure 27: Visual quality comparison. Here, we display the surface reconstruction results from down-sample sets generated by different methods (surfaces
are reconstructed using the same PSS algorithm as in [Öztireli et al. 2010]). The filigree results (top row) are produced with about 84K samples each, where
the input contains roughly 514K points. (These results are produced under the same setting as Figure 11 of [Öztireli et al. 2010]).) The genus-3 results are from
Figure 25 and 26, where the input contains 440K points while our algorithm subsamples it to about 2.89K points. Notice the better reconstruction quality of
our results (dart throwing and relaxation) versus [Öztireli et al. 2010] (subsampling and gradient ascent). The filigree contains regularly distributed samples
while genus-3 less regular white noise samples, providing different stress tests.
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57K samples 95K samples 192K samples (original)

Figure 28: Surface reconstruction of our results with varying sample rates. All results are produced by our bilateral dart throwing algorithm. As shown, our
method can well preserve features under a variety of sampling rates.

(a) bilateral object (b) bilateral screen (c) cross blue noise (d) cross bilateral

Figure 29: Cross-dimensional dynamic sampling for 2D stylization of 3D objects. Here we compare our cross dimensional bilateral
blue noise sampling (d) against alternative methods, including our bilateral sampling in either (a) object- or (b) screen-space only,
as well as (c) cross dimensional (non-bilateral) blue noise sampling [Vanderhaeghe et al. 2007]. Object space sampling (a) has non-
uniform screen space distribution (notice highly distorted and non-uniform sample distributions near the silhouettes of the genus-3
model) and loses those geometric features that are not very prominent on the original 3D model but can get enhanced due to screen
projection (such as the shallow ridge in the middle right of the claw model). Screen space sampling (b) can suffer from temporal
coherence issues such as shower door or temporal discontinuity (see [Vanderhaeghe et al. 2007]). Cross dimensional (non-bilateral)
blue noise sampling (c) does not consider or preserve well features. In comparison, our method (d) provides better effects, including
shading/tone reproduction, features in image and object spaces, as well as temporal coherence. (Please refer to the accompany video
for animation effects.) Each case of genus3/ claw contains ∼ 4500/ 8000 visible samples. The input models are shown on the left.
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[Öztireli et al. 2010] subsampling dart throwing

Figure 30: Blue noise properties of geometry sampling via dart throwing. Shown here are more sampling results of different domains from Figure 25,
including uniform, 1D sinusoidal 0.15 sin(2πfx) with f = 2, 2D sinusoidal 0.15 sin(2πfx) sin(2πfy) with f = 2. Detailed statistics for each case can
be found in Table 3.
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[Öztireli et al. 2010] gradient ascent relaxation

Figure 31: Blue noise properties of geometry sampling via relaxation/gradient-ascent following the results from Figure 30.


