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Abstract

A number of papers present algorithms to construct iso-
surfaces with sharp edges and corners from hermite data,
i.e. the exact surface normals at the exact intersection of
the surface and grid edges. We discuss some fundamental
problems with the previous algorithms and describe a new
approach, based on merging grid cubes near sharp edges
which produces significantly better results. Our algorithm
requires only gradients at the grid vertices, not at each
surface-edge intersection point. We also give a method
for measuring the correctness of the resulting sharp edges
and corners in the isosurface.

1 Introduction

A scalar field is a mappingf : R3→ R which assigns a
scalar value to each point inR3. An implicit surface is
a set f−1(σ) for some realσ ∈ R. An isosurface with
isovalueσ is a polygonal approximation to the implicit
surfacef−1(σ).

Various algorithms have been proposed for construct-
ing isosurface appoximations to a surfacef−1(σ) with
sharp edges and corners from distance fields [GK04,
HWCO05, KBSS01, ZHK04] or from an explicit defini-
tion of f [AB03, JLSW02, HWCO05, VKKM03, SW04].
All these algorithms rely on the ability to compute the ex-
act intersection point of the isosurface and each grid edge
and an exact surface normal at that intersection point. Ju
et. al. [JLSW02] coined the term “hermite” data to de-

scribe such inputs.
The algorithms listed above have a number of draw-

backs. Firstly, two of the algorithms have fundamental
problems when surfaces or portions of surfaces are not
oriented along grid axes. The algorithms in [KBSS01]
and [JLSW02] generate an isosurface vertex for each grid
cube containing a positive vertex and a negative vertex.
When the isosurface vertices are restricted to the gener-
ating cube, notches can appear along the sharp edges and
sharp corners can be cut off. When these vertices are al-
lowed to extend into neighboring grid cubes, the isosur-
faces triangle or quadrilaterals can become degenerate.
The isosurface vertices can also become incorrectly or-
dered along sharp edges. The incorrect ordering creates
folds and overlapping isosurface triangles in the isosur-
face mesh. The software Polymender by Ju [Ju04] creates
isosurfaces with degenerate and overlapping mesh trian-
gles. These problems are further described in Section 5.

Algorithms [VKKM03, ZHK04] don’t have the prob-
lems discussed in Section 5 because they compute multi-
ple intersections of a grid edge and the isosurface to rep-
resent thin or sharp features. Algorithms [AB03, GK04,
HWCO05] increase the grid resolution until such prob-
lems disappear. Either approach exacerbates a second
problem.

The algorithms listed above rely upon precise calcula-
tion of both the intersection point and the normal. They
have little tolerance for approximation errors in those val-
ues. Those algorithms which compute multiple intersec-
tions or increase the grid resolution create small thin poly-
gons near sharp features. Such polygons are very sensitive
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to approximation error.
The last problem is that all these algorithms are re-

stricted to hermite data or variations such as a signed dis-
tance field which permit the computation of surface nor-
mals along grid edges.

In [CDR07], Cheng, Dey and Ramos describe a method
for meshing piecewise smooth complexes using protect-
ing balls around the sharp or boundary edges of those
complexes. We apply this idea to isosurface reconstruc-
tion by merging grid cubes around sharp edges and cor-
ners, creating regions which act like protecting balls. A
single isosurface vertex is placed in each such region.

By placing a single isosurface vertex near the center of
each region, we guarantee that the isosurface vertices on
sharp edges and corners are well separated from any other
isosurface vertices. Separating these isosurface vertices
avoids the creation of degenerate quadrilaterals or the in-
correct ordering of isosurface vertices along sharp edges.
It also avoids the creation of notches along sharp edges.

The separation of isosurface vertices on sharp edges
makes the sharp edge much less sensitive to changes in
vertex location. Our algorithm is tolerant of small approx-
imation errors in the intersection location or normals.

Because our algorithm is tolerant of approximation er-
rors in isosurface vertex location, we no longer require
hermite data as input. Instead we can use gradient grid
data, regular grids with scalar values and gradients at each
of the grid vertices. We compute isosurface vertex loca-
tions directly from this data, using gradients from neigh-
boring cubes to increase reliability. As shown in Sec-
tion 11, our algorithm is tolerant of noise in this gradient
data.

While the central difference formula approximates gra-
dients from a scalar grid [CK07], those approximations
are very poor near sharp edges and corners where there
are discontinuities in the gradient field. Nevertheless,
the tolerance of our algorithm to noisy gradients suggests
that more sophisticated techniques may produce gradients
which are reliable enough for our algorithm.

Previous papers on reconstructing isosurfaces with
sharp edges and corners lacked any quantitative measure
of the quality of the reconstruction. The lack of such mea-
sure makes it difficult to evaluate the claims of these pa-
pers or compare the results of their algorithms in any sys-
tematic way. In Section 10, we propose a simple method
for measuring the quality of the reconstructed sharp edges

and corners. Our evaluation method helps us quickly find
errors in the sharp edge and corner reconstructions and al-
lows us to evaluate our algorithm on numerous test data
sets without requiring visual inspection of the results of
each test. It also permits us to test and compare parameter
changes to our algorithm and to compare our algorithm
with Polymender.

Our paper contains three major contributions:

1. We present a new algorithm based on cube merg-
ing for constructing isosurfaces with sharp edges
and corners. Our algorithm solves some fundamen-
tal problems with previous techniques and is signifi-
cantly more robust.

2. We show how gradient grid data, not just hermite
data, can be used to calculate the locations of iso-
surface vertices on sharp edges and corners.

3. We present a simple method for evaluating the qual-
ity of our reconstruction of sharp edges and corners,
and evaluate our algorithm using that method.

2 Definitions

A scalar grid vertex isnegativeif its scalar values is less
than the isovalue. A grid vertex ispositive if its scalar
values is greater than or equal to the isovalue.

A grid edge isbipolar if one endpoint is negative and
one endpoint is positive.

A grid facet isambiguousif two diagonally opposite
vertices are positive and the other two vertices are nega-
tive.

A grid cubec is avertex neighborof grid cubec′ if c
shares a vertex withc′.

3 Related Work

The Marching Cubes Algorithm [LC87] by Lorensen and
Cline places all the isosurface vertices on grid edges. If
the isosurface is approximating a level setf−1(σ) which
has sharp edge or corner inside a grid cube, then isosur-
face vertices would have to be placed inside the grid cube
to model the sharp edge or corner. Since the Marching
Cubes Algorithm does not place isosurface vertices inside
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a) Scalar field b) Discontinuity

c) Marching Squares b) Level Set

Figure 1: a) Non-smooth scalar field. b) Discontinuity
(red) in the gradients. c) Isocontour (green) produced by
the Marching Squares Algorithm. d) Level set (blue) with
sharp corner.

grid cubes, it will not reconstruct the sharp feature but in-
stead create a beveled edge or corner. (See Figure 1.c.)
Moreover, the beveling will depend upon the intersection
of the level set with the grid edges, not upon any intrinsic
properties of the level set.

Instead of adding isosurface vertices on grid edges,
dual contouring algorithms place isosurface vertices in-
side grid cubes intersected by the isosurface. Quadri-
laterals connect isosurface vertices in the four adjacent
grid cubes which share a common grid edge. Gib-
son [Gib98a,Gib98b], gave the first dual contouring algo-
rithm, placing at most one isosurface vertex inside each
grid cube. Later, Nielson [Nie04] described a dual con-
touring algorithm, Dual Marching Cubes, which some-
times adds multiple isosurface vertices inside a grid cube.

Because the dual contouring algorithms add isosurface
vertices inside cubes, they have the capability of repre-
senting sharp features in the isosurface. However, the al-
gorithms by Gibson and Nielson position the isosurface
vertices by using linear interpolation to predict the inter-

section of the isosurface and grid cube edges and aver-
aging the predicted locations. The resulting isosurface
has smoothed edges similar to the isosurface created by
Marching Cubes.

The Extended Marching Cubes Algorithm by Kobbelt,
Botsch, Schwanecke and Seidel [KBSS01] constructs
a parametric representation of an implicit surface with
sharp features from a grid of directed distances to that sur-
face. Each grid vertex stores the directed distances in the
x, y andz directions to the surface. Using linear interpo-
lation, the algorithm by Kobbelt et al. computes a set of
isosurface vertices on grid edges. It also computes sur-
face normals at each of these isosurface vertices based on
the directed distances at nearby grid vertices. Grid cubes
with widely varying surface normals are identified as con-
taining sharp features. If a grid cube does not have sharp
features, an isosurface patch is retrieved from a lookup
table as in Marching Cubes. If a grid cube has sharp fea-
tures, then an additional isosurface vertex is added to the
interior of the grid cube and connected to the isosurface
vertices on the cube edges. The new isosurface vertex is
positioned to minimize its least squares distance to tan-
gent planes of the neighboring isosurface vertices. The fi-
nal step applies edge flipping to connect vertices on sharp
features in adjacent cubes.

Ju, Losasso, Schaefer and Warren [JLSW02, SW02]
gave an alternative approach using dual contouring to con-
struct parametric representations of implicit surfaces with
sharp features. Input to their algorithm is Hermite data in-
stead of directed distances but the difference is minimal.
Hermite data contains the exact intersection points of a
surface with a regular grid and the exact normals. These
values are easily computed from implicit surface repre-
sentations.

The algorithm by Ju et al. retrieves the intersection
points of grid edges and the implicit surface from the
Hermite data along with the normals at each intersection
point. The normals define tangent planes at each intersec-
tion point. As in [KBSS01], the algorithm positions the
isosurface vertex within a grid cube to minimize the least
squares distance to tangent planes.

Varadhan, Krishnan, Kim and Manocha [VKKM03]
extended the dual contouring algorithm of Ju et al. by
modeling multiple intersections of an isosurface and
adding more than one isosurface vertex per grid cube. In-
put to their algorithm is directed distances to implicit sur-
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faces.
Zhang, Hong and Kaufman [ZHK04] presented a

multi-resolution dual contouring algorithm which adds
more than one isosurface vertex per grid cube. When in-
put is a scalar grid, the algorithm computes the vertex lo-
cations using averaging as in [Gib98a,Gib98b,Nie04] and
does not reconstruct the sharp features. When input is a
directed distance field, the algorithm follows the approach
in [JLSW02] and reconstructs the sharp features.

Algorithms by Ho et. al. [HWCO05] and Ashida and
Badler [AB03] approximate the intersection of a surface
and each grid cube boundary by a polygonal curve. They
connect the curve to a single isosurface vertex in the inte-
rior of the cube. Sharp features are represented by appro-
priate positioning of the isosurface vertex and the curve
vertices.

Schaefer and Warren [SW04] gave an innovative, novel
approach to constructing isosurfaces with sharp features.
From the original scalar grid, they constructed a dual grid
whose vertices and edges were on sharp isosurface fea-
tures. They applied Marching Cubes to the dual grid to
extract the isosurface.

Ju and Udeshi in [JU06] show that the dual contour-
ing algorithm may create meshes which self-intersect,
i.e., mesh triangles may intersect on their interior. They
present a modification of the dual contouring algorithm
which fixes this problem.

Except for the original dual contouring algorithm by
Gibson and Nielson’s Dual Marching Cubes, all the dual
contouring algorithms listed above support multiresolu-
tion isosurface extraction.

If the isovalue does not equal the scalar value of any
grid vertex, the Marching Cubes algorithm creates an iso-
surface which is a manifold. Unfortunately, Gibson’s dual
contouring algorithm [Gib98a, Gib98b] often generates
non-manifold isosurfaces, irrespective of the isovalue.
Nielson’s algorithm [Nie04] represents each Marching
Cube’s isosurface patch by a single dual isosurface ver-
tex, avoiding many of the non-manifold cases. However,
if a grid cube with configuration C16 or C19 (Figure 3
in [Nie04]) shares an ambiguous facet with another cube
with configuration C16 or C19, the isosurface edge be-
tween the two cubes will lie in four quadrilaterals. Thus,
Nielson’s algorithm does not guarantee a manifold isosur-
face.

Schaefer, Tao and Warren [SJW07] generalize Niel-

son’s algorithm to multiresolution isosurfaces. They
claim that their algorithm produces non-manifold isosur-
faces. However, since they rely upon Nielson’s algorithm
as a basis, their claim seems to be incorrect.

Greß and Klein [GK04] and Zhang and Qian [ZQ12]
give dual contouring algorithms which produce multiple
isosurface vertices within a cube to represent the different
isosurfac patches. Because these algorithms split isosur-
face edges and their incident vertices whenever the edges
pass through ambiguous facets, these algorithms produce
isosurfaces which are manifolds.

Hermite data provides both the intersection of the iso-
surface and each grid edge and the isosurface normal at
each intersection. This defines a tangent plane at each in-
tersection. The dual contouring algorithms compute the
point which minimizes the least squares distance to a set
of tangent planes and use that point as an isosurface vertex
location.

Garland and Heckbert [GH97] represented the least
squares distance to a set of tangent planes by a 4x4 ma-
trix which they called the quadric error measure (QEM).
The matrix size is independent of the number of tangent
planes. Lindstrom [Lin00] used the quadric error measure
to compute the point which minimizes the least squares
distance to the represented set of tangent planes. When
the tangent planes define an edge or a smooth portion
of the isosurface, Lindstrom’s algorithm selects the point
closest to the cube center. The feature sensitive dual con-
touring algorithms all use some variation of the quadric
error measure to compute isosurface vertex locations.

There are numerous papers on generating and mesh-
ing surfaces other than isosurfaces when the surfaces have
sharp features. We mention only the ones most relevant to
this paper.

Cheng, Dey and Ramos [CDR07] described an al-
gorithm to mesh piecewise smooth complexes using
weighted Delaunay triangulations. They choose points
along the boundaries of each smooth piece and construct
protecting balls around each such point by assigning a
weight to each point. They then choose sample points
from the smooth portion of the surface outside of the pro-
tecting balls and returned the weighted Delaunay triangu-
lation of the points.

Salman et al. [SYM10] and Dey et al. [DGQ∗12] use
the protecting balls from [CDR07] to reconstruct surfaces
with sharp features from point cloud data. Both papers
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identify sharp features and protect them with balls. They
then reconstruct the surface using the protecting balls.

4 Computing Vertex Locations

Lindstrom [Lin00] described how to use the quadric error
measure from [GH97] to find the point closest to a set of
planes. The algorithms for computing isosurfaces with
sharp features all rely upon the quadric error measure to
position isosurfaces on sharp edges and corners.

As noted in the previous section, hermite data deter-
mines tangent planes to the isosurface, one at each inter-
section of the grid edge and the isosurface. For a grid
cubec, thek tangent planes on its edges give a set ofk
equations

Mx= b

whereM is ak×3 matrix andx andb are column vectors
of length k. In general, this system is over-determined
so we wish to find the least squares solution. The least
squares solution is the solution to

MTMx= MTb.

The 3×3 matrix A = MTM and the column vectorb′ =
MTb gives the quadric error measure.

The singular valued decomposition (SVD) ofA is A=
UΣV where

Σ =





σ1 0 0
0 σ2 0
0 0 σ3



 .

σ1, σ2, andσ3 are the singular values ofA. If all three sin-
gular values ofA are large, thenc contains a sharp corner.
If two singular values are large, thenc contains a sharp
edge. Otherwise, cubec does not contain a sharp feature.

Let

σ′

i =

{

σi if σi/σ∗ > ε
0 otherwise

whereσ∗ is the largest singular value andε is a thresh-
old parameter. LetA′ = UΣ′VT whereΣ′ is the diagonal
matrix with diagonal entries(σ′

1,σ′

2,σ′

3).
When A has three large singular values,A′ = A and

there is a single pointx such thatA′x = b. WhenA has
two large singular values,{x : A′x= b′} is a line. WhenA
has one large singular value,{x : A′x= b′} is a plane.

Let

σ+
i =

{

1/σ′

i if σ′

i 6= 0
0 otherwise

Let Σ+ be the diagonal matrix with diagonal entries
(σ+

1 ,σ
+
2 ,σ

+
3 ). As in [Lin00], compute:

x= qc+VΣ+UT(b′−Aqc). (1)

WhenA has three large singular values,x is the point solv-
ing Ax= b. WhenA has two large singular values,x is a
the point closest toqc on the lineA′x = b. WhenA has
only one large singular value,x is a closest toqc on the
planeA′x= b. Lindstrom uses the center of grid cubec as
the pointqc.

As described above, matricesA andb′ are determined
by tangent planes. However, they can also be determined
using gradients. Letgi andsi be the gradient and scalar
value, respectively, at pointpi . Let σ be the isovalue. The
set {x : gi · (x− pi) + si = σ} is a plane in 3D. Equiv-
alently, this plane is{x : gi · x = σ− (gi · pi + si). Let
gi be the rows ofM be gi/|gi | and the elements ofb be
(σ− (gi · pi + si))/|gi |. (We divide by|gi | so that all nor-
mal directions have equal weight.) ComputeA = MTM
andb′ = MTb and solve as above. This formulation al-
lows us to compute sharp isosurface vertex locations di-
rectly from gradients, without first transforming the gra-
dients to hermite data.

Instead of settingqc in Equation 1 to be the center of
cubec, Schaefer and Warren [SW02] propose settingqc
to the centroid of the intersections of the edges ofc and
the isosurface. For reasons discussed in the next section,
this choice ofqc improves the reconstruction results.

Hermite data gives the locations of the intersections of
the edgesc and the isosurface. If the input is a gradient
grid, then these intersections must be computed from the
input. A simple, but inaccurate approach, is to use lin-
ear interpolation to compute these intersections points. A
more accurate approach is to use the gradients at the edge
endpoints to determine the intersection point.

5 Problems with Vertex Locations

The Extended Marching Cubes algorithm by Kobbelt et.
al. [KBSS01] and the dual contouring algorithm by Ju
et. al. [JLSW02,SW02] compute an isosurface vertex for
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(a) Dual contouring with clamping. Notches
along the sharp edge (red) of the isosurface.

(b) Dual contouring with no clamping. Purple
triangle is a self intersection in the isosurface.

(c) MergeSharp of the region in 2a shows no
notches.

(d) MergeSharp of the region in 2b shows no
intersections.

Figure 2: Isosurface errors produced by dual contouring andcorresponding MergeSharp results. Mesh edges with
large dihedral angle are colored red.

each grid cube using the quadric error measure (QEM).
When the surface is relatively smooth, the isosurface ver-
tex lies within the grid cube. However, if the surface has
a sharp feature, the vertex location computed using QEM
may lie outside the grid cube. Should the isosurface ver-
tex be placed at the location outside the grid cube?

The problem of isosurface vertex locations lying out-
side the grid cube was noted by Schaefer and Warren
in [SW02]. One reason an algorithm may compute a lo-
cation outside a grid cube is that it chooses the wrong lo-
cation on a sharp edge. Schaefer and Warren used the
centroid of the intersections of the cube edge and the iso-
surface for the pointp in Equation 1 to make it more likely

that a point on the intersection of the sharp edge and the
grid cube is chosen. However, what happens if the sharp
edge or sharp corner does not intersect the grid cube? In
that case, Schaefer and Warren’s algorithm will still return
a location outside the grid cube.

Consdider a grid cubec which generates a vertex loca-
tion p on a sharp edge or corner which does not intersect
c. Let c′ 6= c be the grid cube containingp. If cubec′ has
a bipolar edge, then it also generates an isosurface vertex
v′. Placingv in c′ may create degenerate mesh triangles
or it may create overlapping triangles as the mesh folds
back on itself. (See Figure 11.b).) On the other hand, if
c′ does not have any bipolar edge, then it does not gener-
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ate an isosurface vertex. Clampingv to lie insidec will
create ridges in the isosurface or cut off the corner. (See
Figure 11.a).)

One plausible approach might be to clampp to cubec
only if c′ contains a bipolar edge. As shown in Section 11,
this approach also produces numerous errors.

For cubes whose facets are parallel to the grid facets,
grid cubes which intersect the surface corners or edges
will almost always have bipolar edges. Thus clampingv
will not create ridges along the sharp edges and will not
cut off corners. The same holds for cylinders or annuli
whose edges whose central axes are parallel to grid edges.
On the other hand, rotating these surfaces by any signif-
icant angle with respect to the grid creates many sharp
corners or edges which intersect cubes with no bipolar
edges.

6 Merging Grid Cubes

To address the problems discussed in the previous sec-
tion, we use a technique similar to the protecting balls
from [CDR07]. We identify the grid cubes whose isosur-
face vertices lie on sharp edges or corners, and select a
subset such that no two selected cubes are vertex neigh-
bors. (A grid cubec is avertex neighborof grid cubec′ if
c shares a vertex withc′.) We merge each selected cubec
with its vertex neighbors. We generate a single vertex for
the merged region.

Let Ccorner be the grid cubes whose isosurface vertices
lie on sharp corners. LetCedge be the grid cubes whose
isosurface vertices lie on sharp edges. We start by select-
ing cubes fromCcorner.

To select the cubes fromCcorner, we compute the vertex
locationpc using Equation 1. We use the centroid of the
intersections of the edges ofc and the isosurface as point
qc. We process the cubes ofCcorner in increasing order of
the L∞ distance betweenpc andqc. This causes cubes
which are “closer” to the corners to be processed first.

As we select cubes, we merge their vertex neighbors
with them. A cube which has been merged with a se-
lected cube is labelled “covered”. All cubes are initially
uncovered. We select only uncovered cubes. When we se-
lect cubec, we merge the uncovered vertex neighbors of
c with c. Those vertex neighbors become covered. Thus
no two selected cubes can be vertex neighbors. If theL∞

MERGE(Grid,Cselected)
1 foreachcubec do
2 Compute the centroidqc of the intersections of

the edges ofc and the isosurface;
3 Compute vertex locationpc using Equation 1;
4 end
5 Ccorner← cubesc wherepc is on a sharp corner;
6 Cedge← cubesc wherepc is on a sharp edge;
7 SortCcornerandCedgein increasing order by
|pc−qc|∞ (the Linf distance);

8 Mark all cubes asUncovered;
9 MERGECUBES(Ccorner,Cselected);

10 MERGECUBES(Cedge,Cselected);
11 foreachcubec∈Ccorner∪Cedgedo
12 if (c is not selected)and (c is notCovered) then

pc← qc;
13 end

Algorithm 1: Algorithm MERGE.

MERGECUBES(C, Cselected)
1 foreachcubec∈C do
2 if (cubec is Uncovered) and (|pc−qc|∞ ≤ γ)

then
3 if (NOLARGEANGLETRI(c,Cselected)) then
4 Add c to Cselected;
5 foreachvertex neighborc′ of c do
6 if cubec′ is Uncovered then
7 c′.MergeWith← c;
8 Mark c asCovered;
9 end

10 end
11 end
12 end
13 end

Algorithm 2: Algorithm MERGECUBES.

distance betweenpc andqc is greater than some threshold,
we do not selectc.

The procedure, as just described, may still create many
degenerate or near-degenerate triangles. Cubes near a
sharp edge could be close enough together to form a tri-
angle yet far enough apart so that no cube region covers
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Figure 3: Cube stack closeup

Figure 4: 2D illustration of cube stack (blue,magenta, red)
which are close enough together to form a triangle yet far
enough apart so that no 3×3×3 cube region covers the
other two cubes. Sharp edge is represented by the green
curve. Each cube generates an vertex location (with the
same color as the cube) on the sharp edge. The triangle
formed by the three vertices is almost degenerate.

the other two cubes. (See Figure 4.) When the vertices
generated by the cubes are mapped to the sharp edge, the
angle at the middle vertex becomes 180◦ or near 180◦.
To avoid such problem triangles, we do not select a cube
which forms a large angle triangle with already selected

NOLARGEANGLETRI(c, Cselected)
1 for each pairc′,c′′ ∈Cselectednearc do
2 R′← Reg3x3x3(c)∩Reg3x3x3(c’ );
3 R′′← Reg3x3x3(c)∩Reg3x3x3(c” );
4 if (some facet ofR′ has a bipolar edge and some

facet ofR′′ has a bipolar edge)then
5 α←max angle of triangle∆(pc, pc′ , pc′′);
6 if (α≥ 140◦) then return (false);
7 end
8 end
9 return (true);

Algorithm 3: Algorithm NOLARGEANGLETRI.

cubes. (See Algorithm NOLARGEANGLETRI.)
Checking each pair of cubes inCselectedcan be a time

consuming operation. We use a simple nearest neighbor
data structure based on a low resolution subgrid to quickly
identify points inCselectedwhich are nearc.

7 Isosurface Construction

The algorithm MERGE constructs regions with irregular
shapes around selected vertices. Instead of extracting the
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dual isosurface from those regions, we extract the dual
isosurface from the full grid and then merge isosurface
vertices which are from cubes in the same region. This is
simpler than trying to extract the dual isosurface from the
regions.

Our algorithm for isosurface construction has four
steps. First, compute an isosurface vertex location for
each grid cube with a bipolar edge. Next, select a set of
isosurface vertices on sharp corners and edges and their
surrounding regions. Apply Nielson’s Dual Marching
Cubes algorithm [Nie04]. to construct the dual contour-
ing isosurface from the full grid. Finally, for each merged
region, merge isosurface vertices generated by the cubes
in that region. Merging isosurface vertices transforms iso-
surface quadrilaterals to triangles and creates some degen-
erate quadrilaterals which are removed.

Nielson’s Dual Marching Cubes algorithm avoids most
(but not all) of the non-manifold configurations created
by the original dual contouring algorithm. However, the
merging of isosurface vertices in a region can create such
non-manifold configurations.

8 Computing Hermite Data

Our data set consists of the scalars and the gradients at the
grid vertices. To compare our algorithm to algorithms us-
ing hermite data, we will compute the surface normals at
the intersection of the grid edges and the isosurface. One
way to do this is to use linear interpolation on the end-
points of the bipolar grid edges. As illustrated in Figure 5,
this approach can give a very wrong result.

The gradient at the point of intersection of the cube
edge and the isosurface, is not a combination of the gra-
dients of the endpoints. Rather it is a copy of the gradient
at one of the edge endpoints.

A much more accurate calculation, is achieved by uti-
lizing the gradients at the grid edge endpoints. As shown
in Figure 5, a grid vertexvi at pointpi with scalar value
si and gradientgi determines a scalar fieldfi(x) = (x−
pi) ·gi + si . The level setf−1

i (σ) is a plane inR3 which
approximatesf−1(σ) nearpi .

The combination of the scalar fields, along the cube-
edge is a piece-wise linear curve as shown in Figure 5.
The intersection of the scalar representing the isovalueσ
and the curve produces the exact point of intersection and

Figure 5: Linear interpolation versus gradient based cal-
culation.

the gradient at this point is the gradient of the determining
edge endpoint.

9 Gradient Selection

We compare the effect of using different grid vertex gradi-
ents in the computation of the sharp-vertex in dual meth-
ods as mentioned in Section 4. This is in contrast to the
dual contouring Ju et. al. [JLSW02] which uses the exact
intersection and the surface normals. For a cube that is in-
tersected by the isosurface, the set of gradients to be used
to determine the isosurface vertex can be determined by
using one of the following options.

• Gradient Cube (gradC): The gradients of the ver-
tices of the intersected cube.

• Gradient Cube Determined (gradCD): A subset of
the gradients of endpoints of bipolar cube edges. For
each bipolar edge, we choose the endpoint and gra-
dient which determines the intersection of the edge
and the isosurface(see Section 8 and Figure 5).

• Gradient Neighbor (gradN): The gradients of the
vertices of the intersected cube and vertices adjacent
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Figure 6: Base elements of our dataset, the cube stack and
the flange.

to the cube vertices.

• Gradient Neighbor Selective (gradNS): A subset
of the gradients of the vertices in the intersected cube
and vertices adjacent to the cube vertices. Unlike
gradN, a gradient is selected only if the iso-plane
generated by the scalar value, gradient at the vertex
and the supplied isovalue intersects the edge.

10 Measuring Correctness of Sharp
Features

A procedure called FindSharp is used to compute and vi-
sualize sharp edges. FindSharp computes the dihedral
angle between adjacent surface polygons. It reports any
isosurface edges whose dihedral angle is greater than a
threshold (140◦) or which are incident on three or more
isosurface polygons. We visualize such edges by draw-
ing them in red. We can visualize them either with the
mesh (Figure 7c) or without the underlying isosurface
(Figure 7b). Figure 7a shows the triangle mesh itself.

The set of isosurface edges reported by FindSharp is
a graph embedded inR3. Procedure CountDegree mea-
sures the correctness of the sharp feature reconstruction
by counting the number of vertices of each degree in this
graph. The absolute difference between this and the ex-
pected number gives the number of errors for that degree.
The total error is the sum of those errors.

a) Triangle mesh of the cube stack data set.

b) FindSharp result showing the feature lines.

c) The mesh along with the features.

Figure 7: Comparing different views of the cube stack
dataset.
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For example, the flange isosurface shown in Figure 8b
has no corners, so the graph of its sharp edges should have
no vertices of degree other than two. Any vertices of any
other degree are errors. The isosurface of cube-stack has
32 corners and saddles, as shown in Figure 7b, 8a . The
graph of its sharp edges should have exactly 32 degree 3
vertices. Any vertices of degree 1 or degree more than
three are errors.

11 Experimental Results

11.1 Benchmark Datasets and Evaluation
interpretation

We developed two sets of data to test our algorithm. The
cube stack datasets sample a scalar fieldf : R3 → R

where f (p) is the minimum of theL∞ distance to three
points,q1,q2 andq3. Isosurfaces in the datasets are three
(overlapping) cubes, whose centers areq1,q2 andq3 (Fig-
ure 8a). To tilt the cubes, we used orthogonal frames other
than the standard one given by thex, y, z axes, and com-
puted theL∞ metric in those other frames. The cube stack
datasets test the performance of our algorithm on sharp
corners or saddles

The flange datasets sample a scalar fieldf : R3→ R

where f (p) is the combination of the distancedC(p) to a
cylinder and the distancedP(p) to a plane orthogonal to
the cylinder axis. The functionf is defined as:

f (p) = max(min(dC(p),dP(p)),max(dC(p),dP(p))/2).

Isosurfaces in these datasets are flanges with sharp con-
cave and convex edges. (Figure 8b). The flange datasets
test the performance of our algorithm on sharp edges.

We embedded each scalar field in a 100x100x100 grid
at various angles to the grid axes. The grids contain both
scalar values AND the gradients of the underlying scalar
field at each grid vertex. There are 7 flange (Table 1)
and 18 cube-stack data sets, which we test with five dif-
ferent isovalues. Thus, there are 35 test cases for flange
and 90 test cases for cube-stack. Figure 6 shows render-
ings of our data set. Table 1 provides the details for the
flange data sets. In Figure 8b we show three of the flange
datasets as mentioned in Table 1, the different orientations
help us to properly test how our and other algorithms per-

Data Set Index Center Direction
1 40.1 30 57.8 1 0 0
2 40.1 30 57.8 1 1 0
3 40.1 30 57.8 1 1 1
4 40.1 30 57.8 2 2 5
5 40.1 30 57.8 2 5 7
6 40.1 30 57.8 1 1 4
7 40.1 30 57.8 1 1 7

Table 1: Flange Data set information. Note the data sets
are at an offset from the grid vertices. The direction de-
termines the vector pointing to the major axis.

(a) Cube stack. (b) Flange.

Figure 8: Elements from our evaluation datasets. The
cube stacks and flanges are rotated at various angles to
test the robustness of the algorithms.

form. Figure 3 shows the result of MergeSharp on one of
the cube stack datasets.

We applied FindSharp and CountDegree to the isosur-
faces produced from each data set and measured the total
degree errors as described in the previous section. Table
2 gives an example of some data sets, the isovalue used,
the direction in which the data set is tilted, the errors for
different degree and the total errors in a tabular form. Iso-
surface which have poor representation of sharp features
produce numerous graph vertices with degree one, three
or higher.

We also display the number of errors in histograms. For
instance, Figure 12 shows the comparison of MergeSharp
with Dual Contouring with different options. The X axis
represents the test case identifier and the Y axis represents
the number of errors. We show results both for flange and
cube-stack data sets.

We compared our algorithm to the openly available pro-
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Degree Degree 3 Total
Dataset Direction Isovalue 1 3 ≥ 4 Errors Errors
Flange (1,1,4) 3.23 11 152 98 152 261
Flange (1,1,1) 3.5 0 2 0 2 2
Cube stack (1,1,0) 4.8 0 32 0 0 0
Cube stack (1,1,1) 3.23 3 32 3 0 6
Cube stack (1,1,1) 4.6 0 27 6 5 5

Table 2: Degrees in graph of sharp edges for various datasetsand isovalues. All datasets are regular scalar grids of
dimensions 100×100×100.

gram Polymender [Ju04]. Polymender can be used to
construct hermite data for a scalar field representing dis-
tance to a polygonal mesh. More specifically, Polymender
outputs the coordinates in dcf format of the intersection of
grid edges and the isosurface. It also outputs the isosur-
face normals at those intersection points. We compared
Polymender with MergeSharp on four triangle mesh data
sets downloaded from grabcad.com/library/software/stl-
for-3d.

Figure 9, 10, 15, 16, 17 compares isosurfaces produced
by Polymender and MergeSharp. Table 3 compares Poly-
mender and MergeSharp in terms of the errors produced.
For all test cases, we set the Polymender octree depth to 8
and the Polymender scale parameter to 0.8.

11.2 Evaluation

The flange and cube-stack data sets contain scalar val-
ues and gradients at grid vertices. To compare with dual
contouring algorithms [JLSW02], we generate a hermite
equivalent of the grid data by computing the edge inter-
section and the normals at the intersection using the pro-
cedure described in Section 8.

We first compared MergeSharp with our own imple-
mentation of dual contouring with no cube merging. We
implemented three variations of the dual contouring algo-
rithm. The first variation, called clampGrid, clamped iso-
surface vertices to their generating grid cube. The second
variation, called noClamp, allowed isosurface vertices to
be located outside their generating grid cube. The third
variation, called clampConflict, clamped isosurface ver-
tices to their generating grid cubec only if they were sit-
uated in a neighboring grid cubec′ which had a bipolar
edge. The histograms are shown in Figure 12.

As illustrated in Figure 12, clampGrid generates more
errors than noClamp and MergeSharp. clampConflict per-
forms better in some tests than clampGrid. An exam-
ple of a typical clamping error is shown in Figure 2a.
The noClamp algorithm, has fewer errors than clampGrid,
but it also produces problems such as flipped-triangles as
shown in Figure 2b. MergeSharp has the fewest number
of errors and performs better than the other options. The
corresponding regions shown in Figure 2c and Figure 2d
illustrate how MergeSharp performs in the cases where
other options fail to produce the correct output (Figure 2a,
Figure 2b).

From Figure 2a we observe, clamping generates
‘notches’ in the output. This happens when the ver-
tex generated by methods discussed in Section 4 are
clamped to default locations (such as centroid of edge-
intersections) or clamped to the grid cube. While
noClamp solves the problem of notches, without a proper
ordering of the vertices being placed outside of the corre-
sponding cube, in many cases we see flipping of triangles
(Figure 2b).

Next we compare computing the isosurface vertex from
grid vertex gradients to computing the isosurface vertex
from the surface normals and edge intersections. For
this we use the gradients mentioned in Section 9 namely
gradCD, gradC, gradN , gradNS with hermite equivalent
(computed as mentioned in Section 8).

The resulting histograms are shown in Figure 13. We
note some observations from the graph. GradN on the
flange dataset produces a considerable number of errors.
Looking at the cube gradients and adjacent neighbors
without some selection criteria, means smooth cubes near
sharp features (edges/corners) tend to place the isovertices
near the these sharp features, which leads to deterioration

12



(a) Polymender isosurface. (b) Close-up of blue square.

(c) MergeSharp isosurface. (d) Close-up of yellow square.

Figure 9: Isosurfaces from the weld dataset with ‘sharp ’ mesh edges (large dihedral angles) marked in red. 9a),
9b) Polymender generates disconnected sharp mesh edges representing a sharp edge of the object. It also generates
mesh edges with large dihedral angle in smooth regions of thesurface. 9c), 9d) MergeSharp correctly generates a
connected curve of sharp mesh edges to represent a sharp edgeof the object. It does not generate mesh edges with
large dihedral angles in the smooth region of the surface.

of the mesh and a higher number of errors.

In Figure 14 we focus on hermite, gradCD, gradC and
gradNS. Blank columns (for example flange test case 5)
are cases with zeros errors. In Table 6 we see test case 5
is oriented along the X-axis (Table 1). We conclude that
axis aligned data sets are less effected by the conflict and
flipping errors. As we tackle data sets which are not axis
aligned, such as flange test-id 25 [Table 6], whose axis is
tilted towards the coordinate (2,5,7) [Table 1] the errors
increase.

We further observe in Figure 14a, GradCD produces
equivalent results to hermite in most cases. The gradC im-

plementation generates more error in certain cases. Both
gradC like gradN might select points on nearby sharp fea-
tures (edges/corners) even if the cube is in a smooth re-
gion. In contrast, GradNS produces similar results to her-
mite with few errors.

In Figure 14b, we note that in certain cases for cube
stacks, gradN performs better than gradC. We infer that
in these cases, looking at just the cube gradients is not
enough. Gradients from neighboring locations play a cru-
cial role in determining the vertex location and so gradN
performs better.

Comparison of gradNS and hermite leads us to con-
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(a) Polymender result. (b) MergeSharp result.

Figure 10: Overview of Polymender and MergeSharp results. FindSharp output is shown in red.

Figure 11: Flange isosurfaces. Sharp isosurface edges are marked in red. a) Dual contouring with clamping to grid
cubes producing ridges in the sharp edges. b) Dual contouring with no clamping to grid cubes. Degenerate triangles
and folds appear as red edges sticking out from the red circles around the flange. c) Dual contouring based on cube
merging.
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(b) Cube stack dataset.

Figure 12: Comparison of MergeSharp and dual contouring. InClampGrid, isosurface vertex positions are clamped
to their generating cube. In NoClamp, isosurface vertex positions are not clamped to their generating cube. In
ClampConflict, isosurface vertex positions are clamped to their generating cube if they initially lie in some cubec′

which has a bipolar edge.
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(b) Cube stack dataset.

Figure 13: Comparing MergeSharp on hermite data computed from gradients (gradEC) and using gradients directly (
gradCD, gradC, gradN and gradNS).
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Figure 14: A more detailed comparison of MergeSharp on hermite data computed from gradients (gradEC) and using
gradients directly. (Empty columns refer to cases where no errors where produced.)

clude that gradients at grid vertices can be used instead of
surface normals to compute isosurface vertices.

11.3 Polymender and MergeSharp Com-
parison

We also show comparisons of results from MergeSharp
and Polymender. Figure 10, 9, 17 15 shows overviews,
closeup views of errors produced by polymender and the
corresponding regions for MergeSharp.

In Table 3 we provide detailed results of error generated
on the data sets. We can observe that MergeSharp per-
forms better than Polymender in both CountDegree num-
bers and visual comparisons.

As in [SW02] we truncate the singular values based
on the relative magnitude to the largest singular value, as
discussed in Section 4. For all previous tests, we have
used 0.1 as the threshold. In Figure 18 we show the re-
sults of running MergeSharp with other threshold values.
We observe that setting a very small threshold such as
0.05 leads to more errors. Increasing the threshold to 0.2
does not create a noticeable change in the number of er-
rors in flange but does create some problem cases with
more errors in cube stacks. When the cutoff is small, the
increased number of large singular values leads to false
identification of features. Edges are classified as corners

or smooth regions are classified as sharp edges. A high
threshold on the other hand misses some corners.

Lindstrom [Lin00], finds the vertexpc closest to the cell
center that is also closest to the surface tangent planes.In
their dual contouring paper Ju et. al. [JLSW02] use the
‘mass point’ instead of the cube center. We show results
for computing the centroid, by computing the edge inter-
section in two different ways. First, we use a gradient
based computation to find the edge intersections. Next,
we use simple interpolation along the edge to find the in-
tersection. In Figure 19 we compare these two meth-
ods along with using the cube-center as the ‘mass point’.
We observe that using the cube-center produces the most
number of errors. These occur due to the creation of
notches as shown in Figure 2a. Distance to centroid from
the gradient computation gives competitive results in all
test cases and is used as default for our tests.

Finally, we claim that our algorithm was robust to
noise. We test this by perturbing the gradients of our data
sets uniformly by 10 and 20 degrees.

Figure 20 contains results comparing MergeSharp on
perfect data and on data with noisy gradient directions.
We observe from the histogram that when gradients are
uniformly perturbed upto 10 degrees, MergeSharp is very
competitive to no noise results.

In Figure 21 we compare the results from running
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(a) Rotor hub using MS. (b) Rotor hub closeup. (c) Rotor hub further closeup.

(d) Rotor hub overview DC (e) Rotor hub closeup. (f) Rotor hub further closeup.

Figure 15: Comparison of Polymender and MergeSharp on the rotor hub dataset.
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(a) Polymender result on the rotor dataset. Yellow
and white rectangles indicate some problematic re-
gions.

(b) Closeup of the white rectangle above shows the
problems with the Polymender near the corner.

(c) MergeSharp result on the rotor dataset. (d) MergeSharp reconstruct the corner accurately.

Figure 16: Close up of Polymender and MergeSharp results.
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(a) Weld overview MergeSharp. (b) Weld closeup. (c) Weld hub further closeup

(d) Weld overview using DC (e) Weld closeup. (f) Weld further closeup.

Figure 17: Comparison of Polymender and MergeSharp on the Weld dataset.

Figure 22: Results of [MS10] on a non-axis aligned cylin-
der.

MergeSharp and dual contouring with no clamping on
noisy data. As seen in Figure 21a the dual contouring
output has numerous small errors and the findSharp num-
bers generated are far more than can be represented in
Figure 20. MergeSharp Figure 21b produces far less er-
rors.

We also ran the available code from [MS10] on a cylin-
der alligned at direction (1,1,1) we show the result in Fig-
ure 22. We note that the algorithm generates a lot of very
small triangles. In general the results were not competi-
tive to polymender or mergeSharp.

11.4 Timings

We ran our experiments on a standard desktop with four
giga-byte ram and with two cores Intel CPU. We show
timing results both for hermite data and gradient data.The
hermite information for the mesh was generated by the
Polymender tool.

Active cubes refer to the number of grid cubes inter-
sected by the isosurfaces. The time taken is divided into
following parts. Time to ‘position’ the dual vertices, this
time is common to all dual based algorithms. Time to
‘merge’, this is the time taken by MergeSharp. The total
time also includes time to extract the triangles.

An isosurface vertex is generated for each active cube
using singular value decomposition. This is the most time
consuming step ( Column ‘position’ of Table 4) and is
common to all dual algorithms. Accordingly the time to
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Polymender MergeSharp
Dataset Degree

1
Degree
3

Degree
≥ 4

Total
6= 2

Degree
1

Degree
3

Degree
≥ 4

Total
6= 2

Weld 437 429 176 1042 48 34 3 85
Brake 674 490 282 1446 7 35 3 45
Rotor arm 58 72 19 149 2 6 2 10
Rotor 647 485 188 1320 2 6 2 10

Table 3: Comparison of Polymender and MergeSharp on triangle mesh data sets.

Time (seconds)
Dataset Dimensions Num Active Cubes position merge extract total
Weld 2563 60389 6.14 0.13 1.36 13
Flange(g) 2503 154380 9.98 0.22 1.25 20
Flange(h) 2503 154380 11.1 0.22 1.25 20
Rotorhub 2563 174323 11.6 0.3 1.4 20

Table 4: Run times for MergeSharp . Active cubes are the cubesintersected by the isosurface, position refers to the
time to find the isovertex. Merge is the time taken by our algorithm. Flange (g) refers to the case when we have
gradient information and Flange (h) refers to the case when we have hermite data.

position increases with increase in the number of active
cubes. Time to run MergeSharp (col ‘merge’ Table 4)
also increases with increase in number of active cubes.
The increase in time to merge is small compared to the
increase in the time to position and is insignificant com-
pared to the total time.

We also show that the time taken to position is less
when we have hermite data( Flange(h)) than when we
have gradient data ( Flange(g)). When we use gradi-
ent data, computing the correct gradients for the cube in-
volves some time and thus the difference in timings.

To compute the isosurface vertex location we use the
Eigen Library, which we found to be quite slow in prac-
tice. We think a dedicated singular value decomposition
solver for a 3x3 matrix would decrease the time to posi-
tion isovertices.

A more detailed timings comparison is shown in the
Figure 23. Fig 23a shows how the increase in grid-size
effects merge times. The X axis shows grid size for data
sets increasing from 100 to 350 cubes per-axis. The Y axis
shows the times spent. Apart from the factors mentioned
above, we also show the time spent for extracting the dual
isovertex from the gradient data and from hermite data
separately. Figure 23b shows how the number of active

cubes and the number of merged cubes are affected by
the increase in grid-size. We see as with Table 4, the
number of active cubes increase with increase in datasize
( see Fig 23b) accordingly the time taken to compute the
isovertices increases ( position Isovert hermite and Pos
Isovert grad, see 23a). While time to merge also increases,
it remains a small fraction of the total time taken.
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Figure 18: Comparing different thresholds for the singularvalue. Singular values below the threshold are set to 0 in
computing vertex locations.
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Figure 19: Comparing calculating isosurface vertex position (Equation 1) using distance to cube center and centroid
of intersections of isosurface and grid edges. Approximateintersections using interpolation(Dist-centroid-interpolate)
or using gradients at edge endpoints (Dist-centroid-sharp).
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Figure 20: Effect of adding uniform noise to the gradients. Gradients were perturbed uniformly within the given
angular bound.

(a) dual contouring with no clamping. (b) MergeSharp.

Figure 21: Noisy data where gradients were perturbed uniformly by an angle of 20 degrees. a) Isosurface from dual
contouring with no clamping. b) MergeSharp isosurface.
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TestId Dataset Type Data set
index

isovalue

1 flange 1 3
2 flange 1 3.8
3 flange 1 3.23
4 flange 1 3.5
5 flange 1 3.9
6 flange 2 3
7 flange 2 3.8
8 flange 2 3.23
9 flange 2 3.5
10 flange 2 3.9
11 flange 3 3
12 flange 3 3.8
13 flange 3 3.23
14 flange 3 3.5
15 flange 3 3.9
16 flange 4 3
17 flange 4 3.8
18 flange 4 3.23
19 flange 4 3.5
20 flange 4 3.9
21 flange 5 3
22 flange 5 3.8
23 flange 5 3.23
24 flange 5 3.5
25 flange 5 3.9
26 flange 6 3
27 flange 6 3.8
28 flange 6 3.23
29 flange 6 3.5
30 flange 6 3.9
31 flange 7 3
32 flange 7 3.8
33 flange 7 3.23
34 flange 7 3.5
35 flange 7 3.9

Table 6: The ‘TestId’ in the comparison graphs, refer to a particular combination of the dataset oriented at a particular
direction and an associated isovalue. For example test case2, is a flange index 5 with isovalue of 3.9. Index 5 in
Table 1 shows that it is tilted towards the direction (2,5,7).
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12 Discussion and Future Work

The dual contouring algorithm in this paper produces
measurably better results than the simpler dual contouring
algorithm in [JLSW02] and its implementation in Poly-
mender [Ju04]. It also shows measurable robustness un-
der noise and it can run directly from gradient data, not
just hermite data.

We do not have implementations of the other algo-
rithms for constructing isosurfaces with sharp features
and so were unable to do measurable comparisons. We
discuss those algorithms below.

The Extended Marching Cubes [KBSS01] behaves
quite like the dual contouring algorithm of [JLSW02].
Thus, we believe that our algorithm would also do mea-
surably better against Extended Marching Cubes on the
same test cases given in 11.

Our algorithm is a variation of dual contouring but the
central ideas could equally well have been applied to the
Extended Marching Cubes framework. Doing so would
give Marching Cubes isosurface patches in the smooth re-
gions and isosurface patches generated by our algorithm
near the sharp features.

The algorithms in [AB03,GK04,HWCO05,VKKM03,
ZHK04] implicitly address the problems described in Sec-
tion 5 by adding more vertices and polygons around sharp
features. Our approach is the exact opposite, using fewer,
not more, vertices to represent the isosurface near sharp
features. We don’t know how well those algorithms would
perform on the findSharp and countDegree tests of Sec-
tion 10, but they may do quite well. However, because of
their subvoxel constructions, we believe that they are very
sensitive to errors in their input data. We are interested
in computing sharp features from gradient data and ulti-
mately scalar data where the gradients are computed from
a scalar grid. The precise position and gradient informa-
tion needed for those algorithms is probably not available
in scalar input data.

Schaefer and Warren’s algorithm in [SW04] is funda-
mentally different than all the others. They construct a
dual grid whose vertices and edges are on sharp isosurface
features and apply Marching Cubes to that grid. As noted
in their paper, Marching Cubes produces many sliver tri-
angles. While they suggest a method for reducing the
number of such slivers, we suspect that the remaining sliv-
ers will cause the isosurface to perform poorly on the tests

of Section 10. More importantly, we think the two step
process of constructing a dual grid representing the sharp
features and extracting the isosurface from that dual grid
makes their algorithm very sensitive to errors in the input
data.

Many of the dual contouring algorithms support multi-
resolution contouring. Our algorithm can easily be modi-
fied to support multi-resolution contouring in the smooth
regions of the grid. Supporting multi-resolution contour-
ing around the sharp features would be more difficult, but
should be possible.

Equation 1 computes the location on a sharp feature
closest to some pointqc. Point qc can be the center of
cubec or the centroid of the intersection points of the iso-
surface and the cube edges. When the input is not Hermite
data, the intersection points can be computed using lin-
ear interpolation or using gradients at the edge endpoints.
We compared all three possibilities forqc. In Figure 19
we show that using the centroid of intersection points in-
stead of the center measurably improved the algorithm
of [JLSW02,Ju04], confirming the findings from [SW02].
For our experimental results in 11, we used the centroid
of intersection points computed using gradients from the
edge endpoints.

The use of fewer, not more, isosurface vertices around
sharp features may seem counter-intuitive but we believe
it is in fact correct. Continuity in smooth regions im-
plicitly gives information about surface location. This
information is missing near sharp features requiring the
use of more sample points to determine feature location.
Thus isosurface resolution should be lower, not greater,
around sharp features. However, if our algorithm pro-
cesses smooth regions with high levels of detail as regions
containing a sharp feature, then some of that detail will
be lost. This is an unfortunate, unintended consequence
of our processing of sharp regions. We plan to run exper-
iments to determine the extent of this problem. We also
think that some extra processing to determine smooth re-
gions with high levels of detail will help ameliorate this
problem.

Kobbelt et. al. in [KBSS01] point out that singular
values are sensitive to the number of normals pointing in
a given direction, not just the differences between direc-
tions. For this reason, they measure the differences be-
tween normal directions to detect sharp features and then
use the quadric error measure to locate isosurface vertices
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on such features. We think that using differences between
gradient directions to detect sharp features could improve
our algorithm.

The major weakness of our algorithm is our inability
to guarantee that the output isosurface is a manifold. We
can check that merging vertices in a region does not create
non-manifold regions and block merges which do so. The
challenge is to make such a check simple and quick, yet
does not block merges except where absolutely necessary.
For almost all the experimental results in Section 11, the
outputs were manifolds suggesting that few blocks would
be required. We are currently working on guaranteeing
that the output isosurface is a manifold.

Our ultimate goal is to reconstruct sharp isosurfaces
from just scalar data. Gradient information must be com-
puted from the scalar data, and thus inherently have some
errors. We believe that our algorithm which is robust un-
der gradient errors is an important step toward our goal.
The other necessary step toward meeting this goal is a
simple, robust algorithm for computing reliable gradients
near sharp features.
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