
Thinking Beyond the RAM Disk for In-Memory

Checkpointing of HPC Applications

Raghunath Rajachandrasekar, Adam Moody, Kathryn Mohror,

Dhabaleswar K. Panda

OSU Technical report

OSU-CISRC-1/13-TR02

January, 2013

Network-Based Computing Laboratory

Dept. of Computer Science and Engineering

The Ohio State University

Columbus, OH

Lawrence Livermore National Laboratory

Livermore, CA

Thinking Beyond the RAM Disk for

In-Memory Checkpointing of HPC Applications

Abstract

With the massive growth in scale and complexity of high

performance computing (HPC) systems, long-running scien-

tific parallel applications periodically save the state of their

execution to files called checkpoints, which are used to re-

cover from system failures. Checkpoints are stored on ex-

ternal parallel file systems, which persist data even through

catastrophic machine failures. Limited bandwidth and con-

tention, however, makes this a time-consuming operation.

Multi-level checkpointing libraries, such as the Fault Tol-

erance Interface or the Scalable Checkpoint / Restart Li-

brary, have been developed to alleviate this bottleneck by

caching most checkpoint files in storage close to the compute

nodes and storing less frequent checkpoints to the slower, but

more resilient parallel file system. However, most large scale

HPC systems offer no storage on the compute nodes other

than main memory, which significantly constrains the do-

main where existing multi-level checkpointing libraries can

be employed.

In this paper, we implement a novel user-space file system

that stores file data in main memory and transparently spills

over to other storage like the parallel file system as needed.

This technique extends the reach of multi-level checkpoint-

ing libraries to systems and applications where it otherwise

could not be used. We discuss our design, the semantic as-

sumptions we made, and other design alternatives. Our file

system scales linearly with node count and achieves an ag-

gregate throughput of 18 TB/s when using just 17.5% of a

large HPC system. It decreases the time to write node-local

checkpoints by a factor of 1.79 compared to RAM disk, and

it can be ported to platforms where RAM disk does not ex-

ist.

Keywords HPC, checkpoint/restart, filesystems, persistent-

memory, SSD, fault-tolerance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys ’13 April 15-17, 2013, Prague
Copyright c� 2012 ACM (LLNL-CONF-592884-DRAFT). . . $10.00

1. Introduction

In high performance computing (HPC), tightly-coupled, par-

allel applications run in lock step over thousands to mil-

lions of processor cores. These applications simulate physi-

cal phenomena such as hurricanes or the effect of aging on

the nuclear weapons stockpile. The results of these simula-

tions are important and time-critical, e.g., we want to know

the path of the hurricane before it makes landfall. Thus,

these applications are run on the fastest supercomputers in

the world at the largest scales possible. However, due to the

increased component count, large-scale executions are more

prone to experience faults, with mean times between failures

on the order of hours or days due to hardware breakdowns

and soft errors [12, 17, 23, 24, 27].

HPC applications survive failures by saving their state in

files called checkpoints on stable storage, usually a globally-

accessible parallel file system. When a fault occurs, the ap-

plication rolls back to a previously saved checkpoint and

restarts its execution. Although parallel file systems are op-

timized for concurrent access by large scale applications,

checkpointing overhead can still dominate application run

times, where a single checkpoint can take on the order of

tens of minutes [14, 21]. On current HPC systems, check-

pointing utilizes 75-80% of the I/O traffic [1, 20]. On future

systems, checkpointing activities are predicted to dominate

compute time and overwhelm file system resources [11, 18].

Multi-level checkpointing systems [7, 18] utilize node-

local storage for low-overhead, frequent checkpointing, and

only write a select few checkpoints to the parallel file sys-

tem. The use of node-local storage is appealing because it

scales with the size of the application; as more compute

nodes are used, more storage is available. Checkpoints can

be taken more frequently so less work is lost upon failure.

Unfortunately, node-local storage is a scarce resource. While

a handful of HPC systems have storage devices such as SSDs

on all compute nodes, most systems only have main mem-

ory, and some of those do not provide any file system inter-

face to this memory, e.g., RAM disk. Additionally, to use an

in-memory file system, an application must dedicate suffi-

cient memory to store checkpoints, which may not always

be feasible or desirable.

We address these problems with a new in-memory file

system called CRUISE: Checkpoint Restart in User SpacE.

CRUISE is optimized for use with multi-level checkpoint-

ing libraries to provide low-overhead, scalable file storage

on systems that provide some form of memory that persists

beyond the life of a process, such as System V IPC shared

memory. Our file system supports the minimal set of POSIX

semantics such that its use is transparent when checkpoint-

ing HPC applications. An application specifies a bound on

memory usage, and if its checkpoint files are too large to

fit within this limit, CRUISE stores what it can in memory

and then spills-over the remaining bytes in slower but larger

storage, such as the parallel file system. Finally, CRUISE sup-

ports Remote Direct Memory Access (RDMA) semantics

that allow a remote server process to directly read files from

a compute node’s memory.

In this paper, we make the following contributions:

• A thorough discussion and performance evaluation of de-

sign alternatives for our in-memory checkpointing sys-

tem

• A detailed design of CRUISE

• A new mechanism for honoring memory usage bounds,

namely, spill-over

• A performance and scalability evaluation of CRUISE and

our spill-over mechanism

We give background in Section 2. We evaluate design

alternatives for CRUISE in Section 3. In Sections 4 and 5, we

detail our design and implementation of CRUISE. We follow

this with a performance evaluation of CRUISE in Section 6.

In Section 7, we survey related research.

2. Background

In this section, we give background on the checkpointing

library for which we designed CRUISE and on the character-

istics of checkpoint I/O workloads.

2.1 Scalable Checkpoint/Restart (SCR) Library

We developed CRUISE to enhance the capabilities of the

Scalable Checkpoint/Restart (SCR) library [25]. SCR is a

multi-level checkpointing system that enables MPI appli-

cations to use node-local storage to attain high checkpoint

and restart I/O bandwidth [18]. SCR achieves high I/O band-

width by caching checkpoints in node-local storage instead

of the parallel file system. It caches checkpoint files in what-

ever storage is available, e.g., RAM disks, magnetic hard-

drives, or SSDs. SCR applies redundancy schemes to the

cache, so it can recover checkpoint files even if a failure dis-

ables a small portion of the system. It periodically flushes

a cached checkpoint to the parallel file system in order to

withstand more catastrophic failures.

To extend multi-level checkpointing to more systems and

applications, the following design goals guided the develop-

ment of CRUISE. First, we wanted to provide a file system on

machines with no local storage other than memory. Second,

we wanted a framework to support compression and spill

over for applications whose checkpoints are too large to fit

in the available local storage. Third, we wanted to enable

remote access to checkpoint data stored in compute node

memory so that it could be copied to slower, more resilient

storage in the background. Finally, we wanted to develop a

file system that could perform near memory speeds to allow

for very low checkpointing overhead.

2.2 Checkpoint/Restart I/O Characteristics

The characteristics of checkpoint/restart I/O workloads dif-

fer from normal I/O workloads in several ways that allow

us to optimize our design and implementation of CRUISE. In

this work, we only consider application-level checkpointing,

where the application explicitly writes its data to files. This

differs from system-level checkpointing in which the entirety

of the application’s memory is saved by an external agent.

Application-level checkpointing is typically more efficient,

because only the data that is needed for restart is saved, in-

stead of the entire memory. Here, we detail the characteris-

tics of typical application-level checkpoint I/O workloads.

Predominantly sequential and dense writes. Typically,

checkpoints are a large volume of data that is written se-

quentially to a file. However, there are exceptions. For in-

stance, an application may use a high-level I/O library such

as NetCDF [4] or HDF5 [9]. These libraries may use random

writes to make updates to the header portion of a file. As an-

other example, a process could create a file, write a byte,

and then seek to an offset later in the file to write more data,

leaving a hole. A file system could optimize for this case

by keeping track of the holes and the locations of the real

data and use less space on the storage device. Because we

assume checkpoints are dense files, we do not need to incur

the overhead of supporting this optimization in CRUISE.

A single file per process. Many applications save state in a

unique file per process. This checkpointing style is a natural

fit for multi-level checkpointing libraries. In fact, SCR im-

poses the additional constraint that a process may not read

files written by another process. As such, there is no need

to share files between processes, so storage can be private to

each process, which greatly reduces the need for locking.

Write-once-read-rarely files. A checkpoint file is not mod-

ified once written, and it is only read during a restart after

a failure, which are assumed to be rare events relative to

the number of checkpoints taken. With CRUISE, we plan to

eventually utilize this property to conserve storage space by

compressing files as they are written.

Transient nature of checkpoint data. Since an application

restarts from its most recent checkpoint, older checkpoints

can be discarded as newer checkpoints are written. Multi-

level checkpointing libraries like SCR take advantage of this

property by only caching the most recent checkpoints in

node-local storage. Since SCR tracks which files are most

recent, there is no need to track file time stamps in CRUISE.

Globally coordinated operation. Commonly, parallel ap-

plications coordinate to ensure that all message passing ac-

tivity has completed before taking a checkpoint. This co-

ordination means that all processes block until the check-

pointing operation is complete, and when a failure occurs,

all processes are restarted at the same time. This means

that CRUISE can clear all locks when the file system is re-

mounted.

3. Design Alternatives

CRUISE logically needs two layers of software: the first

layer to intercept POSIX calls made by the application or

checkpoint library, and the second layer to interact with the

storage medium to manage file data. Each layer has several

design alternatives that present trade-offs between imposed

overheads, performance, portability, and the capability to

support our design goals. This section discusses the merits

and demerits of the alternatives that we considered.

3.1 Intercepting the Application’s I/O Operations

One of our design goals was to develop a solution that

is transparent to HPC applications. To achieve this, we

want to intercept and process existing application check-

point I/O operations such as read(), fread(), write(),

and fwrite(), and metadata operations such as open(),

close(), and lseek(). This subsection discusses two op-

tions that we considered for implementing the interception

layer of CRUISE.

3.1.1 FUSE-based File System

A natural choice for intercepting application I/O in user-

space is to use the Filesystem in User SpacE (FUSE)

module[3]. A file system implementation that uses FUSE

can act as an intermediary between the application and the

actual underlying file system, e.g., a parallel file system.

The FUSE module is available with all mainstream Linux

kernels starting from version 2.4.X. The kernel module

works with a user-space library to provide an intuitive in-

terface for implementing a file system with minimal effort

and coding. Given that a FUSE file system can be mounted

just as any other, it is straight-forward to intercept appli-

cation I/O operations transparently. However, a significant

drawback is that FUSE is not available on all HPC systems.

Some HPC systems do not run Linux, and some do not load

the necessary kernel module.

Ignoring these portability issues for the moment, another

problem is relatively poor performance for checkpointing

workloads. First, because I/O data traverses between user-

space and kernel-space multiple times, the use of FUSE can

introduce a significant amount of overhead on top of any

overhead added by the file system implementation. Second,

the use of FUSE implies a large number of small I/O requests

for writing checkpoints. By default, FUSE limits writes to 4

KB units. Although the unit size can be optionally increased

to 128 KB, that is relatively small for checkpoint workloads

that can have file sizes on the order of hundreds of megabytes

per process. When FUSE is used in such workloads, many

I/O requests are generated at the Virtual File System (VFS)

layer, so that there are many context switches between the

application and the kernel.

Figure 1. High-overheads in throughput incurred by FUSE

Figure 1 quantifies the overhead incurred by FUSE using

a dummy file system that simply intercepts I/O operations

from an application and passes the data to the underlying

file system, a kernel-provided RAM disk in this experiment.

For these runs, we measured the write() throughput of a

single process that wrote a 50 MB file to both native RAM

disk, and to the dummy FUSE mounted atop the RAM disk.

Due to the large overheads of using FUSE, the FUSE file

system only gets approximately 5% of the performance of

writing to RAM disk directly.

Because one of our design goals is to optimize CRUISE for

low overhead for checkpointing workloads, and due to porta-

bility issues, we decided not to adopt this approach.

3.1.2 Linker-Assisted I/O Call Wrappers

The other alternative we considered for intercepting appli-

cation I/O was to implement CRUISE as a set of wrapper

functions over the native POSIX I/O operations. The GNU

Linker (ld) supports intercepting standard I/O library calls

with user-space wrappers. This can be done statically during

link-time, or dynamically at run time using the LD PRELOAD

mechanism. This method works without significant over-

heads because all control remains completely in user-space

without data movement to and from the kernel. The diffi-

culty is that a significant amount of work is involved to

write wrappers for all of the relevant POSIX I/O routines

that an application might use. Nevertheless, we adopted this

approach because of its low overhead and good portability.

3.2 In-Memory Checkpoint Storage Management

Another design goal for CRUISE is to store application

checkpoint files in memory. Here, we discuss three options

that we considered for this capability.

3.2.1 Kernel-Provided RAM disk

The RAM disk (a.k.a RAM disk) is a kernel-provided vir-

tual file system that is backed by the volatile physical mem-

ory available to a node, and not by a hard-disk or any such

storage device. RAM disk can be mounted like any other

file system, and the data stored in it persists for the life-

time of the mount. The memory allocated to RAM disk is

managed by the kernel, enabling persistence beyond the life-

time of user-space processes but not across node reboots or

crashes. RAM disk also provides standard file system in-

terfaces and is fully POSIX-compliant, making it an natu-

ral choice for in-memory data storage. However, the RAM

disk implementation is unable to take complete advantage of

the high-bandwidth of the memory subsystem.

Figure 2 illustrates the I/O throughput of different lev-

els in the storage hierarchy. We show the performance for

the Network File System (NFS), spinning magnetic hard-

disk (HDD), parallel file system, solid-state disk (SSD),

and RAM disk. In addition, we show the throughput of

a memory-to-memory copy operation (memcpy()). From

these numbers, it is evident that RAM disk does not fully

utilize the throughput offered by the physical memory sub-

system.

Another drawback with RAM disk is that one can not

directly access file contents with RDMA. For these reasons,

we chose not to use RAM disk to store checkpoint data.

Figure 2. I/O Throughput (MB/s) at different levels of the

storage hierarchy

3.2.2 A RAM disk -Backed Memory-Map

The drawbacks noted above regarding performance and

RDMA capability could be addressed by memory mapping

a file residing in RAM disk. This was an attractive option

given that it could take complete advantage of the band-

width offered by the physical memory subsystem simply

by copying checkpoint data from application buffers to the

memory-maps using memcpy() calls. Once the checkpoint

is written to the memory-map, it can be synchronized with

the backing RAM disk file using msync(). Then one can

simply read the normal RAM disk file during recovery.

Downsides to this approach are its space-demands and

consistency concerns. Given that the file backing the memory-

map also resides in the memory reserved for RAM disk, the

checkpoint data occupies twice the amount of space. More-

over, there are difficulties involved with tracking consistency

between the memory-mapped region and the backing RAM

disk file. We deemed the overheads incurred by this ap-

proach as too severe to be effective, and furthermore, some

systems do not provide RAM disk on their compute nodes,

so we chose not to use RAM disk for CRUISE.

3.2.3 Byte-Addressable Persistent Memory Segment

The third approach we considered was to store the check-

point data in physical memory. Our target systems all pro-

vide a mechanism to acquire a fixed-size segment of byte-

addressable memory which can persist beyond the lifetime

of the process that creates it. After allocating a block of such

memory, our framework manages data-placement, garbage

collection, and other such file system activities without rely-

ing on the kernel or any other system component. The dif-

ficulty lies in implementing the numerous functions and se-

mantics of a POSIX-like file system. However, as we discuss

in the following section, this is mitigated somewhat by using

properties of checkpoint workloads combined with our tar-

get to provide a file system sufficient to support multi-level

checkpointing libraries.

The major advantages of this design choice are the fine-

grained management of the data and access to the entire

bandwidth of the memory device. This design should also

work with future byte-addressable Non-Volatile Memory

(NVM) or Storage-Class Memory (SCM) architectures. Ad-

ditionally, this design is portable across a wide-range of cur-

rent HPC systems. This includes systems such as the recent

BG/Q from IBM that provides byte-addressable persistent

memory, and all Linux clusters that provide System V IPC

shared memory segments. Because of these advantages, we

chose this option for in-memory storage management for

CRUISE.

4. Architecture and Design of CRUISE

4.1 CRUISE Design Overview

The contents of the file system are maintained in a large

block of persistent memory. The size of this block is speci-

fied by the application via compile time constants, environ-

ment variables, or function parameters when the file system

is created. The data in this memory block persists beyond

the life of the process that creates it so that a subsequent

process may attach to the block and access the data even af-

ter the original process has failed. We do not require data to

persist through node failure or reboot, only through process

lifetimes. When a subsequent process attaches to the block,

the base virtual address of the block may be different, so in-

ternally all data structures are referenced using byte offsets

from the start of the block.

Figure 3 illustrates the format of the memory block. The

block is divided into two main regions: a meta data region

that tracks what files are stored in the file system, and the

data region that contains the actual file contents. The data

region is further divided into fixed-size blocks, called data-

chunks. Although not drawn to scale in Figure 3 for legi-

Figure 3. Data Layout of CRUISE on the Persistent Memory Block

bility, the memory consumed by the meta data region only

accounts for a small fraction of the total size of the memory

block.

4.2 CRUISE Components

We assume that our file system will not hold many files. At

most, it will only contain a few checkpoints worth of files

created by the processes running on the node. As discussed

in Section 2.2, in globally-coordinated checkpointing with

SCR, all processes of a parallel application write individ-

ual checkpoints simultaneously. Additionally, checkpoints

stored locally are deleted once a new checkpoint has been

written, freeing up space in the local node for newer check-

points to be stored. We can safely assume that CRUISE needs

to only handle a limited number of files for each process, and

so we design our meta data structures to use small, fixed-size

arrays. Each file is then assigned an internal FileID value,

which is used to index into these arrays.

The allocation and deallocation of FileIDs is governed by

the free fid stack. When a new file is created, CRUISE pops

the next available FileID from the stack. When a file is

deleted, its associated FileID is pushed back onto the stack.

For each file, we record the file name in an array called

the File List, and we record the file size and the list of data-

chunks associated with the file in an array of File Metadata

structures. Both arrays are indexed by FileID.

The name of a newly created file is added to the File

List in its appropriate position, and a flag is also set to

indicate that this position is in use. For meta data calls that

only provide the file name, such as open(), rename(), and

unlink(), CRUISE scans the File List for a matching name

to discover the FileID, which is then used to index into the

array of File Metadata structures.

For calls which return a POSIX file descriptor, like

open(), we associate a mapping from the file descriptor

to the FileID so that subsequent calls involving the file de-

scriptor can index directly to the associated element in the

File List and File Metadata structure arrays.

The File Metadata structure is logically similar to an

inode in traditional POSIX file systems, but it does not

carry a majority of the Metadata carried by inodes. The File

Metadata structure holds information pertaining to the size

of the file, the number of data-chunks allocated to the file,

and the list of data-chunks that constitute the file.

Finally, the free chunk stack manages the alloca-

tion and deallocation of data-chunks. The size and num-

ber of data-chunks are fixed when the file system is cre-

ated. Each data-chunk is assigned a ChunkID value. The

free chunk stack tracks ChunkIDs that are available to

be assigned to a file. When a file requires a new data-chunk,

CRUISE pops a ChunkID from the stack and records the

ChunkID in the File Metadata structure. When a chunk is

freed, e.g., after an unlink() operation, CRUISE pushes the

corresponding ChunkID back on the stack.

4.3 Simplifications

CRUISE does not support directories. However, CRUISEmain-

tains the illusion of a directory structure by using the entire

path as the file name. This support is sufficient for SCR and

the file system is simplified by not requiring it to track di-

rectory trees. When files are transferred from CRUISE to the

parallel file system, the directory structure can be recreated

since the full paths are stored.

CRUISE also does not support permissions. Since com-

pute nodes on HPC systems are not shared by multiple users

at the same time, there is no need for administering file per-

missions or access rights. All files stored within CRUISE can

only be accessed by the user who initiated the parallel appli-

cation. SCR restores normal file permissions when files are

transferred from CRUISE to the parallel file system.

Nor does CRUISE track time stamps. SCR and other

checkpoint libraries manage information about which check-

points are most recent and which can be deleted to make

room for new checkpoint files, so time stamps are not re-

quired. Updating time stamps on file creation, modification,

or access can incur a significant amount of overhead, so we

remove this feature from CRUISE.

4.4 Lock Management

For improved portability, the persistent memory block may

either be shared by all processes running on the same com-

pute node, or there may be a private block for each process.

The patterns of checkpoint I/O supported by SCR do not re-

quire shared-file accesses. Given this, we can assume that no

two processes will access the same data-chunk, nor will they

update the same File Metadata structure. However when us-

ing a single shared block, multiple processes do interact with

the stacks that manage the free FileIDs and data-chunks.

When operating in this mode, the push and pop operations

must be guarded by inter-process locks.

Given that the stack operations are on the critical path, we

need a light-weight locking mechanism. We considered two

potential mechanisms for locking common data structures.

One option is to use System V IPC semaphores and the

other is to use Pthread spin-locks. Semaphores provide a

locking scheme with a high-degree of fairness, and processes

sleep while waiting to acquire the lock, freeing up compute

resources. However, the locking and unlocking routines are

heavy-weight in terms of the latency incurred. Spin-locks,

on the other hand, provide a low-latency locking solution,

but they lack fairness and can cause excessive busy-waiting.

When using SCR, all parallel processes in the job syn-

chronize for the checkpointing operation to complete be-

fore starting additional computation. This synchronization

ensures some degree of fairness between processes across

checkpoints. Furthermore, in the case of HPC applications,

busy-waiting on a lock does not reduce performance since

users do not oversubscribe the compute resources. Thus, we

elected to use spin-locks in CRUISE to protect the stack op-

erations.

4.5 Data Spill-Over to SSD

Some HPC applications tend to use most of the memory

available on each compute node, and some of these also must

save a significant fraction of that memory during a check-

point. In such cases, the memory allocated for exclusive use

by CRUISE might not be large enough to hold the check-

points from the processes running on the node. We need a

fail-over mechanism to handle such cases.

In order to fulfill this design goal, we implemented a data

spill-over mechanism to complement the in-memory file sys-

tem. We use a secondary storage device for this purpose,

such as an SSD local to each compute node or the parallel

file system. During initialization, we reserve a fixed-amount

of space on the spill over device in the form of a file. As

with the memory block, the user can specify the location

and size of the file that CRUISE creates. The file is then

logically fragmented into a pool of data-chunks. The allo-

cation of these chunks is managed by another stack called

the free spillover stack, which is kept in the persistent

memory block. In addition to storing the list of ChunkIDs

allocated to a file in the File Metadata structure, we also

record a field indicating whether this chunk is in memory

or the spill over device. When allocating a new chunk for a

file, CRUISE allocates a chunk from the spill-over only when

there are no remaining free chunks in memory.

4.6 Supporting Remote Direct Memory Access

Another important design goal of CRUISE was to support Re-

mote Direct Memory Access (RDMA) to the file data stored

in memory. RDMA allows a process on a remote node to

access the memory of another node, without involving any

process on the target node. The main advantage of RDMA is

the zero-copy communication capability provided by high-

performance interconnects such as InfiniBand and iWARP.

This allows the transfer of data directly to and from a re-

mote process’s memory, bypassing any kernel buffers in the

process. This minimizes the overheads caused by context

switching and CPU involvement.

Several researchers have studied the benefits of RDMA-

based asynchronous checkpointing mechanisms [5, 22]. An

I/O server process can pull checkpoint data from a compute

node’s memory without requiring involvement from the ap-

plication processes and then write the data to slower storage

in the background. This reduces the time for which an appli-

cation is blocked while writing data to more stable storage.

As an optimization for such capabilities, we expose

file data stored in CRUISE for RDMA access. To do this,

CRUISE provides an interface to obtain the memory loca-

tions of the data-chunks stored for a file. The function takes

a file descriptor as input and returns a list of addresses of the

data-chunks that constitute the file. After the checkpoint files

have been written, SCR can query this information, prepare

the regions for RDMA, and pass the information along to a

remote process.

5. Implementation of CRUISE

Here, we illustrate the implementation of our CRUISE file

system by detailing initialization and two representative op-

erations: the write() data operation and the open() meta

data operation.

5.1 Initializing the Filesystem

Before CRUISE processes any I/O calls, a process must

mount CRUISE at a particular prefix by calling a user-space

API routine. At mount time, CRUISE creates and attaches

to the persistent memory block for the process. It initializes

pointers to the different data structures within this block,

and it clears any locks which may have been held by previ-

ous processes. If the block was newly created, it initializes

the various resource stacks. Once CRUISE has been mounted

at some prefix, e.g., /tmp/ckpt, it intercepts all I/O opera-

tions for files at that prefix. For all other files, CRUISE simply

forwards the call to the original I/O routine.

1: open(const char *path, int flags, ...)

2: if path matches CRUISE mount prefix then

3: lookup corresponding FileID

4: if path not in File List then

5: pop new FileID from free fid stack

6: if out of FileIDs then

7: return EMFILE

8: end if

9: insert path in File List at FileID

10: initialize File Metadata for FileID

11: end if

12: return FileID + RLIMIT NOFILE

13: else

14: return real open(path, flags, ...)

15: end if

Figure 4. Pseudo-code for open() function wrapper

5.2 open() Operation

Figure 4 gives the pseudo-code for the open() function.

When CRUISE intercepts any file system call, it first checks

to see if the operation should be served by CRUISE or if it

should be passed to the underlying file system. During the

open() call, CRUISE compares the path argument to the

prefix at which it was mounted. The call is intercepted if

the file prefix matches the mount point; otherwise the real

open() call is invoked.

When CRUISE intercepts an open() call, it scans the File

List to lookup the FileID for a file name matching the path

argument. If it is not found, CRUISE allocates a new FileID

from the free fid stack, adds the file to the File List, and

initializes its corresponding File Metadata structure. As a file

descriptor, CRUISE returns the internal FileID plus a constant

RLIMIT NOFILE.

RLIMITs are system specific limits imposed on differ-

ent types of resources, including the maximum number

of open file descriptors for a process. The CRUISE vari-

able RLIMIT NOFILE specifies a value one greater than

the maximum file descriptor the system would ever return.

CRUISE differentiates its own file descriptors from system-

generated file descriptors by comparing them to this value.

5.3 write() Operation

Figure 5 shows the pseudo-code for the write() func-

tion. CRUISE first compares the value of fd to RLIMIT NOFILE

to determine whether it corresponds to a CRUISE or system-

generated file descriptor. If it is a CRUISE file descriptor,

it converts fd to a FileID by subtracting RLIMIT NOFILE.

Using the FileID, CRUISE looks up the corresponding File

Metadata structure to obtain information on the current file

size and list of data-chunks allocated to the file. From the

current file pointer position and the length of the write op-

eration, CRUISE determines whether additional data-chunks

must be allocated. If necessary, it acquires new data-chunks

from the free chunk stack. If the persistent memory

block is out of data-chunks, CRUISE requests chunks from

the free spillover stack to allocate chunks from the

secondary spill-over pool. It appends the ChunkIDs to the

list of chunks in the File Metadata structure, and then it

copies of buf to the data-chunks. Relevant meta data such as

the file size is also updated.

6. Experimental Evaluation

6.1 Experimentation Environment

We used several HPC compute systems for our evaluation.

Cluster-A. Cluster A is a 160-node Linux cluster running

RHEL 6. Each node has dual Intel Xeon processors with 4

cores. The compute nodes have 12 GB of memory and are

connected with InfiniBand QDR. Cluster A has 16 dedicated

storage nodes, each with 24 GB of memory and a 300GB

OCZ VeloDrive PCIe SSD. We used the GCC compilers for

our experiments, version 4.6.3.

Clusters B, C, and D are Linux clusters that run the

TOSS 2.0 operating system, derived from Red Hat Enter-

prise Linux Server release 6. They are all equipped with Intel

Xeon processors. On Cluster-B, each node has dual 6-core

processors and 24 GB of memory; on Cluster-C and Cluster-

D, each node has dual 8-core processors and 32 GB of mem-

ory. All three clusters use the high-speed InfiniBand QDR

interconnect. The total node counts on the clusters are 1,944,

1,296, and 2,916 for Cluster-B, Cluster-C, and Cluster-D, re-

spectively. In our experiments, we used the Intel compiler,

version 11.1.

6.2 Microbenchmark Evaluation

In this section, we give the results from several experiments

to evaluate the inherent performance capabilities of CRUISE.

First, we explore the impact of NUMA effects on intra-

node scalability. Next, we evaluate the effect of data-chunk

1: write(int fd, const void *buf, size t count)

2: if fd more than RLIMIT NOFILE then

3: FileID = fd - RLIMIT NOFILE

4: get File Metadata for FileID

5: compute number of additional data-chunks required to accommodate write

6: if additional data-chunks needed then

7: pop data-chunks from free chunk stack

8: if out of memory data-chunks then

9: pop data-chunks from free spillover stack

10: end if

11: store new ChunkIDs in File Metadata

12: end if

13: copy data to chunks

14: update file size in File Metadata

15: return number bytes written

16: else

17: return real write(fd, buf, count)

18: end if

Figure 5. Pseudo-code for write() function wrapper

sizes on performance. Finally, we evaluate the spill-over

capability of CRUISE.

6.2.1 NUMA Impact on Intra-Node Scalability

Because CRUISE is a node-local file system, it is critical

to understand its behavior with increasing numbers of pro-

cesses on a single node. With the increase in the number

of CPU cores and chip density, the distance between sys-

tem memory banks and the processors also increases. If the

data required by a core does not reside in its own memory

bank, there is a significant access latency penalty to fetch

data from a remote memory bank. In this section, we study

the impact of such Non-Uniform Memory Access (NUMA)

architectures on the intra-node scalability of CRUISE.

In Figure 6, we show the scalability of CRUISE compared

with RAM disk and memcpy with increasing numbers of pro-

cesses on a single node of Cluster-B and Cluster-C. The X-

axis indicates the number of processes on the node, and the

Y-axis gives the aggregate bandwidth of the I/O operation in

GB/s summed across all processes. Each process is bound to

a single CPU-core of the compute node. In our benchmark,

each process writes and deletes a 100 MB file five times and

reports its average write bandwidth.

One notable trend in these plots is the double saturation

curves. We recall that Cluster-B is a dual-socket NUMA

machine with 6 cores on one NUMA bank and 6 on another.

Similarly, Cluster-C is a dual-socket 16 core machine with

two NUMA banks. As the process count increases from 1

to 6 on Cluster-B (1 to 8 on Cluster-C), all processes are

bound to the first socket. All three tests apparently allocate

memory from the local NUMA bank, and its performance

begins to saturate. Then as the process count is increased to

7 on Cluster-B (9 on Cluster-9), the additional process runs

on the other socket and uses memory from the other NUMA

bank leading to a jump in aggregate performance. Finally,

this second NUMA bank begins to saturate as the process

count is increased further.

Now looking at the performance of the individual tests,

we first consider the scalability of memory-to-memory

copies (red line). The processes that write to memory simply

copy data from one user-level buffer to another using stan-

dard memcpy() calls. This theoretically represents the best

bandwidth that can be obtained from the memory subsys-

tem, and it can be considered as an upper bound of what any

in-memory file system might achieve. The maximum aggre-

gate bandwidth tops out around 18 GB/s on Cluster-B, and

around 35 GB/s on Cluster-C.

With this in mind, we now examine the ramdisk perfor-

mance (blue line). We used the same benchmark as above but

replaced the memcpy() calls with standard POSIX write()

calls to write data to a file in ramdisk. We also added a call

to fsync() after writing all data, and of course we open and

close the file before calling unlink() to delete it. Although

the data is eventually stored in the same memory subsystem,

the aggregate bandwidth is nearly cut in half when writing

data through the ramdisk file system interface. This also con-

firms the observation illustrated in Figure 2.

Now consider the plots for CRUISE. On Cluster-B, we

evaluated its performance when using a private block per

process (purple line) and when all processes on the node

shared a single block (green line). There is a clear difference

in performance between these modes. The private block case

very closely tracks the performance of memcpy(), seemingly

achieving full memory bandwidth on the system. The overall

scalability of the file system is bounded only by the memory-

(a) (b)

Figure 6. Impact of Non-Uniform Memory Access architecturesCRUISE

bandwidth offered by the system, and not by its inherent

design.

The plot for the shared block mode also closely tracks the

memcpy() performance up to 6 processes, but then it starts

to fall off as the process count increases further. Although

some of this is due to locking overheads, these overheads are

small, especially for the 64 MB data-chunk size used in these

tests. Instead, we believe this effect is due to the costs of

non-local memory access, in which processes acquire data-

chunks physically located on the remote NUMA node. This

problem does not occur in the private-block case because by

default the operating system allocates physical pages close

to the core the process runs on. To address this finding, we

plan to modify CRUISE to consider NUMA locations when

allocating data-chunks.

6.2.2 Impact of Chunk Sizes

Figure 7. Impact of Chunk Sizes

One important parameter that determines the perfor-

mance of our file system is the size of the data-chunk used

to store file data. The chunk size also determines the unit of

data with which a write() or read() operation works. To

study the impact of chunk sizes, we used the same bench-

mark from before in which 12 processes each write 64 MB

of data to a file in CRUISE on a single node. We then vary the

chunk size, starting from 4 KB and increasing it to 64 MB.

In Figure 7, the X-axis shows the chunk size and the Y-axis

indicates the aggregate bandwidth obtained. As the graph in-

dicates, we see significant performance benefits with larger

chunk sizes. This performance gain can be attributed to the

fact that a file of a given size requires fewer chunks with

increasing chunk sizes, which in turn leads to fewer book-

keeping operations and fewer calls to memcpy().

A drop in the throughput is observed as the chunk size

nears 256 KB. This can be attributed to the on-chip cache

hierarchy of the node on which these experiments were con-

ducted, which had 256 KB of shared-L2 cache available for

use by all cores on the socket. The throughput drops with in-

creasing chunk size until it hits the L2 cache capacity, which

saturates the throughput.

Similar to the contention at the cache level, the contention

at the NUMA bank level shows up with very large chunk

sizes. In our experiments, this overhead starts showing up

after the chunk size is larger than 16 MB. Although this trend

might remain the same across different system architectures,

the actual thresholds could vary. To facilitate portability, we

leave the chunk size as a tunable parameter.

In addition to having relatively larger chunks for perfor-

mance reasons, it is also beneficial when draining check-

points using RDMA as discussed in Section 4.6. One-sided

RDMA put and get operations are known to provide higher

throughput on high performance interconnects such as In-

finiBand when transferring large data sizes.

6.2.3 Spill-over to SSD

With the next set of experiments, we evaluate the data

spill-over capability that has been developed to complement

CRUISE functionality. As discussed in Section 4.5, the spill-

over technique acts as a fail-over mechanism, when HPC

applications require a major amount of the physical mem-

ory available to the node, leaving a small fraction for the

purpose of checkpointing. In such scenarios, it is possible

to theoretically estimate the loss in checkpointing through-

put that would be incurred when an application consumes

a large amount of memory. The simple equation below ex-

plains how this can be done.

Tspillover=

sizetot

sizeCRUISE

TCRUISE
+

sizeSSD

TSSD

Where, Tspillover is the throughput of the entire check-

point with spill-over enabled, sizetot is the total size of the

checkpoint, sizeCRUISE is the size of the checkpoint that will

be stored in CRUISE, sizeSSD is the size that will go into

the SSD, TCRUISE and TSSD are the native throughput of

CRUISE and the SSD device. Using such a model, users can

proactively decide the ratio of memory reserved for appli-

cations and the checkpointing system in a balanced manner.

We have compared the theoretical throughput obtained from

this model, with experimental results, below.

Figure 8. File-distribution patterns for SSD spill-over tests

To study the performance penalties involved in saving

parts of a checkpoint in-memory, and rest of it in a spill-

over device, we have developed a set of test-cases. Figure 8

lists 7 different test-cases based on a 512 MB-per-process

checkpoint scenario. Along X-Axis are the different tests,

and the Y-Axis represents the size of the checkpoint file. The

stacked-bars indicate the size of the checkpoint stored inside

CRUISE (blue part), and that stored in an SSD (red part).

Test #1 is the most ideal scenario where 100% of the file

is stored in memory, and Test.#7 is the worst-case scenario

where the application consumed all of the node’s memory

forcing the entire checkpoint to be sent to disk. With tests

2-6, the size of the file that spills-over to the SSD increases

by a factor of 2.

All these tests were run on a single storage node of

Cluster-A that has an high-speed SSD installed. The native

throughput of CRUISE and the SSD on this system where

measured (Test#1 and #7) before running the other test cases,

or computing the theoretical values. For each of the other

tests, 12 processes write a 512 MB checkpoint file each. The

memory available on CRUISE was limited according to the

test case, and the aggregate throughput was measured. Both

the theoretical and actual results have been tabulated in Ta-

ble 1.

Test # % in

SSD

Theoretical

Throughput

Actual

Throughput

1 0 15074.17 15074.17

2 3.125 10349.12 10586.61

3 6.25 7879.33 8134.46

4 12.5 5333.61 5312.26

5 25 3240.00 3110.58

6 50 1815.06 2163.93

7 100 965.67 965.67

Table 1. CRUISE throughput (MB/s) with Data Spill-over

It is clearly understood, that with an increase in the per-

centage of a checkpoint that has to be spilled-over to the

SSD or any such secondary device, the total throughput of

the checkpointing operation reduces. Also, the actual results

match fairly well with the theoretical ones that were com-

puted using the equation.

6.3 Scalability Evaluation

CRUISE is designed to be used with large-scale clusters that

span several-thousands of compute nodes. We have evalu-

ated the scaling capacity of this framework, the results of

the evaluation are shown in Figure 9. These evaluations were

conducted on two different clusters that were described in

Section 6.1: Cluster-B and Cluster-D. For each of these clus-

ters, the throughput of CRUISE was measured, with increas-

ing number of processes. In these experiments, each pro-

cesses writes a 128MB file to the in-memory file system,

with each process having its own persistent memory seg-

ment. To better understand the trends, we also compared

this with the scaling capacity of the RAM disk. A memory-

to-memory copy of data within a process’ address space

takes complete advantage of the memory sub-system’s raw-

bandwidth. In order to establish an upper-bound of achiev-

able throughput, we have shown the scaling trends of the

memcpy() operation as well.

On Cluster-B (Figure 9(a)), the number of processes writ-

ing to CRUISE was steadily increased by a factor of two

(X-Axis), to run up to 6 144 processes. The Y-Axis shows

the Bandwidth(GB/s) in log-scale. As the graphs indicate,

CRUISE has a perfectly-linear scalability. It is able to take

complete advantage of the memory system’s bandwidth (the

line of which is overlapping with the of CRUISE). At 6 144

processes, the throughput of CRUISE is 9.56 TB/s, losing a

mere 0.44% of the 9.58 TB/s memcpy() throughput. The

throughput of RAM disk at this scale was nearly half that

(a) (b)

Figure 9. Scalability of CRUISE

of CRUISE at 5.52 TB/s, losing over 42% of the bandwidth

provided by the memory system owing to heavy-weight se-

mantics and multiple context-switches.

Likewise, on the Cluster-D (Figure 9(b)), the number of

processes writing to CRUISE was increased up to 8 192 pro-

cesses. A similar perfect-linear scaling can be observed on

this cluster as well. The throughput of CRUISE at this scale

is 18,031 MB/s (18.03 TB/s), with a loss of just 111 MB/s

from the 18,142 MB/s throughput of memcpy(). Here again,

the throughput of RAM disk was nearly half that of CRUISE,

at 10,111 MB/s. These runs used just 17.5% of the number

of nodes available on this cluster. At full-capacity of 46,656

processes, such linear-scaling would achieve a throughput of

over 100 TB/s.

7. Related Work

The idea of using linker support to wrap and intercept library

calls has been around for a while. The Darshan [8] project

provides a runtime that intercepts an HPC application’s calls

to the filesystem using linker support to profile and charac-

terize the application’s I/O behavior. Similarly, the fakech-

root [2] project intercepts chroot() and open() calls to

emulate their functionality without privileged access to the

system.

Other researchers have investigated saving files in mem-

ory for performance. The MemFS project from Hewlett

Packard [19] dynamically allocates memory to hold files.

However, there is no persistence of the files after a pro-

cess dies and MemFS requires kernel support. Another ef-

fort investigates the benefits of in-memory filesystems [16].

However, this effort also requires kernel support, and re-

quires copies from kernel buffers to application buffers

which would cause high overhead. MEMFS is a general

purpose, distributed filesystem implemented across com-

pute nodes on HPC systems [26]. Unlike our approach, they

do not optimize for the predominant form of I/O on these

systems, checkpointing. Another general purpose filesystem

for HPC systems is based on a concept called containers

which reside in memory [15]. While this work does con-

sider optimizations for checkpointing, its focus is on asyn-

chronous movement of data from compute nodes to other

storage devices in the storage hierarchy of HPC systems.

Our work primarily differs from these in that CRUISE is

is a filesystem optimized for fast node-local checkpoint-

ing. Several systems have looked at storing checkpoints in

memory for high performance. Several efforts investigated

checkpointing to memory in a manner similar to that of SCR

[7, 10, 13, 22, 28, 29]. They use redundancy schemes with

erasure encoding for higher resilience. Rebound focuses on

single many-core nodes and optimizes for highly-threaded

applications [6]. These works differ from ours in that they

use existing in-memory or node-local filesystems to store

checkpoints.

Summary and Future Work

In this work, we have developed a new file system called

CRUISE to extend the capabilities of multi-level checkpoint-

ing libraries used by today’s large scale HPC applications.

CRUISE runs in user-space for improved performance and

portability. It performs nearly twice as fast as the kernel-

based RAM disk, and it can run on systems where RAM

disk is not available. CRUISE stores file data in main mem-

ory and it scales linearly with the number of processors used

by the application. To date, we have benchmarked its perfor-

mance at 18 TB/s using just 17.5% of the nodes on a large

scale cluster. At full scale, we expect CRUISE to reach write

bandwidths of 100 TB/s.

CRUISE implements a spill over capability that stores data

in secondary storage, such as a local SSD, to support appli-

cations whose checkpoints are too large to fit in memory.

CRUISE also allows for Remote Direct Memory Access to

file data stored in memory, so that multi-level checkpointing

libraries can use processes on remote nodes to copy check-

point data to slower, more resilient storage in the background

of the running application.

As future work, we plan to conserve storage space by

compressing checkpoint files as they are written. We will

extend the storage logic in CRUISE to account for the effects

of Non-Uniform Memory Access when allocating memory

to maximize performance. Finally, we will investigate vari-

ous caching policies when using compression and spill over

capabilities to improve I/O to frequently accessed file data.

References

[1] The ASC Sequoia Draft Statement of Work.

https://asc.llnl.gov/sequoia/rfp/02 SequoiaSOW V06.doc,

2008.

[2] fakechroot. https://github.com/fakechroot/fakechroot/wiki.

[3] Filesystem in Userspace. http://fuse.sourceforge.net.

[4] The NetCDF Users Guide.

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.pdf.

[5] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,

and F. Zheng. DataStager: Scalable Data Staging Services for

Petascale Applications. In HPDC, 2009.

[6] R. Agarwal, P. Garg, and J. Torrellas. Rebound: Scalable

Checkpointing for Coherent Shared Memory. SIGARCH

Comput. Archit. News, 39, 2011.

[7] L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi,

F. Cappello, and S. Matsuoka. FTI: High Performance Fault

Tolerance Interface for Hybrid Systems. In Proceedings of the

2011 ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, Seattle,

WS, USA, 2011.

[8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,

R. Latham, and R. Ross. Understanding and Improving Com-

putational Science Storage Access through Continuous Char-

acterization. 2011.

[9] A. Cheng and M. Folk. HDF5: High Performance Science

Data Solution for the New Millennium. In Proceedings of

the Conference on High Performance Computing Networking,

Storage and Analysis, 2000.

[10] B. Eckart, X. He, C. Wu, F. Aderholdt, F. Han, and S. Scott.

Distributed Virtual Diskless Checkpointing: A Highly Fault

Tolerant Scheme for Virtualized Clusters. 2012 IEEE 26th

International Parallel and Distributed Processing Symposium

Workshops, 2012.

[11] E. N. Elnozahy and J. S. Plank. Checkpointing for Peta-

Scale Systems: A Look into the Future of Practical Rollback-

Recovery. IEEE Transactions on Dependable and Secure

Computing, 1(2):97 – 108, April-June 2004.

[12] J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards,

R. E. Rudd, and F. H. Streitz. Extending Stability Beyond

CPU Millennium: A Micron-Scale Atomistic Simulation of

Kelvin-Helmholtz Instability. In Proceedings of the 2007

ACM/IEEE Conference on Supercomputing (SC), 2007.

[13] F. Isaila, J. Garcia Blas, J. Carretero, R. Latham, and R. Ross.

Design and Evaluation of Multiple-Level Data Staging for

Blue Gene Systems. TPDS, 2011.

[14] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman. ZOID:

I/O-Forwarding Infrastructure for Petascale Architectures. In

PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming,

2008.

[15] D. Kimpe, K. Mohror, A. Moody, B. V. Essen, M. Gokhale,

K. Iskra, R. Ross, and B. R. de Supinski. Integrated In-System

Storage Architecture for High Performance Computing. In

Workshop on Runtime and Operating Systems for Supercom-

puters (ROSS’12), 2012.

[16] M. McKusick, M. Karels, and K. Bostic. A Pageable Memory-

Based Filesystem. In Proceedings of the United Kingdom

UNIX Users Group Meeting, 1990.

[17] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala,

and S. A. Wender. Predicting the Number of Fatal Soft Errors

in Los Alamos National Laboratory’s ASC Q Supercomputer.

IEEE Transactions on Device and Materials Reliability, 5(3):

329–335, September 2005.

[18] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski.

Design, Modeling, and Evaluation of a Scalable Multi-level

Checkpointing System. In SC, 2010.

[19] H. Packard. MemFS v2 A Memory-based File System on

HP-UX 11i v2 . In Technical Whitepaper, 1990.

[20] F. Petrini. Scaling to Thousands of Processors with Buffer

Coscheduling. In Scaling to New Height Workshop, Pitts-

burgh, PA, 2002.

[21] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer. Parallel I/O on

the IBM Blue Gene/L System. Technical report, Blue Gene/L

Consortium Quarterly Newsletter.

[22] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinksi,

N. Maruyama, and S. Matsuoka. Design and Modeling of a

Non-blocking Checkpointing System. In Proceedings of the

International Conference for High Performance Computing,

Networking, Storage and Analysis, SC’12, November 2012.

[23] B. Schroeder and G. Gibson. Understanding Failure in Petas-

cale Computers. Journal of Physics Conference Series: Sci-

DAC, June 2007.

[24] B. Schroeder and G. A. Gibson. A Large-Scale Study of

Failures in High-Performance Computing Systems. In In

Proceedings of the International Conference on Dependable

Systems and Networks (DSN), June 2006.

[25] SCR. Scalable Checkpoint/Restart Library.

http://sourceforge.net/projects/scalablecr/.

[26] J. Seidel, R. Berrendorf, M. Birkner, and M.-A. Hermanns.

High-Bandwidth Remote Parallel I/O with the Distributed

Memory Filesystem MEMFS. In Recent Advances in Parallel

Virtual Machine and Message Passing Interface. 2006.

[27] E. Vivek Sarkar, editor. ExaScale Software Study: Software

Challenges in Exascale Systems. 2009.

[28] G. Wang, X. Liu, A. Li, and F. Zhang. In-Memory Check-

pointing for MPI Programs by XOR-Based Double-Erasure

Codes. In Proceedings of the 16th European PVM/MPI Users’

Group Meeting, 2009.

[29] G. Zheng, L. Shi, and L. V. Kalé. FTC-Charm++: An

In-Memory Checkpoint-Based Fault Tolerant Runtime for

Charm++ and MPI. In 2004 IEEE International Conference

on Cluster Computing, September 2004.

